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Much current work in the study of belief revision goes back to a now clas-

sic paper due to Alchourron, Gärdenfors and Makinson [AGM]. The central

issue is how to revise an existing set of beliefs T to a new set of beliefs T ∗A

when a new piece of information A is received. If A is consistent with T , then

it is easy: we just add A to T and close under logical inference to get the

new set of beliefs. The harder problem is how to revise the theory T when a

piece of information A inconsistent with T is received. Clearly, as Levi has

suggested, T must first be contracted to a smaller theory T ′ = T
•− ¬A which

is consistent with A and then A added to T ′. However, it is not clear how

T
•− ¬A should be obtained. The mere deletion of ¬A from T will clearly

not leave us with a theory and there is in general no unique way to get a

theory T ′ which is contained in T and does not contain ¬A.

Suppose, for example, that I believe that country Saturnia is hot and

country Urania is cold. Now I discover that the two countries have very

similar climates. Do I drop my belief that Saturnia is hot or that Urania is

cold? Clearly I cannot retain them both.
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Bernhard Heinemann for comments. Research supported in part by NSF grant CCR-
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The AGM approach does not actually tell us what to think about the

two lands in question. What it does tell us is if we do have some procedure

for updating, what logical properties such a procedure should satisfy. These

properties (the AGM axioms) have been widely studied and model theoretic

results proved for them (see [G], [KM]. [S]). Yet some issues remain.

Notation: In the following, L is a finite propositional language.3 We

assume that the constants true, false are in L. We shall use the letter L

both for a set of propositional symbols and for the formulae generated by

that set. It will be clear from the context which is meant. A ⇔ B means

that A and B are logically equivalent, i.e. that A ↔ B is a tautology, i.e.

true under all truth assignments. Similarly, A ⇒ B means that A → B is

a tautology. If X is a set of formulae then Con(X) is the logical closure

of X. In particular, X is a theory iff X = Con(X). We shall use letters

T, T ′ etc. for theories. T ∗ A is the revision of T by A, and finally, T
•
+ A

is Con(T ∪ {A}), i.e. the result of a brute addition of A to T (followed by

logical closure) without considering the need for consistency.

AGM have proposed the following widely accepted axioms for the revision

operator ∗:

1. T ∗ A is a theory.

2. A ∈ T ∗ A

3. If A ⇔ B, then T ∗ A = T ∗B.

4. T ∗ A ⊆ T
•
+ A

5. If A is consistent with T , i.e. it is not the case that ¬A ∈ T ,

3This restriction is only made for convenience. The results continue to hold for a
countably infinite first order language without equality.
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then T ∗ A = T
•
+ A.

6. T ∗ A is consistent if A is.

Remark: Sometimes two more axioms having to do with revision by

conjunctions are also included. Since we do not find a strong intuitive reason

behind them we have omitted them. Please see the end of the paper for a

discussion.

Unfortunately, the AGM axioms are consistent with the trivial update,

which is defined by:

If A is consistent with T , then T ∗ A = T
•
+ A, otherwise T ∗ A = Con(A).

Thus in case A is inconsistent with T , under this update, all information

in T is simply discarded. Clearly this is unsatisfactory because we would

like to keep as much of the old information as is feasible. Hence the AGM

axioms need to be supplemented to rule out the trivial update. However,

various actual proposals have run into trouble, either by being too flexible

and allowing implausible update operators, or worse, by allowing only the

trivial update (see [DP]; [L] and [AP] give examples of some difficulties with

the approach of [DP]).

We propose axioms for update operators which are consistent with the

AGM axioms and which block the trivial update. The axioms are based on

the notion of splitting languages. We shall explain first the intuitive idea

behind this. The existing set of beliefs T may contain information about

various matters. E.g. my current state of beliefs contains beliefs about the

location of my children, the state of health of my teeth, and beliefs about the

forthcoming election in India. In case one of my beliefs about the location of

my children turns out to be false, it surely ought not to affect my beliefs about
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the election, since the subject matters of the two beliefs do not interact in

any way. In order to model this intuition mathematically, we need to define

in a rigorous way what it means to say that some given set of beliefs can

be split among various unrelated matters. The notion of splitting languages

does this for us4. Intuitively a theory T in language L splits if L is a union

of two or more disjoint sub-languages, and the beliefs in T are generated by

separate beliefs in the various sub-languages.

Definition 1: 1) Suppose T is a theory in the language L and let {L1, L2}
be a partition of L. We shall say that L1, L2 split the theory T if there are

formulae A, B such that A is in L1, B is in L2 and T = Con(A, B). Similarly

we say that (mutually disjoint) languages L1, L2, .., Ln split T if there exist

formulae Ai ∈ Li such that T = Con(A1, ..., An). We may also say that

{L1, ..., Ln} is a T -splitting.

2) If L1 ⊂ L then we say that T is confined to L1 if T = Con(T ∩ L1).

(Note that in that case T also splits between L1 and L−L1, with the L−L1

part being trivial, i.e. any formula of L−L1 which is a theorem of T will be

a tautology.)

In part 1 of the definition, we can think of T as being generated by the

various Ti in languages Li. Then the condition implies that T contains no

“cross-talk” between Li and Lj for distinct i, j. Part 2 of the definition says

that T knows nothing about the part L− L1 of L.

Remark: If P and P ′ are partitions of L, P is a T -splitting and P

4This is a very natural notion and indeed we suspect that the notion of splitting has a
wider application than just in belief revision.
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refines P ′ then P ′ will also be a T splitting.5 For example suppose that

P = {L1, L2, L3} is a T -splitting and let P ′ = {L1 ∪ L2, L3}. Then P ′ is

a 2-element partition, P is a 3-element partition which refines P ′ and P ′ is

also a T -splitting. For let T = Con(A1, A2, A3) where Ai ∈ Li for all i. Then

T = Con(A1∧A2, A3) and A1∧A2 ∈ L1∪L2 so that P ′ is also a T -splitting.

Example: Let L = {P, Q, R, S}, and T = Con(P ∧ (Q ∨ R)). Then

T = Con(P, Q∨R), and the partition {{P}, {Q, R}, {S}} will be (the finest)

T -splitting. {{P, Q,R}, {S}} is also a T -splitting, but not the finest. Also,

T is confined to the language {P, Q, R} and knows nothing about S.

Lemma 1: Given a theory T in the language L, there is a unique finest

T -splitting of L, i.e. one which refines every other T -splitting.

Lemma 1 says that there is a unique way to think of T as being composed

of disjoint information about certain subject matters.

Lemma 2: Given a formula A, there is a smallest language L′ in which

A can be expressed, i.e., there is L′ ⊆ L and a formula B ∈ L′ with A ⇔ B,

and for all L′′ and B′′ such that B′′ ∈ L′′ and A ⇔ B′′, L′ ⊆ L′′.

Although A is equivalent to many different formulas in different lan-

guages, lemma 2 tells us that nonetheless, the question, “What is A actually

about?” can be uniquely answered by providing a smallest language in which

(a formula equivalent to) A can be stated.

All proofs are at the end of this paper.

5P refines P ′ if every element of P is a subset of some element of P ′. Equivalently, the
equivalence relation corresponding to P extends the equivalence relation corresponding to
P ′. P will have smaller members than P ′ does and more of them.
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The axioms:

The general rationale for the axioms is as follows. If we have information

about two subject matters which, as far as we know, are unrelated (are

split) then when we receive information about one of the two, we should

only update our information in that subject and leave the rest of our beliefs

unchanged. E.g. suppose I believe that Barbara is rich and Susan is beautiful

and only that. Later on I meet Susan and realize that she is not beautiful.

My beliefs about Barbara should remain unchanged since I do not connect

Susan and Barbara in any way. If on the other hand I had initially believed

that Barbara had made her money as the agent for Susan who was a beautiful

model, then the two beliefs would be connected and finding that Susan was

not beautiful could require an adjustment also of my beliefs about Barbara.

In fact, the notion of language splitting seems intrinsic to any attempt to

form a theory of anything at all. Any observation or experiment gives us an

enormous amount of information. E.g. when we are dealt a hand of cards, we

are dealt them in a certain order, either by the right hand or the left hand of

the dealer, who may have grey or brown or blue eyes. We usually ignore all

this extra information and concentrate on the set of cards received. There

is a tacit assumption, for instance, that the color of the dealer’s eyes will

not affect the probability that the hand contains two aces. This assumption

that we can ignore some aspects while we are considering others is inherent

in almost all intellectual activity.6

Now we give our new axioms P1–P3, giving intuitive justification for each.

6The third chapter of Cherniak’s book [C] gives arguments why beliefs must thus be
divided into subsets, and cites supporting statements from Quine and Ullian [QU] as well
as from Herbert Simon [Si].
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We also give a single axiom P which implies all of P1–P3.

Axiom P1: If T is split between L1 and L2, and A is an L1 formula,

then T ∗ A is also split between L1 and L2.

Justification: The two subject areas L1 and L2 were unconnected. We

have not received any information which connects these two areas, so they

remain separate.

Axiom P2: If T is split between L1 and L2, A, B are in L1 and L2

respectively, then T ∗ A ∗B = T ∗B ∗ A.

Justification: Since A and B are unrelated, they do not affect each other

and so it should not matter in which order they are received.

Axiom P3: If T is confined to L1 and A is in L1 then T ∗ A is just

the consequences in L of T ∗′ A where ∗′ is the update of T by A in the

sub-language L1.

Justification: Since we had no information about L−L1 and have received

none in this round, we should update as if we were in L1 only. L−L1, about

which we have no prior opinions and no new information, should simply not

have any impact.

All these axioms follow from axiom P, below.

Axiom P: If T = Con(A, B) where A, B are in L1, L2 respectively and

C is in L1, then T ∗ C = Con(A) ∗′ C
•
+ B, where ∗′ is the update operator

for the sub-language L1.

Justification: We have received information only about L1 which does
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not pertain to L2 so we should revise only the L1 part of T and leave the

rest alone.

It is easy to see that P implies P1. To see that P3 is implied, we use the

special case of P where the formula B is the trivial formula true. To see that

P implies axiom P2, suppose T is split between L1 and L2, and A, B are

in L1 and L2 respectively. Let T = Con(C, D) where C ∈ L1 and D ∈ L2.

Then we get T ∗ A ∗ B = (T ∗ A) ∗ B =P [(Con(C) ∗′ A)
•
+ D] ∗ B =P

(Con(C) ∗′ A)
•
+ (Con(D) ∗′′ B). The two occurrences of =P indicate where

we used the axiom P. Now the last expression (Con(D) ∗B)
•
+ (Con(C) ∗A)

is symmetric between the pairs (C, A) and (D, B) and calculating T ∗B ∗A

yields the same result.

Remark: The trivial update procedure cannot satisfy P2 (or P), though

it does satisfy P1 and P3. It follows that any procedure that does satisfy P

cannot be the trivial procedure.

Justification: Let T = Con(P, Q) and let A = P and B = ¬Q. Then

the trivial update yields T ∗ A ∗ B = T ∗ B = Con(¬Q) and T ∗ B ∗ A =

Con(B)∗A = Con(¬Q,P ). This violates P2. Also, T ∗B = Con(¬Q) which

violates P. Thus P, or P2 alone, rules out the trivial update.

In theorem 1 we shall restrict AGM 1–6 to the case of those updates

where both T and A are individually consistent and only their union might

not be. This is because we can suppose that our current state of belief T

about the subject matter of L originates in a state T0 where we only believe

tautologies (or if not, T0 is at least consistent) and T is obtained from T0

through zero or more revisions. Suppose that at some stage we are told an

inconsistent formula A. Then axiom 3 tells us that this is equivalent to being
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told a blatant contradiction like P ∧ ¬P and we would simply not believe A

in that case. Hence if A is inconsistent, then T ∗ A should be just T . The

AGM axioms 1–6 in their original form force that T ∗ true = T for consistent

T and disallow it for an inconsistent T . Our restriction has the fortunate

consequence that T ∗ true always equals T .

Definition 2: Given a theory T , language L and formula A, let L′
A be

the smallest language in which A can be expressed and LT
A be the smallest

language containing L′
A such that {LT

A, L − LT
A} is a T -splitting. Thus LT

A

is a union of certain members of the finest T -splitting of L, and in fact the

smallest in which A can be expressed.

Example: Let L = {P, Q, R, S}, and T = Con(P ∧ (Q ∨ R) ∧ S).

Then T = Con(P, Q ∨ R,S) and {{P}, {Q,R}, {S}} will be the finest T -

splitting. If A is the formula P ∨ ¬Q, then L′
A is the language {P, Q}. But

LT
A, the smallest language compatible with the T -splitting, will be the larger

language {P, Q,R} which is the union of the sets {P} and {Q,R} of the

finest T -splitting.

Theorem 1: There is an update procedure which satisfies the six AGM

axioms and axiom P.

Proof: We define T ∗ A as follows. Given T and A, if A is consistent

with T then let T ∗ A = T
•
+ A.

Otherwise, if A is not consistent with T , then write T = Con(B, C) where

B, C are in LT
A, L−LT

A respectively.7 Then let T ∗A = Con(A, C). B, C are

unique up to logical equivalence, hence this procedure yields a unique theory

7We allow that LT
A = L, in which case L − LT

A will be the empty language with no
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T ∗ A. To see that it satisfies axioms 1–6 of AGM is routine. For the proof

that it satisfies axiom P, see the proofs section of this paper. 2

Example: Let, as before, T = Con(P, Q ∨ R,S). Then the partition

{{P}, {Q,R}, {S}} is the finest T -splitting., Let A be the formula ¬P ∧¬Q,

then LT
A is the language {P, Q,R}. Thus B will be the formula P∧(Q∨R) and

C = S. B represents the part of T incompatible with the new information

A. Thus T ∗A will be Con((¬P ∧¬Q), S). The update procedure of theorem

1 notices that A has no quarrel with S and keeps it. As we will see, axiom

P requires us to keep S.

Remark: In this update procedure we used the trivial update on the

sub-language LT
A, but we did not need to. Thus suppose we are given certain

updates ∗L′ for sub-languages L′ of L. We can then build a new update

procedure ∗ for all of L by letting T ∗A = (B ∗L′ A)
•
+ C in the proof above,

where L′ = LT
A. What this does is to update B by A on LT

A according to the

old update procedure, but preserves all the information C in L− LT
A.

Georgatos’ axiom: K. Georgatos has suggested that axiom P2 be

strengthened to require that in fact we should have T ∗A ∗B = T ∗B ∗A =

T ∗ (A ∧B). Thus axiom P2 would be revised as follows:

Axiom P2g: If T is split between L1 and L2, A, B are in L1 and L2 respec-

tively, then T ∗ A ∗B = T ∗B ∗ A = T ∗ (A ∧B).

But this is easily achieved. Suppose we are given a current theory T with its

partition P1 and a new piece of information C, and the theory Con(C) has its

own partition P2. Now let P be the (unique) finest partition such that both

non-logical symbols. LT
A will still contain the constants true and false, and we take C to

be the trivial formula true.
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P1 and P2 are refinements of P . E.g. if P1 is {{P, Q}, {R}, {S}, {T}} and P2

is {{P}, {Q, R}, {S}, {T}}, then P will be {{P, Q,R}, {S}, {T}}. Now P is

also a partition for both T and C though not necessarily the finest partition

for either. Say P = (L′
1, L

′
2, L

′
3) where T is axiomatized by (A1, A2, A3) in

(L′
1, L

′
2, L

′
3) respectively, and C by (C1, C2, C3), also in (L′

1, L
′
2, L

′
3). Then

let T ∗ C be Con(D1, D2, D3) where Di = Ai ∗ Ci. Now we get the AGM

axioms, axiom P, and also the Georgatos axiom. We skip the proofs which

are similar to the other proofs earlier.

Computational Considerations: The following are rather trite obser-

vations, but may be of value. If we have a theory which has a large language,

but which is split up into a number of small sub-languages, then the revi-

sion procedure outlined above is going to be computationally feasible. This

is because when we get a piece of information which lies in one of the sub-

languages (or straddles only two or three of them) then we can leave most

of the theory unchanged and revise only the affected part. All of this is just

common sense and very likely how we humans actually think. The results

above give us a formal framework which shows that this is actually doable

in a precise way.

Other bases for L: We recall that the set of truth assignments over

some language L = {P1, ..., Pn} is just an n-dimensional vector space over

the prime field of characteristic 2. Hence there is more than one basis of

atomic predicates for this language. We regard the Pi as basic, but this is

not necessary. For example, the language L = {P, Q} is also generated by

R,Q where R is P ↔ Q. To see this we merely need to see that P can

be expressed in terms of Q, R. But this is easy, for P ⇔ (Q ↔ R). Such
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a way of formalizing a language may be natural at times. For example, if

my children Vikram and Uma have gone to a movie together, then it is very

likely that both have come home or neither has. So it may be natural for

me to formalize my belief in the language {R,U} where R is V ↔ U . I may

originally think that they are together but not home, so my theory will be

Con(R,¬U). Later, if I find that Uma is home, I will revise to Con(R,U),

retaining my belief that they are together. It is obvious that the results of this

paper will continue to hold for such adjustments of the “atomic” symbols.

The Proofs:

The proof of Lemma 1 depends on lemma A below.

Definition: Let {L1, ..., Ln} be a partition of L, and t1, ..., tn be truth

assignments. Then by Mix(t1, ..., tn; L1, ..., Ln) we mean the (unique) truth

assignment t on L which agrees with ti on Li.

Example: Suppose that L = {P, Q,R}, L1 = {P, Q} and L2 = {R}.
Let the truth assignment t1 be (1,1,1) on P, Q, R respectively, where 1 stands

for true. Similarly, t2 is (0,0,0). Then Mix(t1, t2, L1, L2) will be (1,1,0)

and Mix(t2, t1, L1, L2) equals (0,0,1). Now the formula A = (Q → R)

does not respect the splitting L1, L2. Hence both t1 and t2 satisfy A, but

Mix(t1, t2, L1, L2) does not (although Mix(t2, t1, L1, L2) does).

Lemma A: {L1, ..., Ln} is a T -splitting iff for every t1, ..., tn which satisfy

T , Mix(t1, ..., tn; L1, ..., Ln) also satisfies T .

Proof of lemma A: (⇒) Suppose T = Con(A1, ..., An) where Ai ∈ Li.
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If t1, ..., tn satisfy T , let t = Mix(t1, ..., tn; L1, ..., Ln). Then, for each i, since

t agrees with ti on Li, t satisfies Ai. Hence it satisfies T .

(⇐) Write t |= T to mean that T is true under t and let Mod(T ) =

{t|t |= T}. Now let Xi be the projection of Mod(T ) to Li. I.e. Xi =

{t′|(∃t)(t |= T ∧ t′ = t ↑ Li}, where t ↑ Li is the restriction of t to Li. If

t ∈ Mod(T ) then for all i, t ↑ Li ∈ Xi, i.e. t ∈ X1 × X2 × ... × Xn. Hence

Mod(T ) ⊆ X1 ×X2 × ...×Xn.

But the reverse inclusion is also true. For if t ∈ X1 ×X2 × ...×Xn, then

for each i, there must exist ti which agree with t on Li and such that ti |= T .

But then t = Mix(t1, ..., tn; L1, ..., Ln) so t |= T also. Thus Mod(T ) =

X1 ×X2 × ...×Xn.

Let Bi ∈ Li be such that Xi = Mod(Bi). Then it is immediate that

Mod(T ) = X1 × X2 × ... × Xn = Mod(B1) × Mod(B2) × ... × Mod(Bn).

Hence T = Con(B1, ..., Bn) and so {L1, ...Ln} is a T -splitting. 2

Proof of lemma 1: Suppose that P = {L1, ...Ln} is a maximally fine

T -splitting. Such a P must exist but there is no a priori reason why it

should also be finest; there might be more than one maximally fine partition.

However, we will show that this does not happen and that a maximally fine

partition is actually finest, i.e. refines every other T -splitting. If it does

not, then there must exist a T -splitting P ′ = {L′
1, ..., L

′
m} such that P does

not refine P ′. Then there must be i, j such that Li overlaps L′
j but is not

contained in it. By renumbering we can take i = j = 1, so that L1 overlaps

L′
1 but is not contained in it. Consider {L′

1, (L
′
2 ∪ ... ∪ L′

m)} which is also a

(2-element) T -splitting which P does not refine.

13



So without loss of generality we can take m = 2 and P ′ to be a two-

element partition {L′
1, L

′
2}. We now show that {L1 ∩ L′

1, ..., Ln ∩ L′
1, L1 ∩

L′
2, ..., Ln ∩ L′

2} must also be a T -splitting. But this is a contradiction, for

even if we throw out all empty intersections from these 2 × n intersections,

we still have at least n + 1 non-empty ones. For L1 gives rise to two non-

empty pieces, and all the other Li must give rise to at least one non-empty

piece. We thus get a proper refinement of P which was supposedly maximally

refined.

To show that {L1∩L′
1, ..., Ln∩L′

1, L1∩L′
2, ..., Ln∩L′

2} is also a T -splitting,

we use lemma A. Let t1, ..., tn, t
′
1, ..., t

′
n be any truth assignments which satisfy

T . Let

t′′′ = Mix(t1, ..., tn, t
′
1, ..., t

′
n; L1 ∩ L′

1, ..., Ln ∩ L′
2)

We have to show that t′′′ satisfies T . Let t′ = Mix(t1, ..., tn; L1, ..., Ln) and

let

t′′ = Mix(t′
1, ..., t

′
n; L1, ..., Ln). Since {L1, ..., Ln} is a T -splitting, both t′, t′′

satisfy T . Also, {L′
1, L

′
2} is a T -splitting and hence tiv = Mix(t′, t′′; L′

1, L
′
2)

does satisfy T .

To see that t′′′ satisfies T , it suffices to show that t′′′ = tiv. We note now

that for example, tiv agrees with t′ on L′
1 and the latter agrees with t1 on L1.

Hence tiv agrees with t1 (and hence with t′′′) on L1∩L′
1. Arguing this way we

see that tiv agrees with t′′′ everywhere so that tiv = t′′′. Thus t′′′ ∈ Mod(T ).

Now use lemma A.

Thus {L1 ∩ L′
1, ..., Ln ∩ L′

1, L1 ∩ L′
2, ..., Ln ∩ L′

2} is a T -splitting which

properly refines P , which was maximally fine. This is a contradiction. Since

assuming that P was not finest led to a contradiction, P is indeed the finest
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T -splitting. 2.

Proof of lemma 2: Let us say that A is expressible in L′ if there is a

formula B in L′ with A ⇔ B. We want to show that there is a smallest such

L′. So let L1 (with B1) and L2 (with B2) be minimal such languages. Then

A ⇔ B1 and A ⇔ B2 and so we have that B1 ⇒ B2. By Craig’s lemma

there is a B3 in L1 ∩ L2 such that B1 ⇒ B3 ⇒ B2. But then we must have

A ⇒ B1 ⇒ B3 ⇒ B2 ⇒ A and all are equivalent. Hence A is expressible in

L1 ∩ L2. By the minimality of L1 and L2 we must have L1 = L1 ∩ L2 = L2

and L1, L2 were in fact not just minimal but actually smallest. 2

For the proof that the procedure of theorem 1 satisfies axiom P, we need

lemma B. The language LT
A is as in definition 2.

Lemma B: Suppose that C is inconsistent with T . Let {L1, ..., Ln} be

the finest T -splitting and let T = Con(A1, ..., An) where Ai ∈ Li. Given a

formula C, LT
C =

⋃
Li : Li overlaps L′

C =
⋃

Li : Li ⊆ LT
C .

Moreover, if ∗ is the update procedure of theorem 1, then

T ∗ C = Con(C , Aj : Lj does not overlap LT
C)

= Con(Aj : Lj does not overlap LT
C)

•
+ C.

The proof of the lemma B is quite straightforward and relates updates to

the finest splitting of T . During the update, those Aj such that Lj does not

overlap LT
C are exactly the Aj that remain untouched by the update. C has

no quarrel with them. The other Aj are dropped and replaced by C.

Proof of theorem 1 (continued): It is sufficient to show that axiom

P holds.
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To see that P holds, suppose that T = Con(A, B) where A, B are in

L1, L2 respectively and C is in L1. Let {L′
1, ..., L

′
n} be the finest T -splitting

of L (and therefore refines {L1, L2}). Let T = Con(A1, ..., An) with Ai ∈ L′
i.

Note that both LT
A and LT

C will be subsets of L1 and indeed they will each

be a union of some members, contained in L1, of some of the L′
i. A will

be a consequence of some of the Ai, each from some member of this finest

T -splitting and contained in LT
A.

Under the update of theorem 1, those Ai which lie in LT
C will be replaced

by C. The others will remain. Hence, Con(A) ∗ C = Con(Ai : Li ⊆ (LT
A −

LT
C), C).

Also B =
∧

Ai : Li does not overlap L1. So Con(A) ∗ C
•
+ B equals

Con(Ai : Li ⊆ (LT
A − LT

C), C,
∧

Ai : Ai does not overlap L1) = T ∗ C. 2

Remark: The notion of splitting languages and the lemmas can easily

be extended to first order logic without8 equality. We use the fact that if

a first order theory (without equality) is consistent then it has a countably

infinite model, in particular, a model whose domain is the natural numbers.

Call such models standard. Now given a standard first order structure M
which interprets a language L and a sub-language L′ of L, we can define

a reduct M′ of M which is just M restricted to L′.9 Given a partition

L1, ..., Ln of a language L and standard L-structuresM1,...,Mn we can define

Mix(M1, ...,Mn, L1, ..., Ln) to be that standard structure M′ which agrees

8Sam Buss has pointed out that problems arise if equality is present. Once we have
equality present, one can express the formula for instance which says that the model has
cardinality 2. Another formula in a disjoint language can say that the cardinality is at least
3. These two formulae will conflict though they have no non-logical symbols in common.

9For instance suppose L = {P,R} and L′ = {P}. If M is (N,P,R) then M′ would be
(N,P).
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with Mi on Li. Then lemma 1 can be generalized in the obvious way and

all our arguments go through without any trouble.

Comment on AGM axioms 7 and 8: Axiom 7 of AGM says that

T ∗ (A ∧ B) ⊆ (T ∗ A)
•
+ B and axiom 8 says further that if B is consistent

with T ∗ A then the two are equal. We do not feel that these axioms are

consistent with the spirit of our work for the following reason. Suppose that

A = (¬P ∨ Q) and B = (P ∨ Q), then A ∧ B is equivalent to Q and says

nothing about P . Now revising a theory T first by A could cause us to drop

some P -related beliefs we had, and revising after that with B we might not

recover them. But revising with A∧B should leave our P beliefs unchanged,

provided that our beliefs about P and Q were not connected. Thus contrary

to 7, revising with the conjunction may at times preserve more beliefs than

revising first with A and then with B. This is why it does not seem to us

that axioms 7 and 8 should hold in general.

To give a somewhat different, concrete example, suppose you believe that

to reach a certain place, the path should be clear. Write this as R → P . You

also believe (strongly) that your grandmother is afraid of flying and therefore

is not taking flying lessons. Call this (latter) ¬F . You now receive the news

A = (¬P ∨F ), that either the path is not clear or your grandmother is taking

flying lessons. You conclude that the path is not clear and that you will not

reach in time. Later you are told B = (P ∨ F ), that either the path is clear

or that your grandmother is taking flying lessons. You will conclude that you

will reach your destination after all. But you will never acquire the belief

that your grandmother is taking flying lessons. But you would have acquired

that belief if you had been told A ∧B, i.e. F .
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Postscript: Subsequent to our submission of this paper to ITALLC,

a paper by del Cerro and Herzig [CH] has appeared which also mentions

dependence in the context of belief revision. However, the sort of dependence

they discuss is from probability theory and not the one that we have discussed

above.
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