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Abstract: In this paper we investigate the possible states of knowledge among a group
of individuals and their relations to decision making.

A travelling salesman found himself spending the night at home with his
wife when one of his trips was accidentally cancelled. The two of them were
sound asleep, when in the middle of the night there was a loud knock at the
front door. The wife woke up with a start and cried out, ‘Oh my God! It’s my
husband!” Whereupon the husband leapt out of bed, ran across the room and
Jumped out the window.

Schank and Abelson, 1977, p. 59.

Wimmer and Perner begin their paper [WM] on Beliefs about beliefs with this story from
Schank and Abelson which may seem amusing to some and disturbing to others. But the
point of the story seems to be that husband and wife each have their own scenario and
neither corresponds to the actuality. The wife is a bit better off as she knows where she is
though not whom she is with. The husband is unaware of the identity of his companion
and even of the location where he is.

Wimmer and Perner themselves are concerned primarily with the perception by children
of other people’s mindsets. The following quote from [WM] is a story about Maxi which
they told a group of children:

Mother returns from her shopping trip. She bought chocolate for a cake.
Maxi may help her put away the things. He asks her, ‘Where should I put the
chocolate?’ ‘In the blue cupboard’, says the mother.

Later, with Maxi gone out to play, the mother transfers the chocolate from the blue
cupboard to the green cupboard. Maxi then comes back from the playground, hungry,
and he wants to get some chocolate.

In Wimmer and Perner’s experiment, little children who were told the Maxi story were
then asked the belief question, “Where will Maxi look for the chocolate?”

Children at the age of 3 or less invariably got the answer wrong and assumed that Maxi
would look for the chocolate in the green cupboard where they knew it was. Even children
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aged 4-5 had only a one third chance of correctly answering this question or an analgous
question involving Maxi and his brother (who also wants the chocolate and whom Maxi
wants to deceive). Children aged 6 or more were by contrast quite successful in realizing
that Maxi would think the chocolate would be in the blue cupboard — where he had put
it and that if he wanted to deceive his brother, he would lead his brother towards the
green cupboard.

Thus it seems that representation of other people’s mindset comes fairly late in childhood,
well after they have learned to deal with notions of belief and belief based action for
themselves and for others who share their own view of reality. In [St] Chris Steinsvold
investigates modal logics which are intended to represent the states of mind of young
children. See also [SP].

Older children are not much better. In an experiment in my daughter’s 7th grade class, I
found that they were unable to deal with the muddy children puzzle beyond the first one
or two levels.

In this, by now well known puzzle, a number of children are playing in the mud and some
of them get their foreheads dirty. At this the father comes on the scene and announces,
“at least one of you has got her forehead dirty”.

Scenario 1: Suppose there is only one child, say Amy, who is dirty. Then she will realize
that her own forehead must be dirty since she can see that the others are clean.

Scenario 2: Suppose now that there are two dirty children, Sarah and Amy, who are
asked in turn, “Do you know if your forehead is dirty?” Now when Sarah is asked, she can
see Amy’s dirty forehead and she replies, “I don’t know”. However, when Amy is asked,
she is able to reason, “If my forehead were clean, Sarah would have known that hers must
be dirty since all the others are clean. But Sarah did not know. So my forehead must be
dirty.”

This reasoning on Amy’s part requires a representation by Amy of Sarah’s state of mind,
and clearly Amy must be at least six for this to work. However, Sarah herself must have
some reasoning ability and Amy must know that she has such abilities. It is not enough
for Amy to know Sarah’s view of reality, she must also represent Sarah’s logical abilities
in her own mind.

In particular, suppose that there are three dirty children, Jennifer, Sarah, and Amy who
are asked in turn whether they know if they are dirty, and with Amy being asked last.
If Sarah is only three, Amy would not be justified in concluding from Sarah’s “I don’t
know” that in that case Amy herself must be dirty. Amy would need to know that ¢f Amy
were clean, Sarah would have carried out a representation in her own mind of Jennifer’s
state of mind and concluded from Jennifer’s “I don’t know” that Sarah must herself be
dirty. But if Sarah is only three, Amy cannot rely on such reasoning on Sarah’s part.

As the number of dirty children goes up, there is a need for higher and higher levels of
“I know that he knows that she knows that...”. Common knowledge is at the end of



this road and has been offered as the explanation of co-ordinated behaviour ([Lew, HM,
CM, Chw]). For instance Halpern and Moses in [HM] show that the co-ordinated attack
problem requires common knowledge between the two generals, and that given the means
of communication they have, such common knowledge is impossible to attain. Clark and
Marshall [CM2] indicate similar difficulties with the referent of “the movie playing at the
Roxy today”.

While it is true that co-ordinated actions and, supposedly, common knowledge do happen,
it may also be relevant to consider other levels of knowledge, short of the infinite, common
knowledge, level.? Such levels also arise in certain pragmatic situations, e.g. with email or
snailmail or messages left on telephones as voice mail. Thus the purpose of this paper is
to study levels other than common knowledge and how they affect the actions of groups.

In typical co-operative situations even if a certain level of knowledge is needed, a higher
level would also do. If Bob wants Ann to pick up the children at 4 PM, it is enough
for him to know that she knows. Thus if he sends her email at 2 PM and knows that
she always reads hers at 3 PM, he can be satisfied. In such a situation Bob knows that
Ann will know about the children in time, or symbolically Kj(K,(C)) and he may feel
this is enough. However, if he telephones her at 3 PM instead, this will create common
knowledge of C', much more than is needed. But no harm done, since in this context, Ann
and Bob have the same goals. Halpern and Zuck also state a knowledge level requirement
for the sequence transmission problem, which suffices as a minimum, but since the parties
are co-ordinating, a higher level does not harm.

But in other contexts one may wish for just a particular level of knowledge, no lower, and
no higher. Suppose for instance that Bob wants Ann to know about a seminar talk he is
giving, just in case she wants to come, but he does not want her to feel pressured to come
— she should come only out of interest and not from politeness. In that case he will want
to arrange that Kp(K,(S)), (he himself knows that she knows about the seminar) but not
K, (Ky(K.(S))) (Ann knows that Bob knows that Ann knows about the seminar), for in
the latter case she would feel pressured. Instead of telling her about his talk, which would
create common knowledge, he may arrange for some other method, perhaps for a student
to tell her, but without saying that it is a message from Bob.

Suppose a pedestrian is crossing the street and sees a car approaching him. It happens in
many cities, Boston, Naples, etc., that the pedestrian will pretend not to notice the car,
thereby preventing KyK,(C) with C representing the car, d being the driver and p the

2The following, possibly apocryphal story about the mathematician Norbert Wiener, well known for
his absent mindedness, illustrates something even more subtle. At one time the Wieners were moving
and in the morning as he was going to work, Mrs. Wiener said to him, “Now don’t come home to this
address in the evening.” And she gave him a piece of paper with the new address. However, in the evening
Wiener found himself standing in front of the old address and not knowing what to do — he had already
lost the slip of paper with the new address. He went to a little girl standing by and said, “Little girl, do
you know where the Wieners have moved to?” The little girl replied, "Daddy, Mom knew what would
happen so she sent me to fetch you.” The moral of the story, for us, is that common knowledge works
only if the memory of all parties involved is reliable.



pedestrian. If the driver knew that the pedestrian knew, he might drive aggressively and
try to bully the pedestrian into running or withdrawing. But if he does not know that
the pedestrian knows, he will be more cautious.

While the social questions are fascinating and are addressed elsewhere (Cf. [Pa3]), in this
paper we shall concentrate on the technical aspects of knowledge, where it is assumed
that everyone involved is logically perfect. One can still ask, what are the various levels
of knowledge which can arise under various circumstances of communication and how will
they affect how we may act?

1 Some examples

Our first example comes from the Mahabharata, one of the Indian epics and at 100,000
verses, believed to be the longest single work in the world. It describes the political
struggle between two sets of cousins, the Pandavas, and the Kauravas. In a crucial battle
between the two sets of cousins, Krishna is an adviser to the Pandavas, but out of a sense
of fair play he gives his army to the Kauravas. At a crucial juncture Drona, a powerful
warrior on the Kaurava side and also the teacher of both the Pandavas and Kauravas,
turns out to be invincible in battle and the Pandavas are hard pressed.

However, the wily Krishna thinks up a strategem. Drona’s only son is called Ashvatthama
and so is an elephant owned by the Pandavas. Krishna suggests that the Pandavas kill
the elephant Ashvatthama and then announce that the man Ashvatthama has been killed.
After a great deal of hesitation and soul searching, self-interest prevails, the Pandavas do
kill the elephant, and announce to Drona that Ashvatthama is dead. Not knowing about
the elephant, Drona assumes it is his son who is dead, lays down his weapons, and is
killed by a warrior on the Pandava side.

We now offer a game-knowledge theoretic analysis of this event.

Let Drona’s two options be f for ‘fight” and n for not fight. Before the announcement his
preferences were f > n and given his prowess, any warrior who faced him faced death.

But after the announcement that Ashwatthama was dead, his preferences change ton > f,
and he can be attacked with impunity.

Ahswatthama of course was not dead and took terrible revenge on the Pandavas includ-
ing the killing of some unborn Pandava children. For this he was punished by being
condemned (rather like Cain) to live forever, and to wander the earth as a pariah.

Our second example of the motorist and the pedestrian is a bit more complex as the
deception consists of inducing a second order false belief. Let S be the situation where a
pedestrian is crossing the street and a car is coming. Let S’ be the same situation without
the car. In S the pedstrian has two options, g, i.e. to go, and n, i.e. to not go. The



motorist also has two similar options G and N. Here are the payoffs for the two in state

S.

Motorist choices

G N
Pedestrian 9 (-100,-10) (1,0)
choices
n (0,1) (0,0)
Figure I

Note that there are two Nash equilibria: at (g, N) and at (n, G). However, the penalty for
the pedestrian (injury or loss of life) to depart from (n, G) is much greater than the penalty
for the motorist (fine or loss of license) to depart from (g, V). Thus the equilibrium (g, N)
is less stable than (n.G), and this fact creates the possibility for the motorist to ‘bully’
the pedestrian.

However, if the pedestrian is unaware of the existence of the car, then the picture is much
simpler and his payoffs are 1 for g and 0 for n. g dominates n, and once this choice is made
by the pedestrian, it is dominant for the motorist to choose N. This is why the pedestrian
tries to achieve the state of knowledge represented by the formulas K,(C), ~K,,(K,(C))
indicating that the pedestrian knows the car is there but the motorist does not know
that the pedestrian knows. The pedestrian chooses the action g, and knowing that the
pedestrian will do this, the motorist must choose N. However, if the motorist has a
horn, he can change the knowledge situation. The existence of the car becomes common
knowledge and thus the possibility for the motorist to bully the pedestrian arises again.

We now reconsider the problem of the two generals which Halpern and Moses have consid-
ered. In this problem there are two generals A, B who are stationed on opposing hilltops
and who wish to attack an enemy F in the valley below. General A sends a messenger
to general B suggesting that the two should attack together at dawn. However, there
is a possibility that the message might not reach B. Perhaps the messenger would be
captured or killed by E, and general A attacking by himself would be badly defeated. So
general A asks for an acknowledgement from B that his message let us attack at dawn
has been received.



However, general B has the same problem. He does not wish to attack alone and so
he agrees to the attack, but asks for an acknowledgement in turn. Clearly this process
of saying attack at dawn, please acknowledge can never end. What is needed, Halpern
and Moses argue, is common knowledge of the intended attack and no finite number of
messages back and forth will achieve it.

However, there is a small twist in this problem to which we now turn. Let a stand for
the event that general A attacks alone. Let b stand for the event that general B attacks
alone. Let t stand for the event that they attack together, and finally Let n stand for the
event that neither attacks.

The analysis which Halpern and Moses provide tacitly assumes that the priorities are: ¢ >
n > b > a for general A, and t > n > a > b for general B. “If only one general is going to
attack, let it be the other guy”, is tacitly assumed. Suppose, however, that t > b >n > a
for both generals. Perhaps general B’s army is large enough to make the difference in a
battle, but is also small enough so that its attacking alone and being defeated is not a
disaster —in any case it is better than continued inaction. In such a case general A can issue
the message “Let us plan to attack at dawn, please acknowledge, but I will not acknowledge
your acknowledgement”. Thus A plans to attack iff he receives an acknowledgement and
B has been ordered to attack without worrying about an acknowledgement from A. In
such a case, A is guaranteed not to attack alone, and there may well be a good chance of
t, provided only that the probability of a message getting through is high enough.

In other words, even though (as Halpern and Moses point out) common knowledge of the
attack cannot be achieved, there may well be a strategy for general A which is better than
doing nothing.

As our final example we consider the ballot box whose function is to create certain specific
states of knowledge. Suppose that three people 1, 2, 3 are debating whether to have lettuce
or cucumbers for salad. They cast their votes into a ballot box and the final count reveals
that lettuce has won by 2 votes to 1.

Let C; : i < 3 mean that ¢ voted for cucumber, and similarly for lettuce. Then the
following is common knowledge: (Ly ACoAL3)V (Li ALy AC3)V (Cy ALy A Lg). Also what
is common knowledge is (Vi,Vj)(i # j — —K;(C})) as well as (Vi,Vj)(i # j — —Ki(L;)).
L.e. it is common knowledge that no one knows anyone else’s vote. I am sure the reader
can see the game theoretic reasons for these two knowledge facts. Everyone must know
the results of the election, and the lettuce party must not be in a position to take revenge
on the lone cucumber.

We hope we have made a case that states of knowledge and belief which fall short of
common knowledge and common belief do arise, are relevant, and can often be better
than full common knowledge.



2 Levels of Knowledge

Given a group N = {1,...,n} of agents (whether people or processes) what are the prop-
erties of their state of knowledge relative to some fact A7 Assuming that A is true, there
are still many options. At one extreme, perhaps N have no idea about A. At the other
extreme is the possibility that A is common knowledge among N. What are the interme-
diate possibilities and how will a particular level of knowledge of A affect how the group
N will act regarding some situation? To investigate this question formally we set up a
formal language L and the notion of the level of a formula A as a set of formulas in L.

Definition 1: Assume given m propositional variables P, ..., B,,. Let Ly = {Pi, ..., Py}
and let L, be all boolean combinations of the F;. If the F; are basic ground facts, then
L, represents all ground (knowledge-free) facts. Given a group N = {1,...,n} of agents
we define the full knowledge language L as follows:

(i) Lo C L

(ii) If A, B € L then so are A, AV B.

(iii) If A € L then for all i <n, K;(A) € L.

To consider common knowledge as well we extend L to L. by adding the conditions
(iv) L C L.

(v) If A€ L. and U C N then Cy(A) € L.

For convenience we shall identify K; with Cy;;.

Definition 2: A Kripke structure M for L consists of a nonempty set W of states, a
map 7 from W X Ly into {1,0} with 1 standing for true and 0 for false, and finally an
equivalence relation R; over W for each 1 < m.

Definition 3: Given a Kripke structure M for L, a state s € W and a formula A € L. we
define M, s = A as follows by induction on the complexity of A. First, for each U C N,
we define the relation Ry to be the transitive closure of [JR; : @ € U. Then we have:

(i) If A is atomic then M, s = A iff m(s, A) =1

(ii) If A= —-B then M,s = Aiff M,s }= B

(iti) If A= BV C then M,s =EAiff M,s}=Bor M,sE=C

(iv) If A = C,(B) where a is either some i or else some U, then M, s |= A iff

(Vt)((s,t) € R, — M,t = DB)

Theorem 1: Let X be the alphabet whose symbols are {Cy tycny
For all z, y in 2§, and all formulae A, for all M,s, V CU C N,
M, s |E xCyCyyA iff M, s | xCyCyyA iff M, s = xCyyA.

In other words, common knowledge by the larger group U absorbs common knowledge by
the smaller one.

Corollary 1:  Let Xk be the alphabet whose symbols are {Kj, ..., K,} For all a in



Yk, and for all z, y, in X7, and all formulae A,
FzayA < raayA

and hence for all M, s, M, s |= zayA iff M, s = xaayA. Le. repeated occurrences of a
are without effect and if zay € Lk (A,,s) then Vn za"y € Lk (A, s).

In other words, it is common knowledge that a knowing some B is the same as a knowing
that a knows B.

Definition 4: Given a formula A and M, s the level of A at s, L(A, s) is the set of z in
& such that M, s = A, and z contains no substrings CyCy, CyCy for any V C U C N.

Strings x such that x contains no substrings CyCy, CyCy for any V C U C N will be
called simple, and from now on we shall confine ourselves to simple strings.

If s is clear from the context, or not important, then we shall drop it as a parameter. If
we restrict ourselves to the K; operators, we denote the level of A at s by Lx (A, s).

3 Embeddability

Now we will try to characterize levels of knowledge. First we need to introduce the
embeddability ordering on strings which turns out to be important here.

Definition 5: Given two strings =,y € X%, we say that x is embeddable in y (z < y),

if all the symbols of x occur in y, in the same order, but not necessarily consecutively.

Formally:

1)x <z e<xforall x

2) z <y if there exist 2/, 2", v/, ", (v,y" # €), such that x = 2’2", y = y'y", and 2/ < ¢/,
" !

" <y

and < is the smallest relation satisfying (1) and (2).

Thus the string aba is embeddable in itself, in aaba and in abca, but not in aabb.
Properties of the embeddability relation <

Fact 1: Embeddability is a well partial order, i.e. it is not only well founded, but every
linear order that extends it is a well order (equivalent condition: it is well founded and
every set of mutually incomparable elements is finite).

Fact 2: Embeddability can be tested in linear time, e.g. by a nondeterministic finite
automaton with two input tapes.

Fact 1 was proved first by Graham Higman. See [JP] for a discussion. Fact 2 is straight-
forward.

We also need a stronger relation defined on ¢, which we call C-embeddability.
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Definition : Given two strings =,y € Xf,, we say that z is C-embeddable in y (z < y),

if

1) IngUthen C\/ jOU

2) x =y if there exist 2/, 2", v/, v, (v',y" # €), such that x = 22", y = y'y", and 2/ < ¢/,
1 !

" 2y

and = is the smallest relation satisfying (1) and (2).

Fact 3: For any z,y € X%, v <yiff x < y.
Fact 4: C-embeddability is a well partial order.

Fact 3 is easy. It is also easy to check that C-embeddability is a partial order. It is well
founded, because regular embeddability is well founded and for given x € X7, there are
only finitely many y € £ s.t. |z| = |y| and y < z.

There are only finitely many incomparable elements in X7 with respect to <, and there
are more incomparable elements with respect to < than with respect to <, so < is a well
partial order. O

If < is a partial order on S, we can define a notion of a downward closed subset of .S:
Definition : R C S is downward closed iff x € R implies Vy <z, y € R.
We will look at downward closed sets with respect to embeddability and C-embeddability.

Theorem 2: Let X¢ be the alphabet whose symbols are {Cy }ycn. Then for all strings
x,y in 3%, if © <y then for all M, s, if M, s = yA then M, s = zA.

4 The Main Results

Corollary 1: Every level of knowledge is a downward closed set with respect to <. O

Theorem 3: There are only countably many levels of knowledge and in fact all of them
are regular subsets of ¥* (where X is either Y or X¢).

Proof: Let L be any downward closed set of some ¥*. Let X = ¥*— L. Then X is upward
closed. But now let M be the set of mimimal elements of X. Since embeddability is a
WPO, M is finite and let M = {1, ...,x,}. Thenforally € ¥*,y € X < (3 <p)(z; 2 y)
and the condition (Ji < p)(x; < y) can be tested by a finite automaton. Thus X is regular,
and hence so is L. O

Fact 5: Eric Pacuit of the CUNY Graduate center and ourselves have shown that in
contrast with knowledge there are uncountably many possible levels of rational belief.
This is curious as truth is the only condition which (formally) separates knowledge from
rational belief. These results will appear elsewhere.

Corollary : The membership problem for a level of knowledge can be solved in linear



time.
Now we consider what finite downward closed sets of strings can look like.

Theorem 4: If L is a non-empty finite subset of ¥}, then L is downward closed iff for

some k,
k

L = U de({z;})

where z; € X%

This theorem reiterates the fact that the finite levels are characterized by their maximal
elements (z1, ...,z are maximal). The characterization of infinite levels of knowledge is
more complex. The details are in [PK].

5 Model of a Distributed System

Just above we considered the levels of knowledge of arbitrary Kripke structures. But
Kripke strctures do not fall from the sky. They arise in normal social (or computational)
contexts. In the rest of the paper we consider what sorts of levels of knowledge can arise
among n processes who start out knowing nothing in common but who arrive at some
shared knowledge through communication, either asynchronous, or synchronous.?

We assume that there are a finite number of processes, 1, ...,n, which compute and com-
municate with each other either by asynchronous messages or by broadcasts. Our network
is assumed to be fully connected? (there is a channel from every process to every other
process).

Asynchronous communication consists of two phases: send and receive. All messages sent
are ultimately delivered (and they are delivered in the order in which they were sent) but
the delay (transmission time) may be arbitrarily long.

Broadcasts are fully reliable, synchronous communications® where all processes involved
simulteneously receive the message sent by one of them.

3Below we give the definitions and main results. The full proofs are in [PK], which is unfortunately
not easily accessible.

4If the network is not fully connected then some levels of knowledge may be impossible to realize
due to the lack of communication capabilities, e.g. if a processor is isolated (cannot communicate with
anyone)then the other processes cannot learn anything from that process. Interesting questions arise in
case of a directed network where every process may communicate with every other process but some
communications are necessarily indirect (go through other processes). We will not analyze this case here.

5The two kinds of communications can be looked at as two kinds of communication media e.g. mailing
system (asynchronous) and telephone lines (synchronous). Since we allow for synchronous communication
between more than two processes at a time, our telephone system must have “conference call” capability.
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Now we formally specify our class of models. Let N = {1, ...,n} be the set of all processors.
Every processor i has infinitely many possible initial states v. Every initial state is a string
of 0’s and 1’s (v € {0,1}*). The set of initial states for i we denote by V;. The set of
global initial states is V = [[._, Vi.

From now on we will use lower case letters to denote everything pertaining to a single
process. Capitals will be used where all the processes are involved (e.g. v; is an initial state
of a processor i, while V' is an initial configuration of the whole system: V = (vy, ..., v,)).

Events: F; denotes the set of all events in which processor ¢ can participate (events
local to i). There are the following types of events (or actions):

1. L;: Local computation steps.
2. s(i,7,m): Sending a message m to a processor j, j € N.

3. 7(j,i,m): Receiving a message m from a processor j, j € N. (M is the set of all
possible messages)

4. be(i,U,m): Sending a broadcast m to a group of processors U, i € U C N. The
same event is receiving a broadcast m by a group of processes U.

Ep = LiU{s(i,j,m)lm e M, j € N} U{r(j,i,m)lm € M, j € N}
U{bc(j,U,m)ime M, i,j € U C N} U{be(i,Uym)ime M, i€ U C N}

We define the set of global events G in our system. G C [[},(E; U {null}) (a cartesian
product) s.t. if (eq,...,€;,...,e,) € G for some i and e; = be(j, U, m) then for all i/ € U,
ey = be(7,U,m). If e; = null for some 4, it means that there is no local event at i at this
point. Note that null is not local to any process. We use the notation (G); to denote
the ith coordinate of G, so (eq, ..., €4, ..., €n)i = €;.

Histories: A history (a run) is an input value followed by a sequence of events. Let’s
call the set of all possible histories of the system — a protocol P. So P C V; G*. Protocols
are always closed under taking an initial segment of a history: H € P implies that every
H' which is an initial segment of H is in P.

We will require that for every receive in every history in every protocol there is exactly
one corresponding send and it occurs before receive (this condition we will call time-
consistency).

We say that two histories H and H' are compatible iff they start with the same input
values.

We can define the concatenation of compatible histories:
If Hh =V;Gyh;...;Gg, and Hy = V; G5 ... G}, then H is the concatenation of H; and
H,ft H=V;Gy;...;Gi; Gy ... G,

11



Local histories are the projections of global histories onto the sets of local events of the
processors. They are “time-forgetting”.

We assume that a global event — the ticking of the clock — takes place even if no local
events take place at a particular moment. Given ¢, and the global history H, the local
history h; consisting of the events seen by i, is uniquely defined and we let ®; be the map
which takes us from H to h;.

The local history is everything the processor sees, so all the global histories which corre-
spond to the same local history h; look the same to the processor 7. Note that the length
of ®;(H) is less than or equal to the length of H. In fact length(®;(H)) = length(H) iff
there are no null events on ¢ in H.

For every ¢ we can define an equivalence relation on the set of global histories:
H~; H iff ®;(H)=®;(H)

This relation is extended to groups U by letting H ~y H' iff there exists a chain H =
H,,H,,...,H,, = H" and for all ¢ < m, there is a j € U such that H; ~; H; ;.

We use capital letters to denote global histories, events etc, lower case letters denote local
histories, events etc.

Closure Conditions for the Protocol: We impose some additional conditions on the
protocol P. We want to ensure that the initial state of ¢ (v;) cannot be known to any other
process j at any run of the system, unless j learns about v; from some communication.
We want to exclude the possibility that something is common knowledge “accidentally”.
To achieve that we will make sure that all the initial states are possible. Moreover, if v;
is the initial state of 4, all other strings v} will remain possible for j as initial states of i,
unless j gets some message from i to the contrary (directly or via some other processors).

1) All vectors of input values are possible: VV' s.t. V = (vy,...,v,) where every v; is a
sequence of 0’s and 1’s there is some H € P s.t. for some H', H =V;H'.

2) No sequence of local events on some group of processes can influence possible actions of
some other group of processes unless there are some communications (of course assuming
that both groups are disjoint).

For that we need some closure conditions on the set of all protocols. The first condition
we use is due to [CM] (it is the first of their principles of computation extension ).

We need one definition:
Let G = (eq,...e,), Gis on U if U = {i|(G); # null} (so U is the set of processes which
have some local events in G).

Closure conditions:

(i) Extension Rule:
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Let Vi € U, H =; H', G is on U, none of (G); is receive r(j,i, m) for any j not in U, then

(H eP, H;GeP) = H:;GeP

The extension rule guarantees that if we have a protocol P, some history H in P and
some action of a group of processes U is possible in H, then the same action must be
possible in every history H' which looks the same to all processes in U unless it violates
time—consistency. In order to explain why e; cannot be a receive from a processor outside
of U let us examine an example:

Let N = {1,2,3}, U = {1,2}.

H = (null,null, s(3,1,m)), H = (null,null,null). Clearly H ~; H' and H =~y H'. If
we take G = (r(3,1,m), null,null) s.t. H;G € P then requiring H’; G to be in P would
violate time—consistency.

The following conditions ensure that no process can get any additional information about
the other processes by observing its own local events (no hidden synchronization). These
conditions are necessary because (unlike [CM]) we allow local events at different sites at
the same instant of time. Condition (iz) says that if some local events have occurred in
parallel, and the sets of participating processes were disjoint, they could have occurred in
sequence. We'll call it the splitting rule.

(i) Splitting Rule:
G=(e1,...ep), GZ&V,GisonU. Given Uy,Us s.t. Uy UUy; = U and Uy, U, disjoint,
then we can “split” any G into G; and Gb:

(H,GGP) = H;G;G,eP

where (G)z = (Gl), for i € Ui, (G)z = (Gz)l for i € Us, (G1>j = null = (G2)k fOIj € Ui,
k & U, provided that we don’t split any broadcasts: (G); = be(i,V,m) — V CU; vV V C
Us.

Condition (7ii) says that if some local events have occurred in sequence, the sets of
participating processes were disjoint, and there was no send receive pair in them, they
could have occurred in parallel.

(iii) Joining Rule:
Given U;,U;y s.t. Uy UUy; = U and Uy, U, disjoint, Let G7 be on Uy, Gy on Us, and if
(G1); = s(i,J,m) then (Gq); # r(i, j,m).

(H;Gl;GQEP = H,GEP)
where (G)l = (Gl)z for 7 € Ul, (G)Z = (GQ)Z for 7 € Us.

Systems: We consider three kinds of systems. Asynchronous systems are the systems
as described above but without broadcasts. So in asynchronous systems the only com-
munications are via send and receive. Synchronous systems are the systems in which all
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the communications are done using broadcasts where we don’t have the events send and
recetve. Finally, we use the name mizred communications systems for the systems with
both kinds of communications available.

5.1 Language and Semantics

Let Lo be a language which describes properties of the global histories in a protocol P.
So for every sentence A in Ly, and for every history H € P, A is either true or false in H.

We want to make sure that in every history initially every processor has some “private”
information not known to any other processor. To accomplish that we assume that we have
in our language a countable set of propositions Ly = {Q;;}ijen. Qi is the proposition
that the jth input value of ¢ is 1. All @);; are independent. Private information of ¢ in
H are P;; which are @); ; or its negation depending on whether @); ; is true in H or not.
Note that the private information is not a truth value of any formula, but which formula
we're looking at.

L is the closure of Ly under truth functional connectives. L can be extended to a larger
language L which is the closure of L under common knowledge operators Cy (for U C N)
and the usual truth functional connectives. Cp(A) means that there is common knowledge
of A among processes from U.

The knowledge of a single process corresponds to Cy;. We will then use the notation® K;
for C;3. When we restrict ourselves to a subset of L¢ in which all common knowledge
operators are in fact the knowledge operators (the sets U in Cy are always singletons)
then we use the notation L.

The class of all models we consider is the class of all protocols P as described in the
previous section. Fix P. Now we define the notion H = A for A in L. by recursion on
the complexity of A.

0) If A is from Ly then the semantics is given.
1) If Ais @);; then A is true in H if the jth bit of an input of processor i in H is 1:

HEA ff H=(v,...,v.);H, (v;); =1

2) If Ais A’ then
HEA it HEA

If Ais BV C then
HEA ff (HEB or HEC)

3) If A is of the form K;(B) then
HEKA iff VHeP H~ H — HEA

6Fact that Cyiy = K; was noticed earlier, compare e.g. [FI]. It is important that we assume that Lx
and Lc are S5 (we need at least S4).
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4) If A is of the form Cy(B), then

HEA iff for all H H ~y H/H' =B

Also if U is empty, then Cy A iff A.

Definition 6: A formula A is persistent if whenever H = A and H' extends H, then
H = A.

Theorem 5: If A is persistent then so is K;(A) for any i.

Theorem 6: Every formula A which is a boolean combination of P;’s is persistent. O

Theorem 7: Every formula of the form xA where A is a boolean combination of P;’s,
and x is a string of knowledge operators is persistent. O

Theorem 8: [Chandy, Misra]: If communication is purely asynchronous, and for some
histories H, H', s.t. H is an initial segment of H':

H' = K1 Ky.. K Aand H £ K, A

then in H' — H there must be a sequence of messages: m,_1,Mp_2,..., My S.t. Mmy,_1 is
sent by n and reaches n — 1 (maybe via some other processes),...,m; is sent by 2 and
(maybe indirectly) reaches 1 (messages may be different but they all must imply A).
Moreover if A doesn’t depend on any local event of n (its truth value depends on some
event e € F,) then there must be some event of the form r(i,n, m) occurring after H but
before s(n,n — 1,m,_1).

Theorem 9: Every finite downward closed set is the set L(A, H) for an appropriate A
and H in some asynchronous protocol.

Theorem 10: : Every downward closed set L of strings without repetitions is L(A, H)
for suitable A and H in a synchronous system with at least 3 processors.

Theorem 11: In a two processor system with only synchronous communication available,
no finite level containing strings of length > 2 can be achieved for any formula A.

Theorem 12: In system with k-casts, i.e. with broadcasts involving at most k processors,
it is impossible to achieve common knowledge of any new fact in a group of size > k.

6 Further Work and Open Questions

In this paper we have looked only at levels of knowledge for single formulas. However,
levels of knowledge for related formulas may be conncted. For example if A = BV C' then
L(B,s)UL(C,s) C L(A,s). So one could ask, given the Lindenbaum algebra A of ground
formulas and the Boolean algebra B of subsets of ¥*, which maps from A to B can arise
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as level maps? We know that the maps must preserve order and that the images must be
regular, downward closed sets, but what more can we show?

A second direction of inquiry is to ask how actual game playing and knowledge interact.
We have shown what sorts of levels can arise and shown that they are relevant to group
strategies as well as to individual strategies within groups. But clearly much more needs
to be done.

A final line of research is to bring the cuurent work into closer contact with a lot of other
work on knowledge revision which begins with Plaza and proceeds through [Ger|, [BMP],
[Dit]. We also need to relate the work with the work of Stalnaker on models of knowledge
where probabilities are taken into account.

References:

[Bar| J. Barwise, Three Views of Common Knowledge, in TARK-2, Ed. M. Vardi, Morgan
Kaufmann 1988, pp. 369-380.

[BMP] A. Baltag, L. Moss and S. Solecki, “The Logic of Public announcements, common
knowledge and private suspicions”, Technical report #238, Indiana University Cognitive
Science Program (earlier version appeared in TARK 1998)

[Chw] M. Chwe, Rational Ritual, Princeton U. Press, 2001

[CM] Chandy M. and Misra J., “How Processes Learn”, Proceedings of 4th ACM Confer-
ence on Principles of Distributed Computing (1985) pp 204-214.

[CM2] H. H. Clark and C. R. Marshall, Definite Reference and Mutual Knowledge, in
Elements of Discourse Understanding, Ed. Joshi, Webber and Sag, Cambridge U. Press,
1981.

[Dit] H. van Ditmarsch, Knowledge Games, Doctoral dissertation, U. of Groeningen
(2000). [FHMV] R. Fagin, J. Halpern, Y.Moses and M. Vardi, Reasoning abour Knowl-
edge, MIT press, 1995.

[Ger| J. Gerbrandy, “Dynamic epistemic logic”, in Logic, Language and Information II,
CSLI press 1999.

[FI] M. Fischer and N. Immerman, “Foundations of Knowledge for Distributed Systems,
Yale Univ. Tech. Report YALEU/DCS/TR-450, December 1985

[Hi] J. Hintikka, Knowledge and Belief, Cornell U. Press, 1962.

[HM] J. Halpern and Y. Moses, Knowledge and Commmon Knowledge in a Distributed
Environment, Proc. 3rd ACM Symposium on Distributed Computing 1984 pp. 50-61
[HZ] J. Halpern and L. Zuck, A Little Knowledge goes a Long Way, Proc. 6th PODC,
1987, pp. 269-280.

[JP] D.H.J. de Jongh and R. Parikh “Well Partial Orderings and Hierarchies”, Proc. Kon.
Ned. Akad. Sci Series A 80 (1977) 195- 207.

[Lew] D. Lewis, Convention, a Philosophical Study, Harvard U. Press, 1969.

[MGM] R. Marvin, M. Greenberg and D. Mossler, “The Early development of conceptual
perspective thinking”, Child Development, 47 (1976) 511-514.

[IMT] Y. Moses and M. Tuttle, Programming Simultaneous Actions using Common Knowl-
edge, Research Report MIT/LCS/TR-369 (1987)

16



[Pal] R. Parikh, “Knowledge and the Problem of Logical Omniscience”, ISMIS-87, North
Holland, pp. 432-439.

[Pa2] R. Parikh, “Finite and Infinite Dialogues”, Proceedings of a Workshop on Logic and
Computer Science, ed. Moschovakis, Sprinter 1991, 481-98.

[Pa3] R. Parikh, “Social Software”, Synthese, 132, Sep 2002, 187-211.

[PK] R. Parikh and P. Krasucki, “Levels of knowledge in distributed computing”, Sadhana
— Proc. Ind. Acad. Sci. 17 (1992) pp. 167-191.

[P1] J. Plaza, “Logics of public announcements”, Proceedings 4th International Symposium
on Methodologies for Intelligent Systems, 1989.

[PR] R. Parikh and R. Ramanujam, Distributed Computing and the Logic of Knowledge,
Logics of Programs 1985, Springer LNCS 193, 256-268.

[SA] R. Schank and R. Abelson, Scripts, Plans, Goals, and Understanding, Erlbaum Hills-
dale, NJ (1977)

[SP] C. Steinsvold and R. Parikh, “A Modal analysis of some phenomena in child psy-
chology”, Bulletin of Symbolic Logic, Mar 2002, Logic Colloquium 01, page 158.

[Sta] R. Stalnaker, “Knowledge, belief and counterfactual reasoning in games”, in The
Logic of Strategy, Ed. Bicchieri et al, Oxford University Press, 1999.

[St] C. Steinsvold, “Trust and other modal phenomena”, research report, CUNY Gradu-
ate Center, February 2002.

[WP] H. Wimmer and J. Perner, “Beliefs about beliefs: representation and constraining
function of wrong beliefs in young children’s understanding of deception”, Cognition, 13
(1983) 103-128.

17



