Discrete Structures: Induction

Amotz Bar-Noy

Department of Computer and Information Science Brooklyn College

The Principle of Induction

The principle

- Let P_n be a statement about all positive integers n = 1, 2, 3, ...
- If the following hold:
 - * Induction base: P1 is true
 - * Inductive step: For all integers $k \ge 1$, if P_k is true then P_{k+1} is true
- Then P_n is true for all integers $n \ge 1$
- The assumption " P_k is true" is the induction hypothesis

Cartoons

- https://lowres.cartooncollections.com/dominos-chain_reactions-black_humor-black_ humour-gallows_humor-social-issues-CC39203_low.jpg
- http://crystalclearmaths.com/wp-content/uploads/Domino-Effect.png

Some Online Resources

• An introductory video in less than 4 minutes:

https://www.youtube.com/watch?v=bePpPFos0kE

Introduction in 15 minutes:

https://www.youtube.com/watch?v=ruBnYcLzVlU

Sum of the first n integers in 7 minutes:

 $\verb|https://www.youtube.com/watch?v=dMn5w4_ztSw&feature=youtu.be|\\$

Sum of the first n odd integers in 10 minutes:

https://www.youtube.com/watch?v=twA6vZgX_U4

• Sum of first n integers of the form 5k - 1 in 6 minutes:

https://www.youtube.com/watch?v=IFgna5F0kW8

• $6^n + 4$ is divisible by 5 in 6 minutes:

https://youtu.be/MpjkLf7lfRA

Introduction in 8 minutes (from 11:25 to 20:04):

https://youtu.be/OUqID8C9RvE?list=PLZzHxk_TPOStqPtqRZ6KzmkUQBQ8TSWVX

Sum of First n Positive Integers

An identity

$$\sum_{i=1}^{n} i = 1 + 2 + \cdots + (n-1) + n = \frac{n(n+1)}{2}$$

An equivalent identity

$$\sum_{i=1}^{n-1} i = 1 + 2 + \dots + (n-2) + (n-1) = \frac{(n-1)n}{2}$$

Correctness for Small n

$$1 = 1 = \frac{1 \cdot 2}{2}$$

$$1 + 2 = 3 = \frac{2 \cdot 3}{2}$$

$$1 + 2 + 3 = 6 = \frac{3 \cdot 4}{2}$$

$$1 + 2 + 3 + 4 = 10 = \frac{4 \cdot 5}{2}$$

$$1 + 2 + 3 + 4 + 5 = 15 = \frac{5 \cdot 6}{2}$$

$$1 + 2 + 3 + 4 + 5 + 6 = 21 = \frac{6 \cdot 7}{2}$$

$$1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 = \frac{7 \cdot 8}{2}$$

$$1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 = \frac{8 \cdot 9}{2}$$

Notations

•
$$L(n) = \sum_{i=1}^{n} i = 1 + 2 + \cdots + (n-1) + n$$

•
$$R(n) = \frac{n(n+1)}{2}$$

The induction base: n = 1

•
$$L(1) = R(1)$$
, because $L(1) = 1$ and $R(1) = \frac{1 \cdot 2}{2} = 1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^{k} i = 1 + 2 + \dots + (k-1) + k = \frac{k(k+1)}{2}$$

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 1 + 2 + \dots + k + (k+1)$$

$$= L(k) + (k+1)$$

$$= R(k) + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+2)(k+1)}{2}$$

$$= \frac{(k+1)((k+1)+1)}{2}$$

$$= R(k+1)$$

Another Proof

Idea

• Prove that 2L(n) = 2R(n) implying L(n) = R(n)

Example

$$L(4) = 1 + 2 + 3 + 4$$

$$L(4) = 4 + 3 + 2 + 1$$

$$2L(4) = 5 + 5 + 5 + 5$$

$$2L(4) = 4 \cdot 5 = 20$$

$$L(4) = 20/2 = 10$$

$$R(4) = \frac{4 \cdot 5}{2} = 10$$

Another Proof

The General Case

$$L(n) = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n$$

$$L(n) = n + (n-1) + (n-2) + \dots + 3 + 2 + 1$$

$$2L(n) = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

$$2L(n) = n(n+1)$$

$$L(n) = \frac{n(n+1)}{2} = R(n)$$

A proof without words

• https://i.stack.imgur.com/yerzW.png

Sum of First *n* Even Positive Integers

Identity

$$\sum_{i=1}^{n} (2i) = 2 + 4 + \dots + 2(n-1) + 2n = n(n+1)$$

Correctness for small n

$$2 = 2 = 1 \cdot 2$$

$$2+4 = 6 = 2 \cdot 3$$

$$2+4+6 = 12 = 3 \cdot 4$$

$$2+4+6+8 = 20 = 4 \cdot 5$$

$$2+4+6+8+10 = 30 = 5 \cdot 6$$

$$2+4+6+8+10+12 = 42 = 6 \cdot 7$$

$$2+4+6+8+10+12+14 = 56 = 7 \cdot 8$$

$$2+4+6+8+10+12+14+16 = 72 = 8 \cdot 9$$

$$2+4+6+8+19+12+14+16+18 = 90 = 9 \cdot 10$$

$$2+4+6+8+10+12+14+16+18+20 = 110 = 10 \cdot 11$$

Sum of First n Even Positive Integers

Identity

$$\sum_{i=1}^{n} (2i) = 2 + 4 + \cdots + 2(n-1) + 2n = n(n+1)$$

Proof by reduction

$$\sum_{i=1}^{n} (2i) = 2+4+\cdots+2(n-1)+2n$$

$$= 2(1+2+\cdots+(n-1)+n)$$

$$= 2 \cdot \left(\frac{n(n+1)}{2}\right)$$

$$= n(n+1)$$

Notations

- $L(n) = \sum_{i=1}^{n} (2i) = 2 + 4 + \cdots + 2(n-1) + 2n$
- R(n) = n(n+1)

The induction base: n = 1

• L(1) = R(1), because L(1) = 2 and $R(1) = 1 \cdot 2 = 2$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^{k} (2i) = 2 + 4 + \cdots + 2(k-1) + 2k = k(k+1)$$

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 2+4+\cdots+2k+2(k+1)$$

$$= L(k)+2(k+1)$$

$$= R(k)+2(k+1)$$

$$= k(k+1)+2(k+1)$$

$$= (k+2)(k+1)$$

$$= (k+1)(k+2)$$

$$= R(k+1)$$

Sum of First n Odd Positive Integers

Identity

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + 5 + \dots + (2n-3) + (2n-1) = n^{2}$$

Correctness for small n

Sum of First n Odd Positive Integers

Identity

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + \dots + (2n-3) + (2n-1) = n^{2}$$

Proof by reduction

$$\sum_{i=1}^{n} (2i-1) = \sum_{i=1}^{n} (2i) - \sum_{i=1}^{n} 1$$

$$= n(n+1) - n$$

$$= n^{2} + n - n$$

$$= n^{2}$$

Visual proofs

- https://www.youtube.com/watch?v=IJ0EQCkJCTc
- https://www.youtube.com/watch?v=ZeEOgbLo0Rg
- https://www.youtube.com/watch?v=x3qfFBNRRDg&list=PLZh9gzIvXQUubr38YfIlul9j7_54hXZy_
 - https://www.youtube.com/watch?v=jq5AYCgkciE

Notations

- $L(n) = \sum_{i=1}^{n} (2i-1) = 1 + 3 + \cdots + (2n-3) + (2n-1)$
- $R(n) = n^2$

The induction base: n = 1

• L(1) = R(1), because L(1) = 1 and $R(1) = 1^2 = 1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^{k} (2i-1) = 1 + 3 + \dots + (2k-3) + (2k-1) = k^{2}$$

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 1+3+\cdots+(2k-1)+(2k+1)$$

$$= L(k)+(2k+1)$$

$$= R(k)+(2k+1)$$

$$= k^2+(2k+1)$$

$$= (k+1)^2$$

$$= R(k+1)$$

Sum of the First 2n Odd Positive Integers

Identity

 The sum of the first n odd integers is 1/3 the sum of the next n odd integers:

$$\frac{\sum_{i=1}^{n} (2i-1)}{\sum_{i=n+1}^{2n} (2i-1)} = \frac{1+3+\cdots+(2n-1)}{(2n+1)+(2n+3)+\cdots+(4n-1)} = \frac{1}{3}$$

Proof by reduction

$$\sum_{i=n+1}^{2n} (2i-1) = \sum_{i=1}^{2n} (2i-1) - \sum_{i=1}^{n} (2i-1)$$

$$= (2n)^2 - n^2 = 4n^2 - n^2 = 3n^2$$

$$= 3\sum_{i=1}^{n} (2i-1)$$

Visual Proofs

- https://youtu.be/MmOTqrtbtFQ?list=PLZh9gzIvXQUubr38YfIlul9j7_54hXZy_
- https://www.youtube.com/watch?v=fTBvVeURb30

Arithmetic Progressions

Definition

• A sequence a_1, a_2, \ldots, a_n is an arithmetic progression if $a_i - a_{i-1} = d$ for all $2 \le i \le n$ for some real number d

Example: $a_1 = 5$, d = 3, and n = 11

• 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35

Key observations

- Observation 1: $a_i = a_1 + (i-1)d$ for $1 \le i \le n$
- Observation 2: $a_i = a_n (n-i)d$ for $1 \le i \le n$

Example: $a_1 = 5$, d = 3, and n = 11

- Observation 1: $a_4 = a_1 + (4-1)d = 5 + 3 \cdot 3 = 5 + 9 = 14$
- Observation 2: $a_7 = a_{11} (11 7)d = 35 4 \cdot 3 = 35 12 = 23$

Arithmetic Progressions

Theorem

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_{n-1} + a_n = \frac{n(a_1 + a_n)}{2}$$

$$\frac{\sum_{i=1}^{n} a_i}{n} = \frac{a_1 + a_2 + \dots + a_{n-1} + a_n}{n} = \frac{a_1 + a_n}{2}$$

The theorem in words version I

 The sum of all the n numbers in an arithmetic progression of length n is the average between the first and the last numbers multiplied by n.

The theorem in words version II

• The average of all the *n* numbers in an arithmetic progression of length *n* is the average between the first and the last numbers.

Arithmetic Progressions: $a_1 = 5$, d = 3, and n = 11

Sequence

5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35

Sum of all numbers

$$5+8+11+14+17+20+23+26+29+32+35=220$$

Average of all numbers

$$220/11 = 20$$

Average of the first and the last numbers

$$(5+35)/2 = 40/2 = 20$$

Arithmetic Progressions

Theorem

$$\sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2}$$

Notation

• Define $S_n = a_1 + a_2 + \cdots + a_{n-1} + a_n$

Direct proof

$$S_n = a_1 + (a_1+d) + (a_1+2d) + \dots + (a_1+(n-2)d) + (a_1+(n-1)d)$$

$$S_n = a_n + (a_n-d) + (a_n-2d) + \dots + (a_n-(n-2)d) + (a_n-(n-1)d)$$

$$2S_n = n(a_1+a_n)$$

$$S_n = \frac{n(a_1 + a_n)}{2}$$

Notations

- $L(n) = \sum_{i=1}^{n} a_i = a_1 + a_2 + \cdots + a_{n-1} + a_n$
- $P(n) = \frac{n(a_1 + a_n)}{2}$

The induction base: n = 1

• L(1) = R(1), because $L(1) = a_1$ and $R(1) = \frac{1 \cdot (a_1 + a_1)}{2} = a_1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^k a_i = \frac{k(a_1 + a_k)}{2}$$

The inductive step: L(k+1) = R(k+1) for $k \ge 1$

$$L(k+1) = a_1 + a_2 + \dots + a_k + a_{k+1}$$

$$= L(k) + a_{k+1}$$

$$= R(k) + a_{k+1}$$

$$= \frac{k(a_1 + a_k)}{2} + a_{k+1}$$

$$= \frac{ka_1}{2} + \frac{ka_k}{2} + \frac{2a_{k+1}}{2}$$

$$= \frac{ka_1 + a_k}{2} + \frac{2a_{k+1} + (k-1)a_k}{2}$$

$$= \frac{ka_1 + (a_1 + (k-1)d)}{2} + \frac{2a_{k+1} + (k-1)(a_{k+1} - d)}{2}$$

$$= \frac{(k+1)a_1 + (k-1)d}{2} + \frac{(k+1)a_{k+1} - (k-1)d}{2}$$

$$= \frac{(k+1)(a_1 + a_{k+1})}{2}$$

$$= R(k+1)$$

Aruthmetic Progressions Special Cases

Sum of the first

2ⁿ vs. n²

Theorem

• $2^n > n^2$ for any integer $n \ge 5$

Why $n \ge 5$?

$$2^{1} = 2$$
 > $1 = 1^{2}$
 $2^{2} = 4$ = $4 = 2^{2}$
 $2^{3} = 8$ < $9 = 3^{2}$
 $2^{4} = 16$ = $16 = 4^{2}$
 $2^{5} = 32$ > $25 = 5^{2}$
 $2^{6} = 64$ > $36 = 6^{2}$

Other Induction Bases

- For any $m \ge 0$ the **induction base** could be P_m instead of P_1
- In this case, the induction is applied to n = m, m + 1, ...

$2^n > n^2$: Proof By Induction

The induction base for n = 5

$$2^5 = 32 > 25 = 5^2$$

The induction hypothesis for $k \ge 5$

• Assume that $2^k > k^2$

The inductive step for $k \ge 5$: prove that $2^{k+1} > (k+1)^2$

$$2^{k+1} = 2 \cdot 2^{k}$$

$$> 2k^{2} \qquad (* \text{ the induction hypothesis } *)$$

$$= k^{2} + k^{2}$$

$$\geq k^{2} + 5k \qquad (* \text{ because } k \geq 5 *)$$

$$> k^{2} + 2k + 1 \qquad (* \text{ because } 3k > 1 *)$$

$$= (k+1)^{2}$$

A Divisibility Theorem: Proof By Induction

Theorem

• n(n+1)(n+2) is divisible by 6 for $n \ge 1$

The induction base: for n = 1, 2, 3, 4, 5

$$1 \cdot 2 \cdot 3 = 6 = 1 \cdot 6$$

$$2\cdot 3\cdot 4=24\ =\ 4\cdot 6$$

$$3 \cdot 4 \cdot 5 = 60 = 10 \cdot 6$$

$$4 \cdot 5 \cdot 6 = 120 = 20 \cdot 6$$

$$5\cdot 6\cdot 7=210\ =\ 35\cdot 6$$

The induction hypothesis for $k \ge 1$

- Assume that k(k+1)(k+2) is divisible by 6
- That is, k(k+1)(k+2) = 6q for an integer q

A Divisibility Theorem: Proof By Induction

The inductive step for $k \ge 1$

$$(k+1)(k+2)(k+3) = k(k+1)(k+2) + 3(k+1)(k+2)$$
 (* algebra *)
 $= 6q + 3(k+1)(k+2)$ (* induction hypothesis *)
 $= 6q + 6\frac{(k+1)(k+2)}{2}$ (* algebra *)
 $= 6q + 6p$ (* either k + 1 or k + 2 is even *)
 $= 6(q+p)$ (* Q.E.D. *)

A Divisibility Theorem: Second Proof

Theorem

• n(n+1)(n+2) is divisible by 6 for $n \ge 1$

Proof

- n, n + 1, and n + 2 are three consecutive integers
- One of them must be divisible by 3
- One (could be the same integer) must be even and therefore is divisible by 2
- Therefore, the product of the three integers must be divisible by $6=3\cdot 2$

Another Divisibility Theorem

Theorem

• n(n+1)(n+2) is divisible by 24 for an even $n \ge 2$

Small Values of n

$$2 \cdot 3 \cdot 4 = 24 = 1 \cdot 24$$

 $4 \cdot 5 \cdot 6 = 120 = 5 \cdot 24$
 $6 \cdot 7 \cdot 8 = 336 = 14 \cdot 24$

Proof

- n, n+1, and n+2 are three consecutive integers
- One of them must be divisible by 3
- n and n + 2 are two consecutive even integers
- One of them must be divisible by 4 while the other is divisible by 2
- Therefore, the product of the three integers must be divisible by $24 = 3 \cdot 4 \cdot 2$

A Set of Size $n \ge 0$ Has 2^n Subsets

The 1 subset of $S = \emptyset$

Ø

The 2 subsets of $S = \{C\}$

 $\emptyset, \{C\}$

The 4 subsets of $S = \{C, R\}$

$$\emptyset, \{C\}, \{R\}, \{C, R\}$$

The 8 subsets of $S = \{C, R, B\}$

$$\emptyset, \{C\}, \{R\}, \{B\}, \{C, R\}, \{C, B\}, \{R, B\}, \{C, R, B\}$$

The 16 subsets of $S = \{C, R, B, G\}$

$$\emptyset, \{C\}, \{R\}, \{B\}, \{C, R\}, \{C, B\}, \{R, B\}, \{C, R, B\}$$

 $G, \{C, G\}, \{R, G\}, \{B, G\}, \{C, R, G\}, \{C, B, G\}, \{R, B, G\}, \{C, R, B, G\}\}$

A Set of Size $n \ge 0$ Has 2^n Subsets

Proof

By induction on the size of the set

The induction base for n = 0 and n = 1

- The only subset of the empty set is the empty set and $2^0 = 1$
- The empty set and the entire set are the only subsets of a set of size 1 and $2^n = 2^1 = 2$

The induction hypothesis for $k \ge 1$

Any set of size k has 2^k subsets

Notations

- Let $S = \{s_1, s_2, ..., s_k, s_{k+1}\}$ be a set of size k + 1
- Let $S' = \{s_1, s_2, \dots, s_k\}$ be the subset of S containing all of its members except s_{k+1}

A Set of Size $n \ge 0$ Has 2^n Subsets

The inductive step for $k \ge 1$: prove that S has 2^{k+1} subsets

- By the induction hypothesis, S' has 2^k subsets all of them are also subsets of S
- Let R be a subset of S that is not a subset of S'
 - * It follows that $s_{k+1} \in R$ and that $R' = R \setminus \{s_{k+1}\}$ is a subset of S'
- Let R' be a subset of S'
 - * Then, $R = R' \cup \{s_{k+1}\}$ is a subset of S that is not a subset of S'
- The above two arguments establishes a **one-to-one mapping** from the set of all the subsets that contain s_{k+1} to the set of all the subsets that do not contain s_{k+1}
- Therefore, there are also 2^k subsets of S that contain s_{k+1}
- Since a subset of S either contains s_{k+1} or does not contain s_{k+1} , it follows that the number of subsets of S is $2^k + 2^k = 2^{k+1}$

Example: $S = \{C, R, B, G, M\}$

Matching the 16 subsets without *M* to the 16 subsets with *M*

Ø	\longleftrightarrow	{ M }	{ R , B }	\longleftrightarrow	{ R , B , M }
{ <i>C</i> }	\longleftrightarrow	$\{{\color{red} {\color{red} {\color{blue} {\color{b} {\color{blue} {\color{b} {\color{b} {\color{b}} {\color{b} {\color{b} {\color{b}} {\color{b} {} {\color{b} {\color{b} {\color{b} {\color{b} {\color{b} {\color{b} {\color{b} {\color{b} {\color{b} {} {$	{ R , G }	\longleftrightarrow	$\{R, G, M\}$
{ R }	\longleftrightarrow	$\{R,M\}$	{ B , G }	\longleftrightarrow	$\{B,G,M\}$
{ <i>B</i> }	\longleftrightarrow	$\{B,M\}$	$\{C, R, B\}$	\longleftrightarrow	$\{C, R, B, M\}$
{ <i>G</i> }	\longleftrightarrow	$\{G,M\}$	$\{C, R, G\}$	\longleftrightarrow	$\{C, R, G, M\}$
$\{{\color{red} {\it C}},{\color{blue} {\it R}}\}$	\longleftrightarrow	$\{C, R, M\}$	$\{C, B, G\}$	\longleftrightarrow	$\{C, B, G, M\}$
$\{{\color{red} {\it C}},{\color{blue} {\it B}}\}$	\longleftrightarrow	$\{{\color{red} {\color{blue} {C}}}, {\color{blue} {\color{blue} {B}}}, {\color{blue} {\color{blue} {M}}}\}$	$\{R, B, G\}$	\longleftrightarrow	$\{R, B, G, M\}$
{ C , G }	\longleftrightarrow	$\{{\color{red} {\color{blue} {C}}},{\color{blue} {\color{blue} {G}}},{\color{blue} {\color{blue} {M}}}\}$	$\{C, R, B, G\}$	\longleftrightarrow	$\{C, R, B, G, M\}$

Geometric Progressions

Definition

• A sequence a_1, a_2, \ldots, a_n is a **geometric progression** with a common positive ratio q > 0 if $a_i = qa_{i-1}$ for all $2 \le i \le n$

Simplifying assumptions

- Set $a_1 = q$ and as a result the sequence becomes q^1, q^2, \dots, q^n
- Add $a_0 = 1 = q^0$ to the beginning of the sequence and as a result the sequence becomes

$$q^0, q^1, q^2, \ldots, q^n$$

Theorem

For a real number q > 0 and $q \neq 1$

$$\sum_{i=0}^{n-1} q^i = 1 + q + \dots + q^{n-2} + q^{n-1} = \frac{q^n - 1}{q - 1}$$

Proof By Induction

Notations

•
$$L(n) = 1 + q + \cdots + q^{n-2} + q^{n-1}$$

•
$$R(n) = \frac{q^n - 1}{q - 1}$$

The Induction base: n = 1

•
$$L(1) = R(1)$$
, because $L(1) = 1$ and $R(1) = \frac{q^1 - 1}{q - 1} = 1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=0}^{k-1} q^i = 1 + q + \dots + q^{k-2} + q^{k-1} = \frac{q^k - 1}{q - 1}$$

Proof By Induction

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 1 + q + \dots + q^{k-1} + q^k$$

$$= L(k) + q^k$$

$$= R(k) + q^k$$

$$= \frac{q^k - 1}{q - 1} + q^k$$

$$= \frac{(q^k - 1) + ((q - 1)q^k)}{q - 1}$$

$$= \frac{(q^k - 1) + (q^{k+1} - q^k)}{q - 1}$$

$$= \frac{q^{k+1} - 1}{q - 1}$$

$$= R(k + 1)$$

Another proof

Theorem

For a real number q > 0 and $q \neq 1$

$$\sum_{i=0}^{n-1} q^i = 1 + q + \dots + q^{n-2} + q^{n-1} = \frac{q^n - 1}{q - 1}$$

Proof

$$(q-1)\sum_{i=0}^{n-1}q^{i} = q\sum_{i=0}^{n-1}q^{i} - \sum_{i=0}^{n-1}q^{i}$$

$$= (q+q^{2}+\cdots+q^{n-1}+q^{n}) - (1+q+\cdots+q^{n-2}+q^{n-1})$$

$$= q^{n}-1$$

Geometric Progressions

Corollary

For a real number q > 0 and $q \neq 1$

$$\sum_{i=1}^{n-1} q^i = q + \dots + q^{n-2} + q^{n-1} = \frac{q^n - q}{q-1}$$

Proof

$$\sum_{i=1}^{n-1} q^{i} = \sum_{i=0}^{n-1} q^{i} - 1$$

$$= \frac{q^{n} - 1}{q - 1} - \frac{q - 1}{q - 1}$$

$$= \frac{q^{n} - q}{q - 1}$$

Geometric Progressions with q=2

Identity

$$\sum_{i=0}^{n-1} 2^{i} = 1 + 2 + 4 + \dots + 2^{n-1}$$
$$= \frac{2^{n} - 1}{2 - 1} = 2^{n} - 1$$

Small n

$$1 = 1 = 2^{1} - 1$$

$$1 + 2 = 3 = 2^{2} - 1$$

$$1 + 2 + 4 = 7 = 2^{3} - 1$$

$$1 + 2 + 4 + 8 = 15 = 2^{4} - 1$$

$$1 + 2 + 4 + 8 + 16 = 31 = 2^{5} - 1$$

$$1 + 2 + 4 + 8 + 16 + 32 = 63 = 2^{6} - 1$$

Geometric Progressions with q = 3

Identity

$$\sum_{i=0}^{n-1} 3^{i} = 1 + 3 + 9 + \dots + 3^{n-1}$$
$$= \frac{3^{n} - 1}{3 - 1} = \frac{3^{n} - 1}{2}$$

Small n

$$1 = 1 = \frac{3^{1} - 1}{2} = \frac{3 - 1}{2}$$

$$1 + 3 = 4 = \frac{3^{2} - 1}{2} = \frac{9 - 1}{2}$$

$$1 + 3 + 9 = 13 = \frac{3^{3} - 1}{2} = \frac{27 - 1}{2}$$

$$1 + 3 + 9 + 27 = 40 = \frac{3^{4} - 1}{2} = \frac{81 - 1}{2}$$

$$1 + 3 + 9 + 27 + 81 = 121 = \frac{3^{5} - 1}{2} = \frac{243 - 1}{2}$$

Geometric Progressions Visual Proofs

- q = 3
 - https://www.youtube.com/watch?v=9IAm75UY2U8
- q = 4
 - https://www.youtube.com/watch?v=yTpzDEDP090&list=PLZh9gzIvXQUsgw8W5TUVDtF0q4jEJ3iaw
- q = 7 and all integers larger than 3
 - https://www.youtube.com/watch?v=1wIdJxSfUz4&list=PLZh9gzIvXQUsgw8W5TUVDtF0q4jEJ3iaw
- q = 8
 - https://www.youtube.com/watch?v=vcO5pa7iZOU
- q = 9
 - https://www.youtube.com/watch?v=Ch7GFdsc9pQ

Geometric Progressions for Large *q*

First approximation: large q

$$\sum_{i=0}^{n-1} q^{i} = \frac{q^{n} - 1}{q - 1}$$

$$= \frac{q^{n}}{q - 1} - \frac{1}{q - 1}$$

$$\approx \frac{q^{n}}{q - 1}$$

Second approximation: very large q

$$\sum_{i=0}^{n-1} q^i \approx \frac{q^n}{q-1} \approx \frac{q^n}{q} = q^{n-1}$$

Another Version of the Identity for the Sum

Theorem

For a real number q > 0 and $q \neq 1$

$$\sum_{i=0}^{n-1} q^i = 1 + q + \dots + q^{n-1} = \frac{1 - q^n}{1 - q}$$

Proof

$$\sum_{i=0}^{n-1} q^{i} = \frac{q^{n} - 1}{q - 1}$$

$$= \frac{(-1)(q^{n} - 1)}{(-1)(q - 1)}$$

$$= \frac{1 - q^{n}}{1 - q}$$

Another Version of the Identity for the Sum

Corollary

For a real number q > 0 and $q \neq 1$

$$\sum_{i=1}^{n-1} q^i = q + q^2 + \dots + q^{n-1} = \frac{q - q^n}{1 - q}$$

Proof

$$\sum_{i=1}^{n-1} q^{i} = \frac{q^{n} - q}{q - 1}$$

$$= \frac{(-1)(q^{n} - q)}{(-1)(q - 1)}$$

$$= \frac{q - q^{n}}{1 - q}$$

Which Identity To Use?

The two identities

$$\sum_{i=0}^{n-1} q^i = 1 + q + \dots + q^{n-1} = \frac{q^n - 1}{q - 1}$$
 (1)

$$\sum_{i=0}^{n-1} q^i = 1 + q + \dots + q^{n-1} = \frac{1 - q^n}{1 - q}$$
 (2)

Avoid negative numbers

- Use the first when q > 1 so both the numerator and the denominator are positive
- Use the second when q < 1 so both the numerator and the denominator are positive

Geometric Progressions with $q=\frac{1}{2}$

Identity

$$\sum_{i=0}^{n-1} \left(\frac{1}{2}\right)^{i} = 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$$

$$= \frac{1 - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$= 2\left(1 - \left(\frac{1}{2}\right)^{n}\right) = 2 - \frac{1}{2^{n-1}}$$

Small n

$$1 = 2 - \frac{1}{1} = 1$$

$$1 + \frac{1}{2} = 2 - \frac{1}{2} = \frac{3}{2}$$

$$1 + \frac{1}{2} + \frac{1}{4} = 2 - \frac{1}{4} = \frac{7}{4}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{9} = 2 - \frac{1}{9} = \frac{15}{9}$$

Geometric Progressions with $q=\frac{2}{3}$

Identity

$$\sum_{i=0}^{n-1} \left(\frac{2}{3}\right)^{i} = 1 + \frac{2}{3} + \frac{4}{9} + \dots + \frac{2^{n-1}}{3^{n-1}}$$

$$= \frac{1 - \left(\frac{2}{3}\right)^{n}}{1 - \frac{2}{3}}$$

$$= 3\left(1 - \left(\frac{2}{3}\right)^{n}\right)$$

$$= 3 - \frac{2^{n}}{3^{n-1}}$$

Geometric Progressions with $q = \frac{k-1}{k}$

Identity

$$\sum_{i=0}^{n-1} \left(\frac{k-1}{k} \right)^{i} = 1 + \frac{k-1}{k} + \frac{(k-1)^{2}}{k^{2}} + \dots + \frac{(k-1)^{n-1}}{k^{n-1}}$$

$$= \frac{1 - \left(\frac{k-1}{k} \right)^{n}}{1 - \frac{k-1}{k}}$$

$$= k \left(1 - \left(\frac{k-1}{k} \right)^{n} \right)$$

$$= k - \frac{(k-1)^{n}}{k^{n-1}}$$

Geometric Progressions with $q=\frac{1}{2}$

Identity

$$\sum_{i=1}^{n-1} \left(\frac{1}{2}\right)^{i} = \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}}$$

$$= \frac{\frac{1}{2} - \left(\frac{1}{2}\right)^{n}}{1 - \frac{1}{2}}$$

$$= 2\left(\frac{1}{2} - \left(\frac{1}{2}\right)^{n}\right) = 1 - \frac{1}{2^{n-1}}$$

Small numbers

$$\frac{1}{2} = 1 - \frac{1}{2} = \frac{1}{2}$$

$$\frac{1}{2} + \frac{1}{4} = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 1 - \frac{1}{8} = \frac{7}{8}$$

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = 1 - \frac{1}{16} = \frac{15}{16}$$

Geometric Progressions with $q=\frac{1}{3}$

Identity

$$\sum_{i=1}^{n-1} \left(\frac{1}{3}\right)^{i} = \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^{n-1}}$$

$$= \frac{\frac{1}{3} - \left(\frac{1}{3}\right)^{n}}{1 - \frac{1}{3}}$$

$$= \frac{3}{2} \left(\frac{1}{3} - \left(\frac{1}{3}\right)^{n}\right)$$

$$= \frac{1}{2} - \frac{1}{3^{n-1}}$$

Geometric Progressions with $q=rac{1}{k}$

Identity

$$\sum_{i=1}^{n-1} \left(\frac{1}{k}\right)^{i} = \frac{1}{k} + \frac{1}{k^{2}} + \dots + \frac{1}{k^{n-1}}$$

$$= \frac{\frac{1}{k} - \left(\frac{1}{k}\right)^{n}}{1 - \frac{1}{k}}$$

$$= \frac{k}{k-1} \left(\frac{1}{k} - \left(\frac{1}{k}\right)^{n}\right)$$

$$= \frac{1}{k-1} - \frac{1}{k^{n-1}}$$

Infinite Geometric Progressions with 0 < q < 1

Theorem

$$\sum_{i=0}^{\infty} q^{i} = 1 + q + q^{2} + \dots = \frac{1}{1-q}$$

$$\sum_{i=0}^{\infty} q^{i} = q + q^{2} + q^{3} + \dots = \frac{q}{1-q}$$

Proof sketch

• $q^n \to 0$ when $n \to \infty$ and therefore $q^{\infty} = 0$

$$\sum_{i=0}^{\infty} q^{i} = \frac{1 - q^{\infty}}{1 - q} = \frac{1 - 0}{1 - q} = \frac{1}{1 - q}$$

$$\sum_{i=1}^{\infty} q^{i} = \frac{q - q^{\infty}}{1 - q} = \frac{q - 0}{1 - q} = \frac{q}{1 - q}$$

Another proof

Theorem

For a real number 0 < q < 1

$$\sum_{i=0}^{\infty} q^{i} = 1 + q + q^{2} + \dots = \frac{1}{1-q}$$

Proof

$$(1-q)\sum_{i=0}^{\infty} q^{i} = \sum_{i=0}^{\infty} q^{i} - q \sum_{i=0}^{\infty} q^{i}$$

$$= (1+q+q^{2}+\cdots) - (q+q^{2}+q^{3}+\cdots)$$

$$= 1$$

Application

https://www.youtube.com/watch?v=3cNdM7W0V1Q

Infinite Geometric Progressions with $q = \frac{k-1}{k}$

Small k

•
$$\sum_{i=0}^{\infty} \left(\frac{2}{3}\right)^i = 1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \dots = \frac{1}{1-\frac{2}{3}} = 3$$

The general case

$$\sum_{i=0}^{\infty} \left(\frac{k-1}{k} \right)^{i} = 1 + \frac{k-1}{k} + \frac{(k-1)^{2}}{k^{2}} + \frac{(k-1)^{3}}{k^{3}} + \cdots$$
$$= \frac{1}{1 - \frac{k-1}{k}} = \frac{1}{\frac{1}{k}} = k$$

Infinite Geometric Progressions with $q=rac{1}{k}$

Small k

The general case

Infinite Geometric Progressions with $q=rac{1}{k}$

Visual Proofs

- q = 1/3:
 - * https://www.youtube.com/watch?v=vfEDDI3vfHU
 - * https://www.youtube.com/watch?v=RmTZmNrkqss
- q = 1/5:
 - * https://www.youtube.com/watch?v=yp7afEXYeC4
 - * https://www.youtube.com/watch?v=IguRXWNwrn8&t=47s
- q = 1/7: https://www.youtube.com/watch?v=6wgCoIzsaA8
- q = 1/9: https://www.youtube.com/watch?v=C4t_ps3VKvI
- $q = 1/2, 1/3, \dots, 1/9$: https://www.youtube.com/watch?v=JteQEN1XPyc

Infinite Geometric Progressions with $q = \frac{k}{2k+1}$

Small k

The general case

A visual proof

• $q=rac{4}{9}$: https://www.youtube.com/watch?v=woKVh51KPl4

Sum of Powers of First n Integers

Small exponents

$$\sum_{i=1}^{n} i^{0} = 1 + 1 + \dots + 1 = n \approx \frac{1}{1} n^{1}$$

$$\sum_{i=1}^{n} i^{1} = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2} n^{2}$$

$$\sum_{i=1}^{n} i^{2} = 1 + 4 + 9 + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3} n^{3}$$

$$\sum_{i=1}^{n} i^{3} = 1 + 8 + 27 + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4} \approx \frac{1}{4} n^{4}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\sum_{i=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

Sum of First n Squares

Identity

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Correctness for Small n

Sum of First n Squares

Visual proofs

- Proof 1: https://www.youtube.com/watch?v=-tJhH_k2LaM
- Proof 2: https://www.youtube.com/watch?v=UqVmocdLFGc
- Proof 3: https://www.youtube.com/watch?v=WidzHiUFWNA
- Proof 4: https://www.youtube.com/watch?v=a8j3sBrXchg
- Proof 5: https://www.youtube.com/watch?v=VYaEGvClg7Q

Proof by induction

https://www.youtube.com/watch?v=OI-nSvpZTpE

Another identity with a double summation

- $\sum_{i=1}^{n} i^2 = \sum_{i=1}^{n} \sum_{j=i}^{n} j$
- A visual proof: https://www.youtube.com/watch?v=Q-frL00t2m4

Sum of First n Squares: Proof By Induction

Notations

•
$$L(n) = 1 + 4 + 9 + \cdots + (n-1)^2 + n^2$$

•
$$R(n) = \frac{n(n+1)(2n+1)}{6}$$

The induction base: n = 1

•
$$L(1) = R(1)$$
, because $L(1) = 1^2 = 1$ and $R(1) = \frac{1 \cdot 2 \cdot 3}{6} = 1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^{k} i^2 = 1 + 4 + 9 + \dots + (k-1)^2 + k^2 = \frac{k(k+1)(2k+1)}{6}$$

Sum of First n Squares: Proof By Induction

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 1+4+9+\cdots+k^2+(k+1)^2$$

$$= L(k)+(k+1)^2$$

$$= R(k)+(k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6}+(k+1)^2$$

$$= \frac{(2k^3+3k^2+k)+(6k^2+12k+6)}{6}$$

$$= \frac{2k^3+9k^2+13k+6}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

$$= R(k+1)$$

Sum of First n Squares: Proof By Induction

The inductive step: L(k+1) = R(k+1) for $k \ge 1$

$$L(k+1) = 1+4+9+\cdots+k^{2}+(k+1)^{2}$$

$$= L(k)+(k+1)^{2}$$

$$= R(k)+(k+1)^{2}$$

$$= \frac{k(k+1)(2k+1)}{6}+(k+1)^{2} \qquad R(k+1) = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

$$= \frac{(k^{2}+k)(2k+1)}{6}+\frac{6(k+1)^{2}}{6} \qquad = \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(2k^{3}+3k^{2}+k)+(6k^{2}+12k+6)}{6} \qquad = \frac{(k^{2}+3k+2)(2k+3)}{6}$$

$$= \frac{2k^{3}+9k^{2}+13k+6}{6} \qquad = \frac{2k^{3}+9k^{2}+13k+6}{6}$$

Sum of First n Cubes

Identity

$$\sum_{i=1}^{n} i^3 = 1 + 8 + 27 + \dots + (n-1)^3 + n^3$$

$$= \frac{n^2(n+1)^2}{4}$$

$$= \left(\frac{n(n+1)}{2}\right)^2$$

$$= (1 + 2 + 3 + \dots + (n-1) + n)^2$$

Visual Proofs

- Proof 1: https://www.youtube.com/watch?v=YQLicI8R4Gs
- Proof 2: https://www.youtube.com/watch?v=Ye90PNqV9FA
- Proof 3: https://www.youtube.com/watch?v=NxOcT_VKQR0
- Proof 4: https://www.youtube.com/watch?v=jWpyrXYZNiI
- Proof 5: https://www.youtube.com/watch?v=d1yM6Rq7Tfw

Sum of First n Cubes

Correctness for Small n

$$= 1 = \frac{1^2 \cdot 2^2}{4} = \frac{4}{4}$$

$$= \qquad 9 \ = \ \frac{2^2 \cdot 3^2}{4} \ = \ \frac{36}{4}$$

$$1 + 8 + 27$$

$$= \quad 36 \ = \ \tfrac{3^2 \cdot 4^2}{4} \ = \ \tfrac{144}{4}$$

$$1 + 8 + 27 + 64$$

$$= 100 = \frac{4^2 \cdot 5^2}{4} = \frac{400}{4}$$

$$1 + 8 + 27 + 64 + 125$$

$$= 225 = \frac{5^2 \cdot 6^2}{4} = \frac{900}{4}$$

$$1 + 8 + 27 + 64 + 125 + 216$$

$$= 441 = \frac{6^2 \cdot 7^2}{4} = \frac{1764}{4}$$

$$1 + 8 + 27 + 64 + 125 + 216 + 343 = 784 = \frac{7^2 \cdot 8^2}{4} = \frac{3136}{4}$$

Sum of First n Cubes: Proof By Induction

Notations

•
$$L(n) = 1 + 8 + 27 + \cdots + (n-1)^3 + n^3$$

•
$$R(n) = \frac{n^2(n+1)^2}{4}$$

The induction base: n = 1

•
$$L(1) = R(1)$$
, because $L(1) = 1^3 = 1$ and $R(1) = \frac{1^2 \cdot 2^2}{4} = 1$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\sum_{i=1}^{k} i^3 = 1 + 8 + 27 + \dots + (k-1)^3 + k^3 = \frac{k^2(k+1)^2}{4}$$

Sum of First n Cubes: Proof By Induction

The inductive step:
$$L(k+1) = R(k+1)$$
 for $k \ge 1$

$$L(k+1) = 1+8+27+\cdots+k^{3}+(k+1)^{3}$$

$$= L(k)+(k+1)^{3}$$

$$= R(k)+(k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}$$

$$= \frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}$$

$$= \frac{(k+1)^{2}(k^{2}+4k+4)}{4}$$

$$= \frac{(k+1)^{2}(k+2)^{2}}{4}$$

$$= R(k+1)$$

Sum Of Fractions Identity

Identity

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

Correctness for Small n

$$\frac{1}{2} = \frac{1}{2} = 1 - \frac{1}{2}$$

$$\frac{1}{3} + \frac{1}{4} = \frac{7}{12} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

$$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{37}{60} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6}$$

$$\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} = \frac{533}{840} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8}$$

Sum Of Fractions Identity: Proof By Induction

Notations

•
$$L(n) = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}$$

•
$$R(n) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n}$$

The induction base: n = 1

•
$$L(1) = R(1)$$
, because $L(1) = \frac{1}{2}$ and $R(1) = 1 - \frac{1}{2} = \frac{1}{2}$

The induction hypothesis: L(k) = R(k) for $k \ge 1$

$$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k}$$

Sum Of Fractions Identity: Proof By Induction

The inductive step: L(k+1) = R(k+1) for $k \ge 1$

$$L(k+1) = \frac{1}{k+2} + \frac{1}{k+3} + \dots + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2}$$

$$= \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2} - \frac{1}{k+1}$$

$$= L(k) + \frac{1}{2k+1} + \left(\frac{1}{2k+2} - \frac{1}{k+1}\right)$$

$$= L(k) + \frac{1}{2k+1} - \frac{1}{2k+2}$$

$$= R(k) + \frac{1}{2k+1} - \frac{1}{2k+2}$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2k-1} - \frac{1}{2k} + \frac{1}{2k+1} - \frac{1}{2k+2}$$

$$= R(k+1)$$

Strong Induction

The strong version of the principle

- Setting: Let P_n be a statement about all positive integers n = 1, 2, 3, ...
- Induction base: P_1, \ldots, P_m are true for some $m \ge 1$
- Induction hypothesis: P_1, P_2, \dots, P_k are true for some $k \ge m$
- Inductive step: P_{k+1} is implied by a non-empty subset of statements from the set $\{P_1, P_2, \dots, P_k\}$

Online resource

 Strong induction: prime factorization and another example https://www.youtube.com/watch?v=g9YSizeBwqo&t=317s

Prime Factorization

Theorem

• Every positive integer $n \ge 2$ is a power of a prime number or the product of powers of prime numbers

Proof by Induction

- Induction base: $2 = 2^1$ is a power of a prime
- Induction hypothesis: Assume every positive integer less than n
 is a prime number or a product of powers of prime numbers
- Inductive step:
 - If n is a prime, then $n = n^1$ is a power of a prime
 - Otherwise, $n = m \cdot h$ is a product of two numbers m < n and h < n
 - By the induction hypothesis, both m and h are power of prime numbers or products of prime numbers
 - Therefore, $n = m \cdot h$ is also a power of a prime number or a product of powers of prime numbers

Prime Factorization

Example I

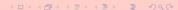
- $90 = 15 \cdot 6 = (3 \cdot 5)(2 \cdot 3)$
- Therefore by induction, $90 = 2 \cdot 3^2 \cdot 5$

Example II

- $216 = 12 \cdot 18 = (2^2 \cdot 3)(2 \cdot 3^2)$
- Therefore by induction, $216 = 2^3 \cdot 3^3$

Example III

- $\bullet 128 = 8 \cdot 16 = 2^3 \cdot 2^4$
- Therefore by induction, $128 = 2^7$



A Chocolate Bar Problem

Problem

- A chocolate bar consisting of $n \ge 1$ unit squares is arranged as an $m \times h$ rectangular grid $(n = m \cdot h)$
- The goal is to split the bar into n individual unit squares by breaking along the lines
- It is not allowed to break more than one rectangular piece at a time (e.g., by piling them together)
- What is the required number of breaks?

Online resource

https://www.youtube.com/watch?v=yftf3fs9k6s

A Chocolate Bar Problem

Claim

• For $0 \le k \le n-1$, after k breaks, there are k+1 pieces

Proof by induction sketch

- By induction on the number of breaks
- After k = 0 breaks there is one piece and indeed 1 = 0 + 1
- Before the k^{th} break, by the induction hypothesis, there were k = (k-1) + 1 pieces
- After the k^{th} break there are k+1 pieces because the break replaces one of the pieces with two pieces

Corollary

• After n-1 breaks there are n pieces. That is, the bar was split into n individuals unit squares

More Examples

Three problems

- L-shape tiles of size 3 can tile any square of size $2^n \times 2^n$ small squares with any missing square
- Number of steps needed to solve the tower of Hanoi problem
- Any partition of the circle with chords can be face-colored with two colors

Online resource

https://www.youtube.com/watch?v=5Hn8vUE3cBQ

Remark

All proofs imply an algorithm!

A False Divisibility Claim

Claim

• $n^3 - n + 1$ is divisible by 3

Wrong for small values of n

$$1^{3} - 1 + 1 = 1 = 3 \cdot 0 + 1$$

 $2^{3} - 2 + 1 = 7 = 3 \cdot 2 + 1$
 $3^{3} - 3 + 1 = 25 = 3 \cdot 8 + 1$
 $4^{3} - 4 + 1 = 61 = 3 \cdot 20 + 1$

Proof By Induction

The induction base

Skip the base case!

The induction hypothesis for k

• Assume that $k^3 - k + 1 = 3q$ is divisible by 3

The inductive step for k + 1

$$(k+1)^3 - (k+1) + 1 = k^3 + 3k^2 + 3k + 1 - k - 1 + 1$$

$$= (k^3 - k + 1) + (3k^2 + 3k)$$

$$= 3q + 3(k^2 + k)$$
 (* the induction hypothesis *)
$$= 3(q + k^2 + k)$$
 (* Q.E.D. *)

Correct Claim

Theorem

• $n^3 - n$ is divisible by 6

Small values of n

$$1^{3} - 1 = 0 = 6 \cdot 0$$

 $2^{3} - 2 = 6 = 6 \cdot 1$
 $3^{3} - 3 = 24 = 6 \cdot 4$
 $4^{3} - 4 = 60 = 6 \cdot 10$

Proof

- $n^3 n = n(n^2 1) = (n 1)n(n + 1)$
- That is, $n^3 n$ is a product of three consecutive integers
- One of them must be divisible by 3
- One (could be the same integer) must be even
- Therefore, the product of the three integers must be divisible by 6

6n = 0 for All Integers $n \ge 0$???

Proof by induction for $n \ge 0$

- Clearly, if n = 0, then 6n = 0
- Let n > 0 and assume that 6k = 0 for all $0 \le k < n$
- Let n = h + m for integers $0 \le h < n$ and $0 \le m < n$
- By the **strong** induction hypothesis, 6h = 0 and 6m = 0.
- Therefore 6n = 6(h + m) = 6h + 6m = 0 + 0 = 0
- Q.E.D.

Where is the Error?

- The proof fails for n = 1
- 1 cannot be expressed as a sum of two non-negative integers that are smaller than 1

All Horses in the World are of the Same Color

Proof by induction on the number of horses

- The base of the induction is that if there is one horse, then it is trivially the same color as itself
- Suppose that there are n horses, numbered 1 through n
- By the induction hypothesis, the n-1 horses 1 through n-1 are all of the same color
- Assume this color is black. In particular, horse 2 is black
- This means that the n − 1 horses 2 through n must be black by the induction hypothesis
- Therefore, all of the horses 1 through n are of the same color

Where is the Error?

• Proof fails for n = 2 in which horse 2 may be of a different color

Online resources

- https://www.youtube.com/watch?v=sCUg5DNCETI
- https://en.wikipedia.org/wiki/All_horses_are_the_same_color

Why Induction Works?

"Justification" with the Well-Ordering Principle

- Assume that there exists $j \ge 2$ such that P_j is **false**
- Let S be the set of **all** integers $h \ge 1$ for which P_h is **false**
 - * S is a non empty set that can contain infinite number of integers
- Let k + 1 be the **minimum** integer in S
 - * The Well-Ordering Principle
- $k \ge 1$ since by the **induction base** P_1 is true
- P_k is true and P_{k+1} is false by the minimality of k+1
- A contradiction to the inductive step

Notations

The induction variable

- The inductive step could be that P_{n+1} is implied by P_n and then P_n is the induction hypothesis
- The **inductive step** could be that P_n is implied by P_{n-1} and then P_{n-1} is the **induction hypothesis**