CISC 2210 – Introduction to Discrete Structures Midterm 1 Exam Solutions

Mar~8,~2022

- 1. Let $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the set of all ten digits.
 - (a) Define two proper subsets of D, $A \subset D$ and $B \subset D$, with the following properties:
 - The union of both sets is D: $A \cup B = D$.
 - The intersection of both sets contains two digits: $|A \cap B| = 2$.

Example 1: $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$: Both subsets are proper subsets of D because for example $3 \notin A$ and $0 \notin B$, the union $A \cup B = D$ contains all ten digits, and the size of the intersection $A \cap B = \{1, 2\}$ is 2.

Example 2: $A = \{0, 1, 2, 3, 4, 5\}$ and $B = \{4, 5, 6, 7, 8, 9\}$: Both subsets are proper subsets of D because for example $6 \notin A$ and $3 \notin B$, the union $A \cup B = D$ contains all ten digits, and the size of the intersection $A \cap B = \{4, 5\}$ is 2.

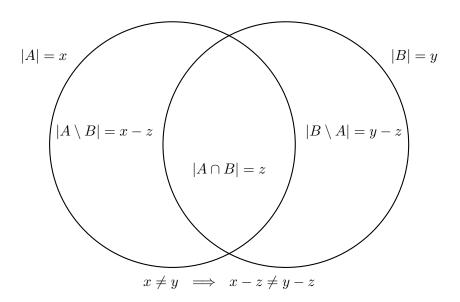
Remark 1: Observe that since A and B are proper subsets of D both $A \setminus B$ and $B \setminus A$ cannot be empty because otherwise their union $A \cup B$ can not be D.

Remark 2: Example 1 is one of the examples in which |B| - |A| = 6 which is the maximum possible size difference between the sets while Example 2 is one of the examples for which the two sets have the same size.

- (b) Prove that there are no two subsets of D, $A \subseteq D$ and $B \subseteq D$, with the following properties:
 - The intersection of both sets is not empty: $A \cap B \neq \emptyset$.
 - The sizes of A and B are different: $|A| \neq |B|$.
 - The sizes of $A \setminus B$ and $B \setminus A$ are the same: $|A \setminus B| = |B \setminus A|$.

Proof: Consider any two subsets A and B of D. Assume that the size of A is x (|A| = x), the size of B is y (|B| = y), and the size of $A \cap B$ is z ($|A \cap B| = z$). The second assumption implies that $x \neq y$. Since the intersection of A and B is a subset of both A and B ($A \cap B \subseteq A$ and $A \cap B \subseteq B$), it follows that $z \leq x$ and $z \leq y$.

Combining together the above three inequalities among x, y, and z implies that $x-z \neq y-z$. The proof follows since x-z is the size of $A \setminus B$ ($|A \setminus B| = x-z$) and y-z is the size of $B \setminus A$ ($|B \setminus A| = y-z$).



Remark: The proof is correct for any two different size sets A and B even when $A \cap B = \emptyset$ because the proof did not use the assumptions that A and B are subsets of D and that $z \neq 0$.

2. Let A, B, and C, be three non-empty sets. Consider the following three sets:

 $R = (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C)$

 $S = (A \cup B \cup C) \setminus (A \cap B \cap C)$

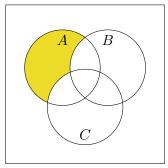
 $T = (A \setminus (B \cup C)) \cup (B \setminus (A \cup C)) \cup (C \setminus (A \cup B))$

Which two of of these sets are identical? Why is the third set different from the two identical sets?

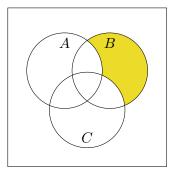
Proof that R \equiv **T:** For any three sets X, Y, and Z the set $W = X \cap \overline{Y} \cap \overline{Z}$ is identical to the set $V = X \setminus (Y \cup Z)$. This is true because both W and V contain all the objects in X as long as they are not contained in Y and are not contained in Z.

As a result, $(A \cap \overline{B} \cap \overline{C}) \equiv (A \setminus (B \cup C))$, $(\overline{A} \cap B \cap \overline{C}) \equiv (B \setminus (A \cup C))$, and $(\overline{A} \cap \overline{B} \cap C) \equiv (C \setminus (A \cup B))$. This implies that $R \equiv T$.

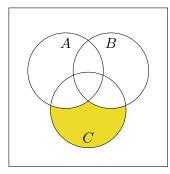
Proof that $S \not\equiv R$ and $S \not\equiv T$: All three sets R, S, and T cannot contain objects from $A \cap B \cap C$. However, S may contain objects from $A \cap B$ or $A \cap C$ or $B \cap C$ that are not contained in $A \cap B \cap C$. While both R and T cannot contain such objects.



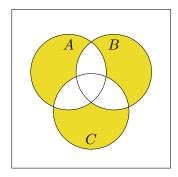
 $A \cap \overline{B} \cap \overline{C} \equiv A \setminus (B \cup C)$



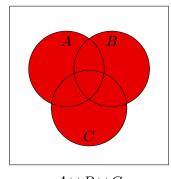
 $\overline{A} \cap B \cap \overline{C} \equiv B \setminus (A \cup C)$



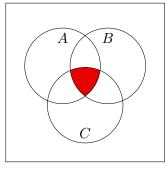
 $\overline{A} \cap \overline{B} \cap C \equiv C \setminus (A \cup B)$



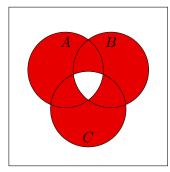
 $R = (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C) \quad \equiv \quad T = (A \setminus (B \cup C)) \cup (B \setminus (A \cup C)) \cup (C \setminus (A \cup B))$



 $A \cup B \cup C$



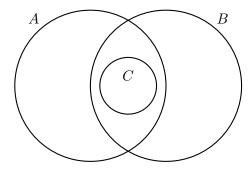
 $A \cap B \cap C$



 $S = (A \cup B \cup C) \setminus (A \cap B \cap C)$

3. Let A, B, and C be three non empty sets.

(a) Draw the Venn-diagram for these sets in which C is a proper subset of the intersection between A and B ($C \subset (A \cap B)$).



- (b) What are the sizes of A, B, and $A \cup B$ given the following data:
 - |C| = 3
 - $|A \cap B| = 5$
 - $|A \setminus C| = 10$
 - $|B \setminus C| = 12$

Observation: $|X| = |X \setminus Y| + |X \cap Y|$ for any two sets X and Y because any object contained in X is either contained in $X \setminus Y$ or contained in $X \cap Y$ but not in both.

Answer: |A| = 13, |B| = 15, and $|A \cup B| = 23$.

Proof:

• Since |C| = 3 and $|A \setminus C| = 10$ the above observation implies that

$$|A| = |A \setminus C| + |C| = 10 + 3 = 13$$

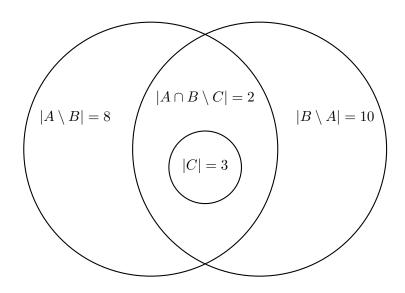
• Since |C| = 3 and $|B \setminus C| = 12$ the above observation implies that

$$|B|=|B\setminus C|+|C|=12+3=15$$

• Since $|A \cap B| = 5$, the principle of inclusion exclusion implies that

$$|A \cup B| = |A| + |B| - |A \cap B| = 13 + 15 - 5 = 23$$

Remark: See below the sizes of the diagram's four disjoint zones: $(A \setminus B)$, $(B \setminus A)$, C, and $((A \cap B) \setminus C)$. Observe that indeed $|A \cap B| = 3 + 2 = 5$, |A| = 8 + 2 + 3 = 13, $|A \setminus C| = 13 - 3 = 10$, |B| = 10 + 2 + 3 = 15, $|B \setminus C| = 15 - 3 = 12$, and $|A \cup B| = 8 + 10 + 3 + 2 = 23$.



4. Let $S = \{0, 2, 4, 6, 8\}$ be the set of the five even digits and Let $T = \{1, 3, 5, 7, 9\}$ be the set of the five odd digits.

For each one of the following expressions, determine if it is TRUE or FALSE.

(a) $\forall_{x \in S} \forall_{y \in T} (y = x + 1)$

The expression is FALSE because there exists at least one pair of numbers (x, y) for which x is even, y is odd, and $y \neq x + 1$. For example, x = 0 and y = 9.

(b) $\exists_{x \in S} \exists_{y \in T} (y = x + 1)$

The expression is TRUE because there exists at least one pair of numbers (x, y) for which x is even, y is odd, and y = x + 1. For example, x = 4 and y = 5.

(c) $\forall_{x \in S} \exists_{y \in T} (y = x + 1)$

The expression is TRUE because for any even number $x \in S$ there exists an odd number $y \in T$ such that y = x + 1: 1 = 0 + 1, 3 = 2 + 1, 5 = 4 + 1, 7 = 6 + 1, and 9 = 8 + 1.

(d) $\forall_{y \in T} \exists_{x \in S} (y = x + 1)$

The expression is TRUE because for any odd number $y \in T$ there exists an even number $x \in S$ such that y = x + 1: 1 = 0 + 1, 3 = 2 + 1, 5 = 4 + 1, 7 = 6 + 1, and 9 = 8 + 1,

(e) $\exists_{x \in S} \forall_{y \in T} (y = x + 1)$

The expression is FALSE because for any even number $x \in S$ there exists at least one odd number $y \in T$ such that $y \neq x + 1$. For example, $3 \neq 0 + 1$, $5 \neq 2 + 1$, $7 \neq 4 + 1$, $9 \neq 6 + 1$, and $1 \neq 8 + 1$.

(f) $\exists_{y \in T} \forall_{x \in S} (y = x + 1)$

The expression is FALSE because for any odd number $y \in T$ there exists at least one even number $x \in S$ such that $y \neq x + 1$. For example, $1 \neq 8 + 1$, $3 \neq 0 + 1$, $5 \neq 2 + 1$, $7 \neq 4 + 1$, and $9 \neq 6 + 1$.

5. The goal is to express the operator \mathcal{XOR} with the operators \mathcal{AND} , \mathcal{OR} , and \mathcal{NOT} . The truth table for the operator \mathcal{XOR} is:

x	y	$x \oplus y$	
T	T	F	
T	F	T	
F	T	T	
F	F	F	

(a) Express \mathcal{XOR} (\oplus) with \mathcal{AND} (\wedge), \mathcal{OR} (\vee), and \mathcal{NOT} (\neg).

Solution 1: $x \oplus y$ is TRUE if and only if the truth assignments for x and y are different. Therefore, $x \oplus y = (x \land \neg y) \lor (\neg x \land y)$.

x	y	$x \land \neg y$	$\neg x \wedge y$	$(x \land \neg y) \lor (\neg x \land y)$
T	T	F	F	F
T	F	T	F	T
F	T	F	T	T
F	F	F	F	F

Solution 2: $x \oplus y$ is TRUE if and only if $x \lor y$ and $\neg x \lor \neg y$ are both TRUE because the truth assignment must assign TRUE to one of them and FALSE to the other one. Therefore, $x \oplus y = (x \lor y) \land (\neg x \lor \neg y)$.

x	y	$x \lor y$	$\neg x \lor \neg y$	$(x \vee y) \wedge (\neg x \vee \neg y)$
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	F

(b) Express \mathcal{XOR} (\oplus) with \mathcal{AND} (\wedge) and \mathcal{NOT} (\neg). In this part, you cannot use \mathcal{OR} (\vee).

De Morgan's law: $P \vee Q = \neg(\neg P \wedge \neg Q)$ for any two boolean expressions P and Q.

Solution 1: Apply the above De Morgan's law to get rid of the \vee operator in the first solution of part (a). It follows that $x \oplus y = (x \wedge \neg y) \vee (\neg x \wedge y) = \neg(\neg(x \wedge \neg y) \wedge \neg(\neg x \wedge y))$.

x	y	$x \wedge \neg y$	$\neg x \wedge y$	$\neg(x \land \neg y)$	$\neg(\neg x \land y)$	$\neg(x \land \neg y) \land \neg(\neg x \land y)$	$\neg(\neg(x \land \neg y) \land \neg(\neg x \land y))$
T	T	F	F	T	T	T	F
T	F	T	F	F	T	F	T
F	T	F	T	T	F	F	T
F	F	F	F	T	T	T	F

Solution 2: Apply the above De Morgan's law to get rid of the two \vee operators in the second solution of part (a). It follows that $x \oplus y = (x \vee y) \wedge (\neg x \vee \neg y) = \neg(\neg x \wedge \neg y) \wedge \neg(x \wedge y)$.

x	y	$\neg x \land \neg y$	$x \wedge y$	$\neg(\neg x \land \neg y)$	$\neg(x \land y)$	$\neg(\neg x \land \neg y) \land \neg(x \land y)$
T	T	F	T	T	F	F
T	F	F	F	T	T	T
\overline{F}	T	F	F	T	T	T
F	F	T	F	F	T	F

- 6. You interrogate three people: A, B, and C. One of them stole your wallet.
 - A claims that B stole the wallet.
 - B claims that A stole the wallet.
 - C agrees with B that A stole the wallet.
 - (a) Who stole the wallet if only one of them is lying while the other two are telling the truth?

Answer: A stole the wallet.

Proof 1: Since two out of the three people are telling the truth, it must be the case that these two people are B and C because they agree with each other. As a result, their statements that A stole the wallet is correct.

Proof 2: A and B contradict each other and therefore at least one of them is lying. Since two people are telling the truth, it follows that C is telling the truth and therefore C's statement that A stole the wallet is correct.

(b) Who stole the wallet if only one of them is telling the truth while the other two are lying?

Answer: B stole the wallet.

Proof 1: Since two out of the three people are lying, it must be the case that these two people are B and C because they agree with each other. As a result, A is telling the truth and its statement that B stole the wallet is correct.

Proof 2: A and B contradict each other and therefore at least one of them is telling the truth. Since two people are lying, it follows that C is lying and therefore B is also lying. Consequently, only A is telling the truth and therefore A's statement that B stole the wallet is correct.

Remark: Another way to solve the two parts of the problem is to examine all the three possibilities for who stole the wallet.

- If C stole the wallet then all three people are lying. Therefore, C cannot be the answer in both parts of the problem.
- If B stole the wallet then A is telling the truth and both B and C are lying. Therefore, B is the answer for part (b) of the problem.
- If A stole the wallet then B and C are telling the truth and A is lying. Therefore, A is the answer for part (a) of the problem.