On the Interaction between Computer Science
and Economics

Rohit Parikh
Eric Pacuit

January 21, 2004

Abstract

1 Introduction

In [?], Parikh asks “is it possible to create a theory of how social procedures
works with a view to creating better ones?” This paper will survey some of
the mathematical tools that have been developed over the years that may help
answer this question. But what exactly is meant by a social procedure?

Let’s start with an example. Suppose that Ann would like Bob to attend her
talk; however, she only wants Bob to attend if he is interested in the subject of
her talk, not because he is just being polite. There is a very simple procedure
to solve Ann’s problem: have a (trusted) friend tell Bob the time and subject
of her talk. Taking a cue from computer science, we can ask is this procedure
correct? Just as we can show that Quick sort correctly sorts an array, perhaps
we can show that this simple procedure correctly solves Ann’s problem. While
a correct solution for the Quick sort algorihtm is easily defined, it is not so clear
how to define a correct solution to Ann’s problem. If Bob is actually present
during Ann’s talk, can we conclude that Ann’s procedure succeeded? Of course
not, Bob may have figured out that Ann wanted him to attend, and so is there
only out of politeness. A correct description of a solution to Ann’s problem
must describe the knowledge that each agent has about the situation at hand.
In other words, we will say that Ann’s procedure succeeded if it induces the
following situation:

1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.

4. Bob does not know that Ann knows that he knows about the talk.

5. And nothing else.

Note that the last point is important, since otherwise Bob may feel social
pressure to attend the talk.

In computer science it is often convenient to view a computational procedure,
or a program, as a relation on a set of states, where a state can be thought of
as a function that assigns a value to every possible variable and a truth value to
all propositions. We can continue the analogy with computational procedures,
by assuming that a social procedure is a relation on states, where each state is
intended to model the level of knowledge and belief among a group of agents.
Thus in order to develop a realistic model of social procedures, we need a real-
istic model of multi-agent knowledge and belief. The following example taken
from [?] will show that this is not quite enough — we need a game theoretic
model in which utilities can be represented.

Suppose that Ann and Bob each own a horse and each would like to sell
their horse. Also, suppose that Charles is willing to pay $100 to the owner
whose horse can run the fastest. In fact, Ann’s horse is faster running at 30
MPH, while Bob’s horse can only run at 25 MPH. The obvious procedure that
Charles can use to determine who to give the money to is to ask Ann and Bob
to race, and give $100 to the winner. Why is this procedure successful? Well,
Charles has created a situation in which both Ann and Bob have an incentive
to make their horse run as fast as possible. The situation can be represented by
a strategic game, a detailed discussion can be found in [?].

On the other hand, if Charles wants to buy the slower horse, the above pro-
cedure will no longer work. Since Ann and Bob both would prefer to sell their
horse than not to sell their horse, they both have an incentive to make their
horse run as slow as possible. This will create the strange situation in which
race will never actually have a chance to begin. Note that if Charles deceives
Ann and Bob into thinking that he intends to give $100 to the faster horse, he
can in fact determine which horse is slower. However, we certainly do not want
a theory of social procedures that promotes deception. Is there a procedure that
Charles can follow to determine which horse is slower without deceiving Ann
and Bob? The answer as discussed in [?] turns out to be yes: Charles can ask
Ann and Bob to race, but they should switch horse. Since Ann and Bob are
racing on each other’s horse, the situation is simlar to the original race in which
both have an incentive to make the horse they are riding run as fast as possible.

Note that if we did not take into account the utilities of each player, the first
race (without the agents switching horses) would seem to work in both cases.
In the first case Charles would give $100 to the winner and in the second case
$100 to the loser. The need for a different procedure only becomes apparent
when we notice that the incentive for Ann and Bob to push their horse to run
as fast as possible is necessary in order for the race to suceed.

These two examples demonstrate that in order to develop a theory of social
procedures we must be able to represent an agent’s knowledge and beliefs and
an agent’s utilites. But which takes precedence? Do agents act according to
ther utilities or according to the beliefs they have about the situation at hand?
Consider a traffic light, which can be understood as a piece of social software.
The traffic light was designed to stop accidents at a busy intersection. When
you come upon a red light, do you stop because it is against the law to proceed
(i.e. you assign a greater utility to stopping than going), or because you know
that the other driver’s believe that you will stop? Actually, you probably do
not think much about it, and just stop because that is what you did at the
previous intersection. Nonetheless, the traffic light does work, and we would
like a mathematical model that explains why.

2 Models for Individual Knowledge and Beliefs

we will beging by looking at some mathematical models that can describe indi-
vidual knowledge and beliefs of agents. We will present some standard mathe-
matical models which offer a static model of a situation. These mathematical
models have shown up in such fields as Computer Science, Philosophy, Game
Theory, and Economics to name a few. This section is not intended to be a
complete survey of the field, and so there may be some important concepts
which are glossed over or even ignored. Refer to [?, ?, ?] and the text [?] for
an more information about formal epistemic logic. [?] has a nice overview of
the semantic and probabilistic models of knowledge and belief.

Suppose that we fix a social situation involving the agents A. How should
we represent the knowledge of each agent? A natural assumption is that no
agent can have all the information about a situation. For one thing agents are
computationally limited and can only process a bounded amount of information.
Thus if a social situation can only be described using more bits of information
than an agent can process, then an agent can only maintain a portion of the total
information describing the situation. Another point justifying this assumption
is that the observational power of an agent is limited. For example suppose that
the exact size of a piece of wood is the only relevant piece of information about
some situation. While any agent will have enough memory to maintain this
single piece of information, any measuring device is subject to error. Therefore it
is fair to assume that any two agents may have different views or interpretations
of the same situation. It is this uncertainty about a situation that is captured
by the formal models in the following sections.

2.1 Kripke Structures

We first look a formal epistemic logic. Formal epistemic logic has its roots in
Hintikka’s Knowledge and Belief. In formal epistemic logic, a formal language
is defined that can express statements such as “agent ¢ knows P” or “agent
1 knows that agent j does not know that it is raining”. Then a set of axiom
schemes and rules are offered which are assumed to describe the reasoning power
of the agents involved. Using the defined deductive system plus perhaps some
non-logical axioms relevant to a particular situation, all relevant facts can be
derived. The final piece is a semantics in which the formal language can be
interpretted. It is in the semantics that we find the model of agent uncertainty.
The intuition is that an agent in a particular situation, called a possible world
or state, considers other situations possible. Thus, we can say that an agent
“knows” a fact if that fact is true in all possible worlds that the agent considers
possible. The word “knows” is in quotes, since the intensional notion being
modelled is dependant on the properties of the model.

Formal epistemic logic is an application of modal logic. Many important def-
initions and theorems are stated in Appendix A. We will give a brief overview
of the formal language and some important logics. Let ®; be a countable set
of propositional variables. Let Fa, pc be the set of well-formed formulas built
from the standard propositional connectives, say — and A, using propositional
variables from the set ®(. if ®(is understood or not important, we may write
F(PC). We take the other standard connectives (V,—, <) as being defined as
usual. A multi-agent epistemic language adds an operator K; for each agent
i € A. If ¢ is a formula, then the intended interpretation of K;¢ is that “agent i
knows ¢”. Let Lpc(®Py, K, A) be the set of well-formed formulas in this extended
language. We will make use of the following notation throughout this survey,
Lpc(Po,0',0%,...,0™, A) is the set of well-formed formulas built from formu-
las of propositional calculus and closed under each operator O7, j =1,...,n for
each agent i € A.

The approach of formal epistemic logic is to propose a certain set of axiom
schemes, then using these axiom schemes (plus some rules of inference) one can
deduce the formulas an agent knows (or believes). The following is a list of some
common axioms. We will use O; to stand for either K; (agent ¢ knows...) or B;
(agent 7 believes ...). Let ¢,¢ € Lpc (O, .A) be arbitrary formulas,

K Oi(¢ —) — (0;0 — O) Distributivity

T O,—¢ Truth

4 0,6 — 0;0:0 Positive introspection
5 -0 — 0;-0;¢ Negative introspection
D -0;1 Consistency

Since ¢ and 1 are arbitrary formulas, the above are axiom schemes. We can then
define a logic A(A44,..., 4, R1,..., R,,) over some language L to be the set of
formulas that can be deduced from axioms Aq,..., A, and rules Ry,...R,,. If

A is a logic over a language F, then we often write - ¢ if ¢ € A. The most
common rules of inference are modus ponens (M P) and necessitation (N), i.e.
from ¢ infer O;¢ for each i € A. Since propositional modal logic is an extension
of propositional calculus, each logic A over £ will contain all the propositional
tautologies in the language of £. Let PC be al collection of axiom schemes of
propositional calculus. We define

S5 = A(PC,K,T,4,5MP,N)
KD45 = A(PC,K,D,4,5,MP,N)
S4 = A(PC,K,T,A,MP,N)
T = A(PC,K,T,MP,N)

K = APC,K,MP,N)

Any logic containing the K axiom and the rule N, is called a normal modal
logic. Suppose that Lx(A) = Lpc (K, A) and Lg(A) = Lpc(B, A) and Lk 5(A) =
Lpc(K, B, A). In the interest of brevity, we may write L, Lp, or L g if the A

is understood. The arguments for and against the above axioms are well known
and will not be discussed here. Additional information can be found in [?, ?].
Instead we turn to semantics.

Let W be a set of states, or worlds. Intuitively a state, or world, w € W con-
tains all the relevant facts about a particular situation. The uncertainty of the
agents is represented by a relation R; C W x W for each agent ¢ € A. Intutively
wR;v means that from state w, agent ¢ thinks that state v is the actual situation.

Definition 1 (Kripke Frame) Given a finite set of agents A, the pair* (W, {R;}ic 1)
is called a Kripke frame. Where W is any set, and R; C W x W for each
i€ A

A Kripke frame is a very abstract mathematical model of uncertainty, and
so we need some way to connect this abstract model to actual situations. This
connection is provided in the next two defintions.

Definition 2 (Kripke Model) Given a frame F = (W,{R;}ic4) and a set of
propositional variables ®y. A Kripke model based on F is a triple (W, {R;}ica,V),
where V : &g — 2V,

We can now define truth
Definition 3 (Truth in a Kripke model) Given a language F(®o,0,.A) and
a model M = (W,{R;}ica, V). We define a relation =C W x F(®g,0,A) as

follows. Suppose that s € W, i€ A, P € &y and ¢, € F(Pg,0,.A), note that
we write M, s |= ¢ instead of (s, ¢) €

IThere are many different axiomatizations of propositional calculus, choose your favorite.

2Notice that we do not put the set of agents as an explicit parameter in the definition of
a Kripke frame. Unless otherwise stated we assume that we have a finite fixed set of agents.
If confusion may arise, we will include the set of agents as a third parameter.

1. M,sEPif PeV(s)

2. M,sEVY if M,sE ¢ or M, s =1

8 M, slE¢if M,slE¢

4. M, s = 0u6 if for cach v € W, if wRv, then M, v |= ¢

We define ;¢ def -0;-¢. If the model M is understood we may write
s E ¢. M,s = ¢ for all states s € W, then we say that ¢ is valid in M and
write M [E ¢. If ¢ is valid in all models based on a frame §, then we say that ¢
is valid in the frame and write = ¢. We will make use of the following notation,
let s € W and ¢ any formulas,

R(s) = {t| sRt}
Ry(s) = {t|sRtandt|= ¢}

Given a state s, then R(s) represents the set of states that an agent considers
possible from state s. Call a frame F = (W, {R;};c 1) reflexive if R is reflexive.
It is well known that 0;¢ — ¢ is valid in a frame F iff F is reflexive. More
information on this can be found in the appendix and in [?]. We only give the
correspndances between the axioms and properties of the frame. Let O stand
for either K; or B;.

Axiom is valid in the frame | Correpsonding property of the frame
O(¢p — ¢) — (O¢p — Oy) (valid in all frames)
O¢p — ¢ Reflexivity
O¢ — O0¢ Transitivity
—-0¢ — O-0¢ Euclidean
-0L1 Serial

The general resul about the frame definable formulas and their correspondance
to modal axioms can be found in [?]. We will focus on the logics S5, K D45 and
5S4 since they are the most relevant to our original goal of modeleing multi-agent
beliefs and knowledge.

We will call a frame F = (W,{R;}ica) reflexive if R; is reflexive for each
i € A. Similarly, for the above properties. We will now state many of the
fundamental of formal epistemic logic. These results are proved and can be
found in [?]

Theorem 4 S5 is sound and strongly complete with respect to the class of all
frame F = (W, {R;}icA) where R is an equivalence relation.

Theorem 5 S4 is sound and strongly complete with respect to the class of all
frame F = (W, {R;}ica) where R is reflexive and transitive.

Theorem 6 K D45 is sound and strongly complete with respect to the class of
all frame F = (W, {R;}ica) where R is serial, transitive and euclidean.

All defintions and general completeness and soundess results can be found in
[?]. Given the soundness and completeness proofs, we may call any model based
on a frame in which the relation is an equivalence relation an S5 model. The
proof of completeness uses a canonical model construction, which will be dis-
cussed in Section 2.5.

Given any formula ¢ of a particular question, we can ask is ¢ satisfiable (does
it have a model) or is it valid (true in all models). In light of completeness this
is the same question as does ¢ have a proof. Since the logics we study enjoy the
finite model property, it is easy to see that the satisfiability problem is decid-
able. Ladner showed that the satisfiability problem for S5 (single-agent case) is
N P-complete, while the same problem for K, T and S4 is PSPAC E-complete.
It can also be shown that the satisfiablility problem for single-agent K D45 is
N P-complete. For the multi-agent case, the satisfiability problem for each of
these logics is PSPAC E-complete. [?] has an excellent discussion about com-
plexity and modal logic.

The essential facts needed to show that the satisfiability problem of S5 and
K D45 is N P-complete (as opposed to PSPAC E-complete) are the following
two theorems as stated in [?]

Proposition 7 An S5 formula ¢ is satisfiable if and only if it is satisfiable in
a single-agent Kripke structure where the relation is an equivalence relation and
there are at most |¢| states.

Proposition 8 An K D45 formula ¢ is satisfiable if and only if it is satisfiable
i a single-agent Kripke structure where the relation is Fuclidean, transitive and
serial and there are at most |@| states.

2.2 Aumann Structures

Suppose that the group of agents A = {1,...,n} are involved in a social sitau-
tion. We will assume that the situation is strategic in the sense that the agents
are trying to achieve conflicting outcomes. An important problem is how to
explain why the agents make the choices that they do. In other words, what
induces an agent to choose a particular strategy. A basic assumption is that
agents attach utilities to every conceivable outcome. The agent will then choose
an action so as to maximize his or her expected utility. By a strategy profile,
we mean a set of strategies, one for each agent®. Suppose that ¢ is a strategy
profile. A natural question to ask is is o a stable profile? In other words, if we
fix an agent i € A and suppose that all agents other that ¢ (usually denoted by
—i) will follow the strategy prescribed by o, should ¢ follow the strategy pre-
scribed by o? If yes, then that particular choice is a best-response for agent .

3formally, we take advantage of the fact that we can assume an arbitrary linear order on
the agents, so a strategy is just a sequence of individual strategies

If this is true for all agents, then the strategy profile is said to be in Nash equi-
librium. More discussion of game theory can be found in [?] and in Appendix B.

Lurking in the background of the above discussion are assumptions about
what agents believe about the situation, the other players beliefs about the sit-
uation, the other players belief about the agent’s beliefs, and so on. It is these
assumptions that many of the authors are trying to make explicit.

One of the first attempts to formalize these assumptions was by Aumann
[?]. We follow the discussion in [?]. The intuition behind knowledge spaces
is as follows. We want to model the knowledge an agent has about a certain
situation (including the knowledge that an agent has about other agents). De-
fine a state of nature to be a complete run of a game*. In other words, a state
can be thought of as a set of propositions that are true of a given run of the
game. Now given a particular run of the gamee, an agent may be uncertain
about a particular proposition, say ¢. In this case the agent can imagine that
a situation in which ¢ is true and one in which ¢ is false. Notice that here we
actually have three possiblities. The actual world in which either ¢ is true or it
is false, the world in which the agent thinks ¢ is true and the world in which
the agent thinks ¢ is false.

Let W be a set of worlds. In the previous section we defined a formal
language that can express various knowledge-theoretic statements about the
agents, and interpretted this language in a Kripke model. In this section we
will reason semantically, no object language is defined. Instead we first make
a distinction between a state of nature and states of the world. Let S be the
set of all states of nature. A state of nature is a complete description of the
exogenous parameters that do not depend on the players’ uncertainties.

Definition 9 (Aumann Frame) Given a finite set of agents A, the pair (W,{P;}ica)
18 called an Aumann frame, where W is any set, and for each i € A, P; :
W — 2W s a function.

There is an obvious translation between Kripke frames (defintion 1) and Au-
mann frames. This connection is discussed below. We need give the analogous
defintion of a model.

Definition 10 (Aumann Model) Given a Aumann frame F = (W, {P;}ica)
and a set of states S, an Aumann model based on S is a triple (W, {P;}ica,0),
where 0 : W — §.

So, o is analogous to a valuation function, it assigns to each world a state
of nature in which every proposition not about the uncertainty of the agents is
either true or false.

Intuitively, we say that event £ C W is true at state w if w € E. Thus we
are making essential use of the fact that we can identify a proposition with the

4We will use game and strategic situation interchangeably

set of worlds in which it is true. In the previous section we definied an object
language that could express statements of the form “agent ¢ knows ¢”, and
interpretted these formulas in a Kripke model. In this section we have no such
object language. Reasoning about agents is done purely semantically. We still
need to be able to express statements abut agents’ knowledge. In this framework
we will think of notions like knowledge and beliefs as set-valued operators that
map propsotions (subsets of W) to propositions. Given any possibility function
P:W — 2V we can associate a possibility operator P : 2V — 2% defined by

P(E) ={w | P(w) C E}
for any subset £ C W.

Given an arbitrary set operator P : 2 — 2W the following properties can
be assumed of P. Let E, F be any two subsets W

P1 P(E)NP(F)=P(ENF)

P2 N;c/K(E)) = P(NjesE;), for any index set J®
P3 P(E)CE

P4 P(E) C P(P(E))
€ P(P(B))

P5 P(E) C

P6 P(E) C P(E)

where E means set complement with respect to W. We first note that
P3, P4, P5 and P6 are the obvious analogues® to axioms T, 4, 5 and D respec-
tively. The property P1 corresponds to the K axiom’. However, notice that
there is no analogue to M P, PC and N in the above axioms. Obviously P2
implies P1, but notice that contrary to P1 there is no formal analogue to P2,
since the index set J can be infinite.

In [?], Halpern offers a proof that P2 follows from P1, P3, P4 and P5; and
in fact, if any of the properties are weakened, the proof fails. Thus, this is an ex-
ample of a difference between S5 and S4 that cannot be expressed syntactically.
Obviously, if we consider a formal language that allows infinite conjunctions and
disjunctions, this distinction can be expressed®.

Let P: W — 2% be any function. We define the following properties of P:

5When J = &, we get K(Q) = Q

Sunder the appropriate translations, where propositions are replaced by events, V by U, A
by U and — by set complement

Tt is easy to see that the K axiom is equivalent to K (¢A1)) < (KA K1), in the presence
of PC and MP

8In fact, Halpern goes on to show that there are other distinctions in formal conditional
logic that cannot be expressed syntactically only involving finite conjunctions and disjunctions

Reflexive Yw € W, w € P(w)
Transitive Yw,v € W, v € P(w) = P(v)

N
3
S

Euclidean Yw,v € W, v € P(w) = P(w)

N
|
<

Serial Yw € W, P(w) # @

We will call (W, {P;};c4,0) a knowledge space if P is reflexive, transitive
and Euclidean®. We will call (W, {P;};c4,0) a belief space if P is serial, tran-
sitive and Euclidean. The above properties of a possibility operator correspond
to properties on the possibility funciton of the corresponding frame. In fact we
can state a theorem analogous to the soundness and completeness theorem of
the previous section. The following theorem is easy to prove and can be thought
of as a soundess theorem.

Theorem 11 (Halpern [?]) Let F = (W, P) be an Aumann frame'®. Let
P:2W — 2W be defined from P as above. Then P satisfies P2 (and hence P1).
Also we have the following correspondance: if P is reflexive, the P satisfies P3,
if P is transitive, then P satisfies P4, if P is Fuclidean, then P satisfies P5 and
if P is serial, then P satisfies P6.

Theorem 12 (Halpern [?]) Suppose that P is any operator satisfying P2,
then there is a frame (W, P) such that the operator defined from P is exactly
P. Moreovere, if P satisfies P3, then P is reflexive, if P satisfies P4, then P is
transitive, if P satisifies P5, then P is Fuclidean, and if P satisfies P6, then P
is serial.

This completeness proof is much easier than the canonical construction needed
in the previous section. We will not give aproof here, but one can be found in
[?] and [?]. We only remark that given a possibility operator P : 2" — 2V we
define the possibility function P as follows:

Pw)=n{E | wePE)}

It is straightforward to checke that P saisfies the appropriate properties.

2.3 History Strucutures

3 Levels of Knowledge

Recall the discussion of example 1. Let P be the proposition “Ann’s talk is at
1 PM in room 4435”. Let K4 P mean that Ann knows P and KgP mean that
Bob knows P. Then Ann wants to induce the following situation:

9and hence symmetric. It is easy to show that P is symmetric. Let v € P(w), then by
Transitivity and Euclideaness, P(w) = P(v). And so by reflexivity, w € P(v).

10Without loss of generality, we will only consider the single agent case, and so the subscripts
will be left out

10

—_

KaP
2. KpP

3. Kq4KpP
4. - KpKsKpP

We will say that the level of knowledge of the proposition P is the set { K4, Kp, KaKp}.
This suggests a formal language theoretic framework for talking about group
knowledge. This framework was first discussed in [?] and later in [?]. The idea

is to consider a finite alphabet of knowledge operators (one for each agent) and

define a level of knowledge of a proposition to be a set of strings over the al-
phabet. We will first discuss the problem in general, taking the alphabet to be

any finite set of strings and a level to be any set of strings.

3.1 Basic Results

Let ¥ be any finite alphabet!!. We will call any set L C ¥* a level. In the
next section will discuss levels of knowledge, levels of beliefs or a mixture of the
two, but for now we will develop just a general theory of levels over some finite
alphabet. Formally a level is any set of strings, i.e.a langugae. Let ¥* be the set
of finite strings over ¥, ¥ the set of infinite strings over ¥, and % = L*U X«
be the set of all strings (finite or infinite).

Definition 13 (Simple String) Given any string x € ¥*. We call x simple
if x does contain any repeated letters. Let X5 C X* be the set of all simple
strings.

For example if ¥ = {a, b, ¢}, then the string abacb is simple but abbca is not
simple. Notice that we have defined ¥° to be the set of finite simple strings.
We similarly could define ¥° C ¢ or X° C Y=« Unless otherwise noted, we
will assume that 3° C X*. We will say that a level L is simple if L C ¥%.

There is a natural embeddability ordering on the set of strings over > which
turns out to be important for levels of knowledge.

Definition 14 (Embedibility Ordering) Given any two strings x,y € X%,
we say = is embeddable in y, written x <y, if all symbols of © occurr in y in
the same order but not necessarily consecitively. Formally, we can define < as
follows:

1. x<x andegwforallxezf“’

2. x <y if there exists ', 2"y, y", (y,y" # €) such that x = 2’2", y = y'y"
and z' <y', 2" <y’

11We will often think of each element of ¥ as a modal operator, such as knowledge (Ki),
belief (B;) or common knolwedge (Cgq).

11

< is the smallest relation satisfying (1) and (2).

For example abbc is embeddable in accbbe, itself, and aaabbbbbch but not in
aaacc. We will formally show abbc < accbbe. In part 2 of the definition above,
take x = abbc,y = accbbc and define 2’ = a,z” = bbc,y’ = a, and y"’ = ccbbe.
Then 2’ <y’ by 1 above. To se 2" < y”, let 2/ = ¢, 2" = bbc, w’ = cc,w" = bbe.

Then z” = 2’2" and " = w'w”, 2/ <w' by 1, and 2" < w" also by 1.

Recall that a relation is called well-founded if every nonempty subset has a
minimal element; and a relation is called a well-partial order if it is well-founded
and every linear order that extends it is a well order. Equivalently a relation is
a well-partial order if it is well founded and every set of mutually incomparable

elements is finite. The following fact was shown by Graham Higman. See [?]
for details.

Fact 1 (Higman) < is a well partial order.

The following facts are straightforward.
Fact 2 Embedibility can be tested in linear time by a two tape finite automaton

Fact 3 For any string x there is a shortest simple string y such that y < z.
Define Sim(z) = y.

Given any level L, define L® = Sim(L*).
The following notion is standard given an order (<) on the set of strings.

Definition 15 (Downward Closed) A downward closed subset of <% is a
subset X such that if v € X and y < x, then y € X. The downward closure of
aset X isde(X)={y € X% |y <z for somez € X }.

The notion of upward closed can be defined in a similar way. The following
properties of downward closed sets can be found in [?]. The proofs are straight-
forward applications of the definitions and so will be left to the reader.

Fact 4 If Y is downward closed, then for each X, X CY iff for all x € X,
there is ay € Y such that x < y.

Fact 5 de(X UY) = de(X) Ude(Y)

Fact 6 dc(XY) = Sim(de(X)de(Y)), where XY is the conatenation of X and
Y, that is XY = {w | w = ay,x € X,y € Y}; and Sim(X) = {Sim(z) | z €
X}

Since < is a well-partial order, any set of incomparable elements is finite.
In particular if L is a level, then the set of <-minimal elements of L and <-
maximal elements of L are both finite. If L is downward closed, then the set of
minimal elements is the set of all elements of ¥ that appear in L. So, obviously
two different downward closed sets may have the same minimal elements. Two

12

different downward closed sets may also have the same maximal elements. For
example if L = {a,b}* and L' = {¢,d}*, then both L and L’ have no maximal
elements. However, we can characterize any downward closed simple level by
the minimal elements of L (the complement of L)..

Theorem 16 (Parikh, Krasucki) Let ¥ be any finite set. There are only
countably many downward closed simple levels, and each is a reqular subset of
.

Proof Let L C ¥* be downward closed set and simple. Then L is upward
closed. Let m(L) be the set of minimal elements of L. Since the minimal

elements must be incomparable and < is a well-partial order, m(L) is finite.

Suppose that m(L) = {z1,2,...,2,}. Then

L={y|vVzem(L),z £y}

Since m(L) is finite, a finite automonton can clearly be designed to test whether
x < y for some input y. Hence, L is a regular subset of ¥*. The fact that there
are only countably many levels follows immediately.

If L is finite set of simple strings, then we can use the maximal elements to
determine whehter L is downward closed.

Theorem 17 ([?]) If L is a non-empty finite subset of X%, then L is downward
closed iff there is a set of simple strings {x1, 22, ...,xr} such that,

L= Ui=1dc({xi})

In fact, we may take the set {x1,...,xL} to be the mazimal elements of L.

Proof By fact 27, U¥_,dc({x;}) is downward closed. Suppose that L = {z;,x2, ...

is downward closed. Let L' = U™ ,dc({z;}). Clearly L C L'. Let y € L’. Then
y € dc({x;}) for some i. Suppose that y ¢ L. But then there is an z; € L and
y < z; but y € L. This contradicts the fact that L is downward closed. Hence
y € L and so L = L’ as desired. The last fact is obvious.

The above theorem shows that every finite downward closed set is the finite
union of the downward closure of the maximal elements. What about infinite
downward closed sets? The following notion of star-linear sets can be used to
characterize all infinite downward closed sets.

Definition 18 A subset L of ¥° is star-linear iff there exist strings x1, ..., Tm+1
and subsets Ay, ..., Ay of X such that

L =de[({z1})AT({2}) Az - AL ({2ma)] N2

The following theorem whose proof can be found in [?] completely charac-
terizes downward closed sets.

Theorem 19 ([?]) If L is downward closed, then L has a unique representation
as a finite minimal union of star-linear sets.

13

3.2 Levels of Knowledge and Beliefs

In the previous section the alphabet 3 was any abritrary finite set. However,
in what follows we will assume that the elements of ¥ are modal operators. Let
A=1{1,2,...,n} be a set of agents. Then the modal alphabet based on A is
the set ¥4 = {0Oy,...,0,}. We will write ¥ for ¥ 4 when the set of agents is
understood.

Let M = (W,{R;}ica,V) be any Kripke model, w € W and ¢ be any
formula. For now we will assume that ¢ is modal-free, i.e. a formula of propo-
sitional logic. Then define

L(w,¢) ={z | z € %, M,w [z¢}

We say L(w, ¢) is the level of ¢ at state w. A natural question is what types
of sets can arise as levels of some formula in a Kripke model? The answer to
this questions depends on the underlying logic, i.e. what kind of operator O; is.
We, of course, assume that each modal operator is normal.

The following fact is easy to check.

Fact 7 Let ¥ = {0O4,...,0,}. If for all formulas ¢ and all strings x,y € ¥*,
a € ¥ we have

= zay¢ — zaaye

Then for all Kripke models and states w, xay € L(w,®) iff for all j > 1,
ra’y € L(w, ¢).

In other words, repeated occurrences of a character a € ¥ are without effect.
Hence, in this case we need only consider simple strings. Thus if O0;¢ < 0,0;¢
is a theorem for all formulas ¢, then with out loss of generality we can assume
that L(w,¢) are sets of simple strings. Hence, in order to restrict oneself to
simple strings one must assume that the underlying logic contains the 4 axiom
(0,0 — 0,;0,¢) and the secondary reflexivity axiom (0;(0;¢ — ¢)).

In a similar way, downward closed sets corresonds to the truth axiom (0;¢ —

@). Thus if the underlying logic is S4, then every set of the form L(w,¢) is
downward closed and can be assumed to be simple.

3.2.1 Levels of Knowledge
3.2.2 Levels of Beliefs

14

