Discrete Structures: Graphs

Amotz Bar-Noy

Department of Computer and Information Science Brooklyn College

Outline

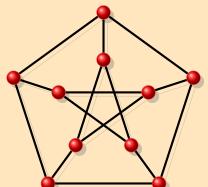
- 1 Introduction and Graph Isomorphism
- Notations and Definitions
- Families of Graphs
- Data Structures
- Graphic Sequences

Graphs

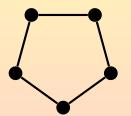
Definition

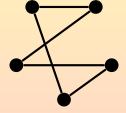
 A graph is a collection of edges and vertices. Each edge connects two vertices.

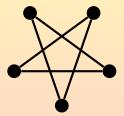
The Petersen graph



Different Drawings of the "Same" Graph



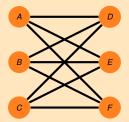


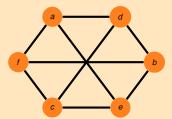


Definition

• Graph G_1 and graph G_2 are **isomorphic** if there is a **one-to-one function** between their vertices such that, the number of edges joining any two vertices of G_1 is equal to the number of edges joining the corresponding vertices of G_2 .

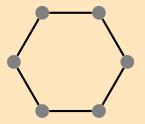
Example

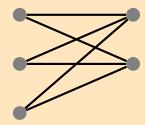




 $a \leftrightarrow A \ b \leftrightarrow B \ c \leftrightarrow C \ d \leftrightarrow D \ e \leftrightarrow E \ f \leftrightarrow F$

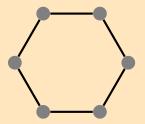
Both graphs must have the same number of vertices

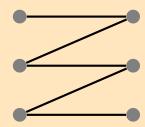




- Both graphs have 6 edges.
- The graphs are not isomorphic because one has 6 vertices while the other has 5 vertices.

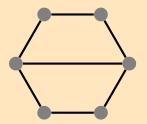
Both graphs must have the same number of edges





- Both graphs have 6 vertices.
- The graphs are not isomorphic because one has 6 edges while the other has 5 edges.

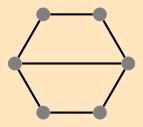
Both graphs must have the same degree sequence

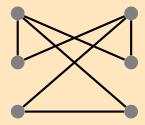




- Both graphs have 6 vertices and 7 edges.
- The graphs are not isomorphic because only one of them has a vertex of degree 4.

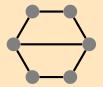
Both graphs must have the same type of connections

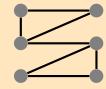




- Both graphs have 6 vertices, 7 edges, and the same degree sequence (3, 3, 2, 2, 2, 2).
- The graphs are not isomorphic because the two vertices of degree 3 are connected only in one of them.

Both graphs must contain the same sub-graphs





- Both graphs have 6 vertices, 7 edges, and the same degree sequence (3, 3, 2, 2, 2, 2).
- In both graphs each vertex with degree 3 is connected to the other vertex of degree 3 and to two vertices of degree 2.
- In both graphs each vertex of degree 2 is connected to another vertex of degree 2 and a vertex of degree 3.
- The graphs are not isomorphic because only one of them contains a triangle (a cycle of length 3).

Problem

• Let G and H be two graphs. Is G isomorphic to H?

Algorithm

- Check all possible permutations of the vertices of H and compare them with the vertices of G.
- G and H are isomorphic if at least one of the permutations implies the desired one-to-one correspondence.
- This algorithm is very inefficient with an exponential running time.

Hardness

- There is no known efficient algorithm that solves the graph isomorphism problem.
- It is believed that such an algorithm does not exist.

Online Resources

Learn graph theory interactively

https://d3gt.com/index.html

Online graph editor

https://csacademy.com/app/graph_editor/

A short introduction

Definitions and Euler Tour:

https://youtu.be/2QKjZb9ZKYg?list=PLMyAzUai9V3ox_LDwl54GRkNxovx6NqQX (8:52 min)

• Trees and Traversals:

https://youtu.be/70ztK4CnsrM?list=PLMyAzUai9V3ox_LDwl54GRkNxovx6NqQX (7:13 min)

Sarada Herke: A Graph Theory Online Course

FAQ

https://www.youtube.com/playlist?list=PLGxuz-nmYlQOAiikIbmTuj4Lf4QPcO17G

A comprehensive introductory course with 66 video lectures

- Part I: https://www.youtube.com/playlist?list=PLGxuz-nmYlQ0iIOriTXMEoGoybUC3Jmrn
- Part II: https://www.youtube.com/playlist?list=PLGxuz-nmYlQ0Wyn01-09SBboVyjSSrmXF
- Part III: https://www.youtube.com/playlist?list=PLGxuz-nmYlQOwe-FPnmy8RA4nzpsygCPx
- Part IV: https://www.youtube.com/playlist?list=PLGxuz-nmYlQOXFjanEQY4WHnPJnAYQSqP
- Part V: https://www.youtube.com/playlist?list=PLGxuz-nmYlQPtH2TgH3MTTkrMYjKtltwk
- Part VI: https://www.youtube.com/playlist?list=PLGxuz-nmYlQMqbct_HCAgSmWEmuHvubXT
- Part VII: https://www.youtube.com/playlist?list=PLGxuz-nmYlQNCcfVYLs9G4dtFJDFUuo5A
- Part VIII: https://www.youtube.com/playlist?list=PLGxuz-nmYlQNtbShUqPRrMA8cQAc45L03
- Part IX: https://www.youtube.com/playlist?list=PLGxuz-nmYlQONimToEreNmISXM808M5Ba
- Part X: https://www.youtube.com/playlist?list=PLGxuz-nmYlQPgIHbqWtgD-F7NnJuqs4fH
- Part XI: https://www.youtube.com/playlist?list=PLGxuz-nmYlQMO2wRhUhV_g6AN3vLN_4X7

Fun with graphs

https://www.youtube.com/playlist?list=PLGxuz-nmYlQMEo9ULIFc5nRy7pdHZK3vj

MIT Discrete Math lectures: Graph Theory

Part I: Graph Theory and Coloring

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-042j-mathematics-for-computer-science-fall-2010/video-lectures/ lecture-6-graph-theory-and-coloring/

Part II: Matching Problems

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-042j-mathematics-for-computer-science-fall-2010/video-lectures/ lecture-7-matching-problems/

Part III: Minimum Spanning Trees

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-042j-mathematics-for-computer-science-fall-2010/video-lectures/ lecture-8-graph-theory-ii-minimum-spanning-trees/

Part IV: Communication Networks

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-042j-mathematics-for-computer-science-fall-2010/video-lectures/ lecture-9-communication-networks/

Part V: Graph Theory III

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-042j-mathematics-for-computer-science-fall-2010/video-lectures/ lecture-10-graph-theory-iii/

Graph Theory Algorithms by a Google engineer

Description and outline

• https://www.freecodecamp.org/news/learn-graph-theory-algorithms-from-a-google-engineer/

Almost 7 hours Video Lecture

https://www.youtube.com/watch?v=09_LlHjoEiY&feature=youtu.be (6:44:39 hours)

Playlist

• https://www.youtube.com/playlist?list=PLDV1Zeh2NRsDGO4--qE8yH72HFL1Km93P

Famous Graph Problems

The seven bridges of Königsberg

https://www.youtube.com/watch?v=nZwSo4vfw6c (4:39 min)

The four color map problem

- https://www.youtube.com/watch?v=ANY7X-_wpNs (2:36 min)
- https://www.youtube.com/watch?v=NgbK43jB4rQ (14:17 min)

The Traveling Salesperson Problem

- https://www.youtube.com/watch?v=18KBKItQ3T4 (1:15 min)
- https://www.youtube.com/watch?v=SC5CX8drAtU (2:22 min)

Notations

- G = (V, E) graph.
- $V = \{1, \dots, n\}$ set of vertices.
- $E \subseteq V \times V$ set of edges.
- $e = (u, v) \in E edge$.
- n = |V| number of vertices.
- m = |E| number of edges.

Directed and Undirected Graphs

Undirected graphs

• The edge (u, v) is the same as the edge (v, u).

Directed graphs (D-graphs)

• The edge $(u \rightarrow v)$ is not the same as the edge $(v \rightarrow u)$.

The underlying undirected graph of a directed graph

• The edge $(u \rightarrow v)$ becomes (u, v).

Directed and Undirected Graphs

Undirected edges

- Vertices u and v are the **endpoints** of the edge (u, v).
- Edge (u, v) is **incident** with vertices u and v.
- Vertices u and v are neighbors if edge (u, v) exists. Vertex u is adjacent to vertex v and vertex v is adjacent to vertex u.
- Vertex u has degree d if it has d neighbors.
- Edge (v, v) is a (self) loop.
- Edges $e_1 = (u, v)$ and $e_2 = (u, v)$ are parallel edges.

Directed and Undirected Graphs

Directed edges

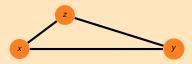
- Vertex u is the origin (initial) and vertex v is the destination (terminal) of the directed edge $(u \rightarrow v)$.
- Vertex v is the neighbor of vertex u if the directed edge (u → v) exists (but vertex u is not a neighbor of vertex v). Vertex v is adjacent to vertex u (but vertex u is not adjacent to vertex v).
- Vertex u has out-degree d if it has d neighbors and has in-degree d if it is the neighbor of d vertices.
- Edge $(v \rightarrow v)$ is a (self) directed loop.
- Directed edges e₁ = (u → v) and e₂ = (u → v) are parallel directed edges (but directed edges e₁ = (u → v) and e₂ = (v → u) are not parallel directed edges).

Weighted Graphs

Definition

• In Weighted graphs there exists a weight function: $w : E \to \Re$.

The triangle inequality



• For any three edges (x, y), (x, z), and (y, z), the weight function obeys the inequality:

$$w(x,y) \leq w(x,z) + w(y,z)$$

Example: distances in the plane.

Simple Graphs

Definition

- A simple directed or undirected graph is a graph with no parallel edges and no self loops.
- In a simple directed graph both edges: $(u \rightarrow v)$ and $(v \rightarrow u)$ could exist (they are not parallel edges).

Number of edges in simple graphs

- A simple undirected graph has at most $m = \binom{n}{2}$ edges.
- A simple directed graph has at most m = n(n-1) edges.
- A dense simple (directed or undirected) graph has "many" edges: $m = \Theta(n^2)$.
- A sparse (shallow) simple (directed or undirected) graph has "few" edges: $m = \Theta(n)$.

Labeled and Unlabeled Graphs

Definition

- In a labeled graph each vertex has a unique label (ID).
 - * Usually the labels are: 1,...,n.

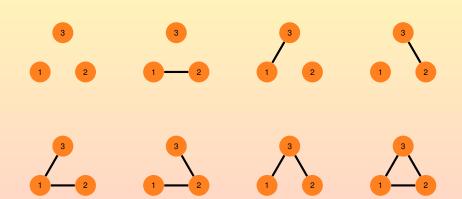
Observation

• There are $2^{\binom{n}{2}}$ non-isomorphic labeled graphs with *n* vertices. Because each possible edge exists or does not exist.

Open problem

- There is no known formula for the number of distinct unlabeled non-isomorphic graphs with $n \ge 1$ vertices.
- There are 1, 2, 4, 11, 34, 156, 1044 distinct unlabeled non-isomorphic graphs with n = 1, 2, 3, 4, 5, 6, 7 vertices.
- There are 24637809253125004524383007491432768 distinct unlabeled non-isomorphic graphs with n = 20 vertices.

The 8 Labelled Graphs with n = 3 vertices



The 4 Unlabelled Graphs with n = 3 Vertices

Paths and Cycles

Paths

• An undirected or directed path $\mathcal{P} = \langle v_0, v_1, \dots, v_k \rangle$ of length k is an ordered list of vertices such that (v_i, v_{i+1}) or $(v_i \rightarrow v_{i+1})$ exists for $0 \le i \le k-1$ and all the edges are different.

Cycles

• An undirected or directed cycle $\mathcal{C} = \langle v_0, v_1, \dots, v_{k-1}, v_0 \rangle$ of length k is an undirected or directed path that starts and ends with the same vertex.

Simple paths

 In a simple path, directed or undirected, all the vertices are different.

Simple cycles

• In a simple cycle, directed or undirected, all the vertices except $v_0 = v_k$ are different.

Special Paths and Cycles

Euler paths

 An undirected or directed Euler path (tour) is a path that traverses all the edges of the graph.

Euler cycles

 An undirected or directed Euler cycle (circuit) is a cycle that traverses all the edges of the graph.

Hamiltonian paths

• An undirected or directed Hamiltonian path (tour) is a simple path that visits all the vertices of the graph.

Hamiltonian cycles

 An undirected or directed Hamiltonian cycle (circuit) is a simple cycle that visits all the vertices of the graph.

Connectivity

Definition

 In a connected undirected graph there exists a path between any pair of vertices.

Connected components

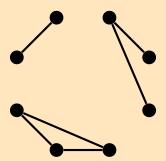
 A connected sub-graph G' is a connected component of an undirected graph G if there is no connected sub-graph G" of G such that G' is also a subgraph of G".

Corollary

A connected graph has exactly one connected component.

Connectivity

A graph with three connected components



Strong Connectivity

Definition

 In a strongly connected directed graph there exists a directed path from u to v for any pair of vertices u and v.

Strongly connected components

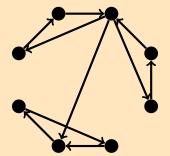
 A strongly connected directed sub-graph G' is a strongly connected component of a directed graph G if there is no strongly connected directed sub-graph G" of G such that G' is also a subgraph of G".

Corollary

 A strongly connected directed graph has exactly one strongly connected component.

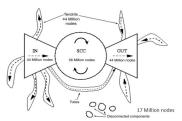
Strongly Connected Directed Graphs

A graph with two strongly connected components



The WEB Graph

Bow-Tie Structure of the Web



Broder et. al (Graph Structure of the Web, 2000) Examined a large web graph (200M pages, 1.5B links)

Definition

• In the WEB graph, every page is a vertex and a hyper-link from page p to page q is modeled by the directed edge $(p \rightarrow q)$.

Assumptions

- Unless stated otherwise, usually a graph is:
 - * Simple.
 - * Undirected.
 - Unlabelled.
 - * Unweighted.
 - * Connected.

Forests and Trees

Forests

Graphs with no cycles.

Trees

Connected graphs with no cycles.

Trees and Forests

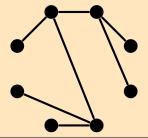
- A tree is a connected forest.
- Each connected component of a forest is a tree.

n = 1 and n = 2

- For n = 1, the singleton vertex is a tree.
- For n = 2, the graph with two isolated vertices is a forest and an edge is a tree.

Trees

Example: a tree with 8 vertices



The three characterizations of trees

- A tree is a connected graph.
- A tree with n vertices has n − 1 edges.
- A tree has no cycles.

Trees

Theorem 1: three equivalent definitions

- An undirected and simple graph is a tree if
 - * It is connected and has no cycles.
 - * It is connected and has exactly m = n 1 edges.
 - * It has **no cycles** and has exactly $\mathbf{m} = \mathbf{n} \mathbf{1}$ edges.

Corollary

• The number of edges in a forest with n vertices and k trees is m = n - k.

Theorem 2: three properties

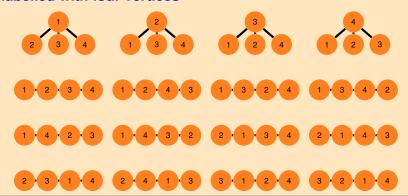
- An undirected and simple graph is a tree if
 - * It is connected and deleting any edge disconnects it.
 - * Any two vertices are connected by exactly one path.
 - * It has no cycles and any new edge forms one cycle.

Counting Labelled Trees

Theorem

• There are n^{n-2} distinct labelled n vertices trees.

All labelled with four vertices



Counting Unlabelled Trees

Open problem

• What is the number of non-isomorphic unlabelled trees with n vertices?

The two unlabelled trees with four vertices

The three unlabelled trees with five vertices

Null Graphs

Definition

- Null graphs are graphs with no edges.
- In null graphs m = 0.

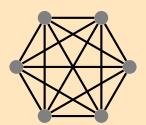
The null graph with six vertices

Complete Graphs

Definition

- Complete graphs (cliques) are graphs with all possible edges.
- In complete graphs $m = \binom{n}{2} = \frac{n(n-1)}{2}$.

The complete graph with six vertices

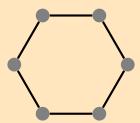


Cycles

Definition

- Cycles (rings) are connected graphs in which all vertices have degree 2 $(n \ge 3)$.
- In cycles m = n.

The cycle graph with six vertices

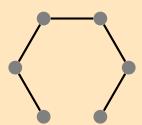


Paths

Definition

- Paths are cycles with one edge removed (paths are trees).
- In paths m = n 1.

The path graph with six vertices

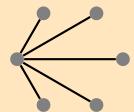


Stars

Definition

- Stars are graphs with one root that is connected to n-1 leaves (stars are trees).
- The degree of the root is n-1 and the degree of each leaf is 1.
- In stars m = n 1.

The star graph with six vertices

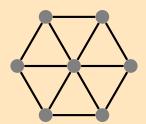


Wheels

Definition

- Wheels are stars in which all the n-1 leaves form a cycle.
- In wheels m = 2n 2 for $n \ge 4$.

The wheel graph with seven vertices



Bipartite Graphs

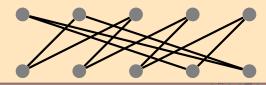
Definition

- The vertices of a **bipartite graph** G = (V, E) are partitioned into two disjoint sets $V = X \cup Y$.
- Each edge in E is incident to one vertex from X and one vertex from Y.

Observation

• A graph is bipartite iff each cycle in the graph is of even length.

A bipartite graphs with 10 vertices

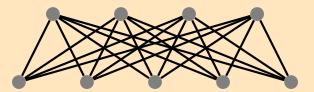


Complete Bipartite Graphs

Definition

A complete bipartite graph is a bipartite graph in which the set X has x vertices, the set Y has y vertices, and all possible x · y edges exist.

A complete bipartite graph with x = 4 and y = 5 vertices

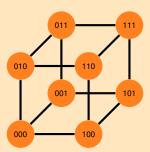


Hyper-Cubes

Definition

- The **Hyper-Cube** graph H_k has $n = 2^k$ vertices representing all the 2^k binary sequences of length k.
- Two vertices in H_k are adjacent if their corresponding sequences differ by exactly one bit.

A hyper-cube graph with 8 vertices



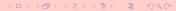
Hyper-Cubes

Observation

Hyper-Cubes are bipartite graphs.

Proof

- X: The set of all the vertices with even number of 1 in their binary representation.
- Y: The set of all the vertices with odd number of 1 in their binary representation.
- Any edge connects two vertices that differ by one bit and therefore one is from the set *X* and one is from the set *Y*.



Planar Graphs

Definition

 Planar graphs are graphs that can be drawn on the plane such that edges do not cross each other.

Theorem

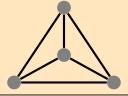
• A graph is planar iff it does not have sub-graphs homeomorphic to the complete graph with 5 vertices and the complete $\langle 3,3\rangle$ bipartite graph.

Theorem

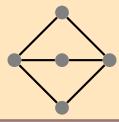
Every planar graph can be drawn with straight lines.

Small Planar Graphs

The complete graph with 4 vertices



The complete (2,3) bipartite graph



Small Non-Planar Graphs

The complete graph with 5 vertices

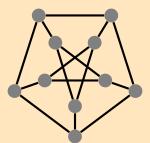
The complete (3,3) bipartite graph

Regular Graphs

Definition

- In \triangle -regular graphs the degree of each vertex is exactly \triangle .
- In Δ -regular graphs $m = \frac{\Delta \cdot n}{2}$.

The 3-regular Petersen graph



Random Graphs

Definition I

• The random graph R(n, p) has n vertices and each of the possible $\frac{n(n-1)}{2}$ edges exists with probability $0 \le p \le 1$.

Observation

• The expected number of edges in R(n, p) is $p^{\frac{n(n-1)}{2}}$.

Definition II

 The random graph R(n, m) is randomly selected with a uniform distribution over all graphs with n vertices and m edges.

Remarks

- Both definitions share many properties but they are not equivalent.
- There are many other random graphs models.

Social Graphs

Definition

 A social graph contains all the friendship relations (edges) among n people (vertices).

Propositions

- In any group of $n \ge 2$ people, there are 2 people with the same number of friends in the group.
- There exists a group of 5 people for which no 3 are mutual friends and no 3 are mutual strangers.
- Every group of 6 people contains either three mutual friends or three mutual strangers.

Data structure for Graphs

Goal

• Represent the vertices and edges of the graph efficiently.

Representations

- Adjacency lists: $\Theta(n+m)$ memory size.
- Adjacency matrix: $\Theta(n^2)$ memory size.
- Incidence matrix: $\Theta(n \cdot m)$ memory size.

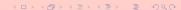
The Adjacency Lists Representation

Definition

- Each vertex is associated with a linked list consisting of all of its neighbors.
- In a directed graph there are two lists: an incoming list and an outgoing list.
- In a weighted graph each record in the list has an additional field for the weight.

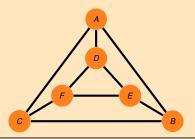
$\Theta(n+m)$ -memory

- Undirected graphs: $\sum_{v} Deg(v) = 2m$
- Directed graphs: $\sum_{v} OutDeg(v) = \sum_{v} InDeg(v) = m$



The Adjacency Lists Representation

Example: an undirected graph



Example: the adjacency lists

 $A \rightarrow (B, C, D)$

 $B \rightarrow (A, C, E)$

 $C \rightarrow (A, B, F)$

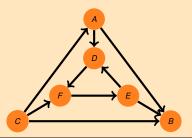
 $D \rightarrow (A, E, F)$

 $E \rightarrow (B, D, F)$

 \rightarrow (C, D, E)

The Adjacency Lists Representation

Example: a directed graph



Example: the adjacency lists

The Adjacency Matrix Representation

Definition

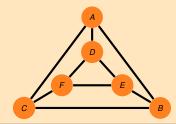
- A matrix A of size $n \times n$:
 - * A[u, v] = 1 if (u, v) or $(u \rightarrow v)$ is an edge.
 - * A[u, v] = 0 if (u, v) or $(u \rightarrow v)$ is not an edge.
- In simple graphs: A[u, u] = 0
- In undirected graphs: A[u, v] = A[v, u]
- In weighted graphs: A[u, v] = w(u, v)

$\Theta(n^2)$ -memory

• Independent of m that could be $o(n^2)$ and even O(n).

The Adjacency Matrix Representation

Example: an undirected graph

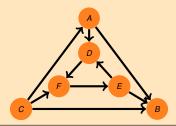


Example: the adjacency matrix

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	1	0	1	0
C	1	1	0	0	0	1
D	1	0	0	0	1	1
E	0	1	0	1	0	1
F	0	0	1	1	1	0

The Adjacency Matrix Representation

Example: a directed graph



Example: the adjacency matrix

	Α	В	С	D	Ε	F
Α	0	1	0	1	0	0
В	0	0	0	0	0	0
С	1	1	0	0	0	1
D	0	0	0	0	0	1
Ε	0	1	0	1	0	0
F	0	0	0	0	1	0

The Incidence Matrix Representation

Definition

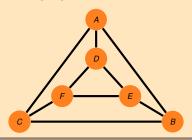
- A matrix A of size n × m:
 - * A[v, e] = 1 if undirected edge e is incident with v.
 - * A[u, e] = -1 and A[v, e] = 1 for a directed edge $u \rightarrow v$.
 - * Otherwise A[v, e] = 0.
- In simple graphs all the columns are different and each contains exactly two non-zero entries.
- In weighted undirected graphs: A[v, e] = w(e) if edge e is incident with vertex v.

$\Theta(n \cdot m)$ -memory

The memory size depends on the number of edges.

The Incidence Matrix Representation

Example: an undirected graph

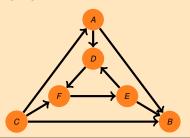


Example: the incidence matrix

	(A, B)	(A, C)	(A, D)	(B, C)	(B, E)	(C, F)	(D, E)	(D,F)	(E, F)
Α	1	1	1	0	0	0	0	0	0
В	1	0	0	1	1	0	0	0	0
C	0	1	0	1	0	1	0	0	0
D	0	0	1	0	0	0	1	1	0
E	0	0	0	0	1	0	1	0	1
F	0	0	0	0	0	1	0	1	1

The Incidence Matrix Representation

Example: a directed graph



Example: the incidence matrix

	(A, B)	(A, C)	(A, D)	(B, C)	(B, E)	(C, F)	(D, E)	(D,F)	(E, F)
Α	-1	1	-1	0	0	0	0	0	0
В	1	0	0	1	1	0	0	0	0
C	0	-1	0	-1	0	-1	0	0	0
D	0	0	1	0	0	0	1	-1	0
E	0	0	0	0	-1	0	-1	0	1
F	0	0	0	0	0	1	0	1	-1

Which Data Structure to Choose?

Adjacency matrices

- Simpler to implement and maintain.
- Easy to find out if a graph contains a specific edge.
- Easy to add or delete edges.
- Efficient for dense graphs.

Adjacency lists

- Efficient for sparse graphs.
- Used by algorithms whose complexity depends on *m*.

Incidence matrices

- Useful for hypergraphs in which hyperedges may contain more than two vertices.
- Not efficient for graph algorithms.

Graphic Sequences

Degrees

• The **degree** d_v of vertex v in graph G is the number of neighbors of v in G.

The hand-shaking lemma

- **Lemma:** $\sum_{i=1}^{n} d_i = 2m$.
- Proof outline: Each edge "contributes" exactly 2 to the sum.
- Corollary: The number of odd degree vertices is even.

Graphic sequences

- The degree sequence of G is $S = (d_1, \ldots, d_n)$.
- A sequence $S = (d_1, \dots, d_n)$ is **graphic** if there exists a graph with n vertices whose degree sequence is S.

Examples of Non-Graphic Sequences

(3,3,3,3,3,3,3)

- Since the sum of the degrees in any graph must be even.
- There is no 7-vertex 3-regular graph.

(5, 5, 4, 4, 0)

- Since there are 5 vertices and therefore the maximum degree could be at most 4.
- The maximum degree in a graph with n vertices is n-1.

(3, 2, 1, 0)

 Since there is a vertex with degree 3 and only two additional vertices with a positive degree.

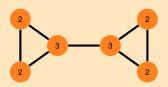
Testing if Sequences are Graphic

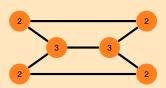
Observation

 Each graph is associated with a degree sequence while a degree sequence might be associated with more than one non-isomorphic graph.

Example

- The degree sequence of both graphs below is (3, 3, 2, 2, 2, 2).
- The two graphs are not isomorphic because one of them has two cycles of size 3 while the other has two cycles of size 4.





Testing if Sequences are Graphic

Theorem (Erdős-Gallai)

- For $n \ge 1$, a sequence $(d_1 \ge d_2 \ge \cdots \ge d_n)$ of n non-negative integers is **graphic** if the following two conditions hold:
 - * $d_1 + d_2 + \cdots + d_n$ is even.
 - * for $1 \le k \le n$:

$$\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\}.$$

Complexity

• A dynamic programming based algorithm can check all the n inequalities with complexity $\Theta(n)$.

Remark

 The theorem does not provide a realization graph if the sequence is graphic.

Graphic Sequence for Trees

Theorem

• For $n \ge 2$, a sequence (d_1, d_2, \dots, d_n) of n positive integers is a degree sequence of a tree **iff**

$$\sum_{i=1}^n d_i = 2n-2$$

Proof

- \Rightarrow A tree has n-1 edges. By the **hand-shaking lemma** the sum of the degrees in a tree is 2n-2.
- \leftarrow By induction on n.

Online resource

https://www.youtube.com/watch?v=cCG4_mj9TgM

Graphic Sequences – Observations

Observation I

• The sequence $(0,0,\ldots,0)$ of length n is graphic since it represents the null graph with n vertices.

Observation II

• $d_1 \le n-1$ in a graphic sequence $S = (d_1 \ge \cdots \ge d_n)$.

Observation III

- $d_{d_1+1} > 0$ in a graphic sequence $S = (d_1 \ge \cdots \ge d_n)$ of a non-null graph.
- Equivalently, if $d_1 > 0$ then there are at least $d_1 + 1$ non-zeros in S.

Transformation

Definition

- Let $S = (d_1 \ge d_2 \ge \cdots \ge d_n)$.
- Then $f(S) = (d_2 1 \ge \cdots \ge d_{d_1+1} 1, d_{d_1+2} \ge \cdots \ge d_n)$.

Examples

$$S = (5,4,3,3,2,1,1,1) \implies f(S) = (3,2,2,1,0,1,1)$$

$$S = (6,6,6,3,3,2,2,2,2) \implies f(S) = (5,5,2,2,1,1,2,2)$$

Remarks

- The transformation can be applied only if both Observation II and Observation III hold.
- The transformation does not change S if Observation I holds.

Graphic Sequences

Theorem (Havel-Hakimi)

• $S = (d_1 \ge \cdots \ge d_n)$ is graphic iff f(S) is graphic.

Proof outline

- \leftarrow To get a graphic representation for S, add a vertex of degree d_1 to the graphic representation of f(S) and connect this vertex to all vertices whose degrees in f(S) are smaller by 1 than those in S.
- \Rightarrow To get a graphic representation for f(S), omit a vertex of degree d_1 from the graphic representation of S. Make sure (how?) that this vertex is connected to the vertices whose degrees are d_2, \ldots, d_{d_1+1} .

Online resources

- https://www.youtube.com/watch?v=aNKO4ttWmcU
- https://www.youtube.com/watch?v=iQJ1PFZ4gh0

Algorithm to Test if a Sequence is Graphic

Algorithm

```
Graphic(S = (d_1 \ge \cdots \ge d_n \ge 0))
case d_1 = 0 return(TRUE)
case d_1 \ge n return(FALSE)
case d_{d_1+1} = 0 return(FALSE)
otherwise return Graphic(Sort(f(S)))
```

Termination

• The sequence's length is reduced by 1 after each recursive call. Thus, the algorithm terminates after at most n-1 recursive calls.

Correctness

- Observation I implies the first case.
- Observation II implies the second case.
- Observation III implies the third case.
- The theorem justifies the recursion.

Constructing the Realization Graph

Setting

- Let $S = (d_1 \ge d_2 \ge \cdots \ge d_n)$ be a graphic sequence.
- Let the vertices of S be v_1, v_2, \ldots, v_n where the degree of v_i should be d_i .

Construction outline

- Initially there are no edges in the graph.
- In each round
 - * Let d be the degree of one of the highest degree vertices v_i .
 - * Let $v_{i_1}, v_{i_2}, \ldots, v_{i_d}$ be the next d vertices with the highest degrees.
 - * These vertices are the new neighbors of v_i .
 - * For all $1 \le j \le d$, add the edge (v_i, v_{i_i}) to the graph.
 - * Update the degree of v_i to be 0 and reduce the degrees of each one of v_{i_1}, \ldots, u_{i_d} by one.
- Terminate when the degree of all vertices is 0.

Initial sequence

• (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).

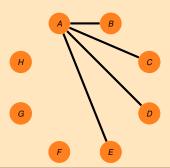
Tiebreaker rules

• Selecting the neighbors: by the alphabetical order from *A* to *H*.

Initial graph

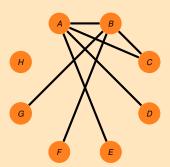
Round 1

- Sequence before: (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).
- New edges: A is connected to B, C, D, and E.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 3, 2, 1, 1, 2, 2, 1).



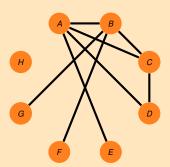
Round 2

- Sequence before: (A, B, C, D, E, F, G, H) = (0, 3, 2, 1, 1, 2, 2, 1).
- New edges: B is connected to C, F, and G.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 1, 1, 1, 1, 1, 1).



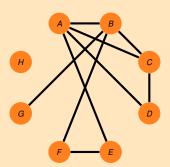
Round 3

- Sequence before: (A, B, C, D, E, F, G, H) = (0, 0, 1, 1, 1, 1, 1, 1).
- New edge: C is connected to D.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 1, 1, 1, 1).



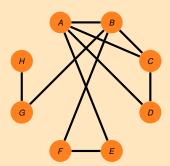
Round 4

- Sequence before: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 1, 1, 1, 1).
- New edge: *E* is connected to *F*.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 1, 1).



Round 5

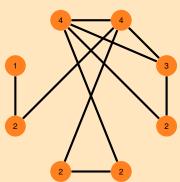
- Sequence before: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 1, 1).
- New edge: G is connected to H.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0).



The graphic sequence

(4, 4, 3, 2, 2, 2, 2, 1)

The realization graph



A Generalization

Algorithm

- Call the vertex that is selected in each round the **pivot** vertex.
- The algorithm works for any vertex being the pivot vertex as long as it is connected to the highest degree vertices.

Remarks

- Different selections of pivot vertices may lead to different non-isomorphic realizations.
- Different tiebreaker rules may lead to different non-isomorphic realizations.
- However, not all the graphs can be realized by this algorithm.

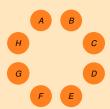
Initial sequence

• (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).

Tiebreaker rules

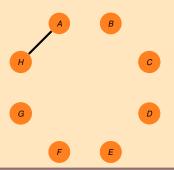
- Selecting the pivot: one of the smallest degree vertices by the alphabetical order from *H* to *A*.
- Selecting the neighbors: by the alphabetical order from A to H.

Initial graph



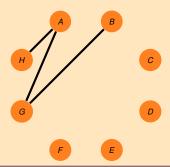
Round 1

- Sequence before: (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).
- New edge: the pivot H is connected to A.
- Sequence after: (A, B, C, D, E, F, G, H) = (3, 4, 3, 2, 2, 2, 2, 2, 0).



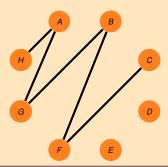
Round 2

- Sequence before: (A, B, C, D, E, F, G, H) = (3, 4, 3, 2, 2, 2, 2, 2, 0).
- New edges: the pivot G is connected to B and A.
- Sequence after: (A, B, C, D, E, F, G, H) = (2, 3, 3, 2, 2, 2, 0, 0).



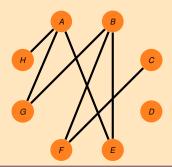
Round 3

- Sequence before: (A, B, C, D, E, F, G, H) = (2, 3, 3, 2, 2, 2, 0, 0).
- New edges: the pivot F is connected to B and C.
- Sequence after: (A, B, C, D, E, F, G, H) = (2, 2, 2, 2, 2, 2, 0, 0, 0).



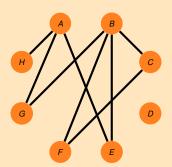
Round 4

- Sequence before: (A, B, C, D, E, F, G, H) = (2, 2, 2, 2, 2, 2, 0, 0, 0).
- New edges: the pivot E is connected to A and B.
- Sequence after: (A, B, C, D, E, F, G, H) = (1, 1, 2, 2, 0, 0, 0, 0).



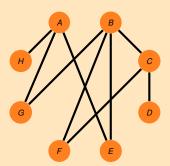
Round 5

- Sequence before: (A, B, C, D, E, F, G, H) = (1, 1, 2, 2, 0, 0, 0, 0).
- New edge: the pivot B is connected to C.
- Sequence after: (A, B, C, D, E, F, G, H) = (1, 0, 1, 2, 0, 0, 0, 0).



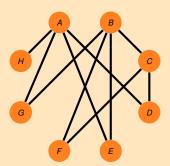
Round 6

- Sequence before: (A, B, C, D, E, F, G, H) = (1, 0, 1, 2, 0, 0, 0, 0).
- New edge: the pivot C is connected to D.
- Sequence after: (A, B, C, D, E, F, G, H) = (1, 0, 0, 1, 0, 0, 0, 0).



Round 7

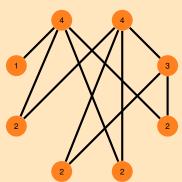
- Sequence before: (A, B, C, D, E, F, G, H) = (1, 0, 0, 1, 0, 0, 0, 0).
- New edge: the pivot D is connected to A.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0).



The graphic sequence

(4, 4, 3, 2, 2, 2, 2, 1)

The realization graph



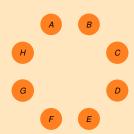
Initial sequence

• (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).

Tiebreaker rules

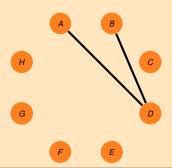
- Selecting the pivot: arbitrarily.
- Selecting the neighbors: by the alphabetical order from H to A.

Initial graph



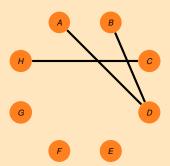
Round 1

- Sequence before: (A, B, C, D, E, F, G, H) = (4, 4, 3, 2, 2, 2, 2, 1).
- New edges: the pivot *D* is connected to *B* and *A*.
- Sequence after: (A, B, C, D, E, F, G, H) = (3, 3, 3, 0, 2, 2, 2, 1).



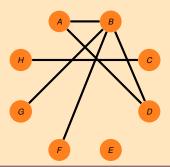
Round 2

- Sequence before: (A, B, C, D, E, F, G, H) = (3, 3, 3, 0, 2, 2, 2, 1).
- New edge: the pivot H is connected to C.
- Sequence after: (A, B, C, D, E, F, G, H) = (3, 3, 2, 0, 2, 2, 2, 0).



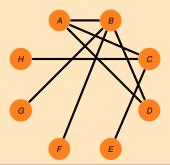
Round 3

- Sequence before: (A, B, C, D, E, F, G, H) = (3, 3, 2, 0, 2, 2, 2, 0).
- New edges: the pivot *B* is connected to *A*, *G*, and *F*.
- Sequence after: (A, B, C, D, E, F, G, H) = (2, 0, 2, 0, 2, 1, 1, 0).



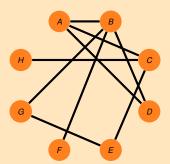
Round 4

- Sequence before: (A, B, C, D, E, F, G, H) = (2, 0, 2, 0, 2, 1, 1, 0).
- New edges: the pivot C is connected to E and A.
- Sequence after: (A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 1, 1, 1, 0).



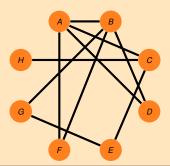
Round 5

- Sequence before: (A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 1, 1, 1, 0).
- New edge: the pivot E is connected to G.
- Sequence after: (A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 0, 1, 0, 0).



Round 6

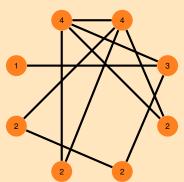
- Sequence before: (A, B, C, D, E, F, G, H) = (1, 0, 0, 0, 0, 1, 0, 0).
- New edge: the pivot A is connected to F.
- Sequence after: (A, B, C, D, E, F, G, H) = (0, 0, 0, 0, 0, 0, 0, 0).



The graphic sequence

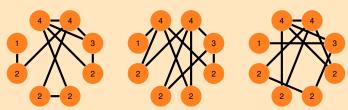
(4, 4, 3, 2, 2, 2, 2, 1)

The realization graph



The Three Realizations Are Not Isomorphic

The realizations



Two differences

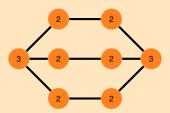
- The degree-1 vertex is connected to a degree-2 vertex in the left realization, to a degree-4 vertex in the middle realization, and to a degree-3 vertex in the right realization.
- The two degree-4 vertices are connected and share only one neighbor in the left realization, the two degree-4 vertices are not connected in the middle realization, and the two degree-4 vertices are connected and share two neighbors in the right realization.

Not All Graphs Can be Realized by the Algorithm

The degree sequence

(3,3,2,2,2,2,2,2)

An impossible realization



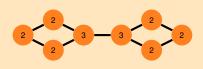
- If the first pivot is a degree-3 vertex, it must be connected to the other degree-3 vertex.
- If the first pivot is a degree-2 vertex, it must have the two degree-3 vertices as its neighbors.

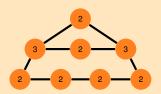
Not All Graphs Can be Realized by the Algorithm

The degree sequence

• (3, 3, 2, 2, 2, 2, 2, 2)

Two possible realizations





The two realizations are not isomorphic

• The two degree-3 vertices are neighbors in the left realization while they are not neighbors in the right realization.