CISC 2210 TR2– Introduction to Discrete Structures

Midterm Exam 2

April 18, 2023

Ιd٠		
ıu.	 	

Problem	Maximum Points	Your Points
1	100	
2	100	
3	100	
4	100	
5	100	

Structure, problem selection, and credit:

- You have 90 minutes to complete the exam.
- There are 5 problems. Each problem is a "mini-exam" by itself with a 5% weight in the final grade for the class. However, the grade of each individual problem counts only if it is higher than the final exam grade.

Strategy: It is better to try first answering the questions relating to topics you have mastered. Note that since there is no cumulative grade, one fully correct answer is better than two or more partially correct answers.

• You will get only partial credit if you fail to justify or prove your answers. You will get 20% of the credit for any problem or part of a problem if you leave the allocated space for the answer empty. You will get zero credit for wrong answers.

Honor code: Students are expected to do this exam by themselves without any external help from other people, the Internet, books, notes, or calculators. Cheaters will be punished severely. At minimum, they will fail the exam, but they may fail the whole class. In addition, students who cheat risk disciplinary measures by Brooklyn College and CUNY.

1.	Prove the correctness of the following identity for any $n \ge$	1.
	You may use induction or any other method.	

$$\sum_{i=1}^{n} (i-1) + \sum_{i=1}^{n} (i+1) = n(n+1)$$

2. Consider the following recurrence for integers $n \ge 1$:

$$M(n) = \begin{cases} 2 & \text{for } n = 1\\ 3M(n-1) - 1 & \text{for } n \ge 2 \end{cases}$$

Prove that for $n \geq 1$

$$M(n) = \frac{3^n + 1}{2}$$

Remark: The top-down evaluation and the bottom-up evaluation are not considered as proofs.

	There are 4 blue socks, 3 green socks, and 2 red socks in the box
Find the r	number of ways 2 socks can be drawn from the box.
Find the n	number of ways 2 socks of the same color can be drawn from the be
Find the n	number of ways 2 socks of different colors can be drawn from the be
How do th	ne three questions above relate to each other?

green socks, and r are red socks for some three integers $b \ge 2$, $g \ge 2$, and $r \ge 2$ such that $n = b + g + r$.
Find the number of ways 2 socks can be drawn from the box.
Find the number of ways 2 socks of the same color can be drawn from the box.
Find the number of ways 2 socks of different colors can be drawn from the box.
How do the three questions above relate to each other?

4.	Simplify the following expression into an expression that does no binomial coefficients, factorials, and fractions. Explain how you found the simplified expression.	ot contain
	$\binom{n+2}{2} - \binom{n}{2}$	

Dant /	a). What :	e the prob	ahilitu th	at all tha s	ons.	Honda?	
Part (a): What i	s the propa	abiiity tii	at an the c	oms snow i	neads:	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b) : What i	is the prob	ability th	at at least	one coin sh	nows Tails?	
Part (b): What i	is the prob	ability th	at at least	one coin sh	nows Tails?	

		y that a	one coin	shows	Tails g	giv
		y that a s Heads?	one coin	shows	Tails §	giv
			one coin	shows	Tails §	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails §	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails §	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	giv
			one coin	shows	Tails g	gir