Discrete Structures: Logic

Amotz Bar-Noy

Department of Computer and Information Science Brooklyn College

Boolean Functions With One Variables

Definition

- Let x be a boolean variable: $x \in \{TRUE, FALSE\}$.
- A boolean function $F(x) \in \{\text{TRUE}, \text{FALSE}\}\)$ is determined by its values for each one of the two possible assignments to x:
 - * x is TRUE
 - * x is FALSE

Notation

• {T, F} for {TRUE,FALSE}

The four $(4 = 2^2)$ functions

- The IDENTITY function: F(x) = x
- The \mathcal{NOT} function: $F(x) = \neg x$
- The TRUE function: F(x) = TRUE
- The \mathcal{FALSE} function: F(x) = FALSE

Boolean Functions With Two Variables

Definition

- Let x and y be two boolean variables: $x, y \in \{TRUE, FALSE\}$.
- A boolean function $F(x, y) \in \{\text{TRUE}, \text{FALSE}\}\)$ is determined by its values for each of the four possible assignments to x and y:
 - * Both x and y are TRUE
 - * x is TRUE and y is FALSE
 - * x is FALSE and y is TRUE
 - * Both x and y are FALSE

Number of two-variable functions

• There are $16 = 2^4$ possible boolean functions with two variables.

Boolean Functions With *k* **Variables**

Counting the number of k-variable boolean functions

- Let x_1, x_2, \dots, x_k be k boolean variables:
 - * $(x_i \in \{\text{TRUE}, \text{FALSE}\})$ For all $1 \le i \le n$
- There are 2^k possible **TRUE** or **FALSE** assignments to the k variables x_1, x_2, \ldots, x_k .
- A boolean function $F(x_1, ..., x_k) \in \{\text{TRUE}, \text{FALSE}\}\)$ is determined by its values for each one of these 2^k assignments.
- Therefore, there are 2^{2^k} different k-variable bollean functions.

2^{2^k} grows very fast!

- 4, 16, 256, 65536, 4294967296, 2⁶⁴, 2¹²⁸...
- There are more than 4 billions 5-variable boolean functions.

Six "Trivial" Two Variable Functions

X	У	TRUE	FALSE	ID(X)	$\mathcal{ID}(\mathcal{Y})$	$\mathcal{NOT}(\mathcal{X})$	$ \mathcal{NOT}(\mathcal{Y}) $
		T	F	X	У	$\neg x$	$\neg y$
T	T	T	F	T	T	F	F
T	F	T	F	T	F	F	T
F	T	T	F	F	T	T	F
F	F	T	F	F	F	Τ	T

Six "Useful" Or "Popular" Two Variable Functions

X	У	AND	OR	$\mathcal{N}\mathcal{A}\mathcal{N}\mathcal{D}$	NOR	XOR	EQUIV
		$x \wedge y$	$x \vee y$	$\neg(x \wedge y)$	$\neg(x \lor y)$	$x \oplus y$	$x \equiv y$
T	T	T	T	F	F	F	T
T	F	F	T	T	F	T	F
F	T	F	T	T	F	T	F
F	F	F	F	Т	Т	F	T

Representing \mathcal{XOR} and \mathcal{EQUIV} with \mathcal{AND} and \mathcal{OR}

- \mathcal{XOR} : $(x \lor y) \land (\neg x \lor \neg y)$
- \mathcal{EQUIV} : $(x \wedge y) \vee (\neg x \wedge \neg y)$

Four Conditional Two Variable Functions

X	У	X-IMPLIES-Y	Y-IMPLIES-X
		$x \to y \equiv \neg x \lor y$	$y \to x \equiv x \lor \neg y$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

X	У		NOT(Y-IMPLIES-X)
		$\neg(x\to y)\equiv x\wedge\neg y$	$\neg(y\to x)\equiv \neg x\wedge y$
T	T	F	F
T	F	T	F
F	T	F	T
F	F	F	F

All 16 Two Variables Functions

Function (x, y)	(T,T)	(T,F)	(<i>F</i> , <i>T</i>)	(<i>F</i> , <i>F</i>)
TRUE	T	T	T	T
OR	T	T	T	F
Y-IMPLIES-X	T	T	F	T
ID(X)	T	T	F	F
\mathcal{X} $-IMPLIES$ $-\mathcal{Y}$	T	F	T	T
$\mathcal{I}\mathcal{D}(\mathcal{Y})$	T	F	T	F
EQUIV	T	F	F	T
AND	T	F	F	F
$\mathcal{N}\mathcal{A}\mathcal{N}\mathcal{D}$	F	T	T	T
\mathcal{XOR}	F	T	T	F
$\mathcal{NOT}(\mathcal{Y})$	F	T	F	T
NOT(X-IMPLIES-Y)	F	T	F	F
$\mathcal{NOT}(\mathcal{X})$	F	F	T	T
NOT(Y-IMPLIES-X)	F	F	T	F
NOR	F	F	F	T
FALSE	F	F	Ē	F

Laws of Logic: One Variable

The identity laws:

- $x \vee F \equiv x$
- $\bullet x \wedge T \equiv x$

The domination laws:

- $x \vee T \equiv T$
- $x \wedge F \equiv F$

The idempotent laws:

- $\bullet \ \ X \lor X \equiv X$
- $\bullet x \wedge x \equiv x$

The complement laws:

- $x \vee \neg x \equiv T$
- $x \land \neg x \equiv F$

The double negation law:

 $\neg \neg x \equiv x$

Laws of Logic: Two and Three Variables

The commutative Laws:

- $x \lor y \equiv y \lor x$
- $x \wedge y \equiv y \wedge x$

The associative laws:

- $(x \vee y) \vee z \equiv x \vee (y \vee z) \equiv (x \vee y \vee z)$
- $\bullet \ (x \wedge y) \wedge z \equiv x \wedge (y \wedge z) \equiv (x \wedge y \wedge z)$

The distributive laws:

- $x \lor (y \land z) \equiv (x \lor y) \land (x \lor z)$
- $\bullet \ \ X \wedge (y \vee z) \equiv (X \wedge y) \vee (X \wedge z)$

The absorption laws:

- $x \lor (x \land y) \equiv x$
- $\bullet x \wedge (x \vee y) \equiv x$

Boolean Formulas

Definition

- A boolean formula (expression, proposition) is a sequence, with or without parentheses, of one or two variable boolean functions.
- The value of a boolean formula is TRUE (T) or FALSE (F)
 depending on the TRUE/FALSE assignments to all the boolean
 variables that appear in the formula.

Evaluating a boolean formula

- A formula is processed in order from left to right.
- Negations are evaluted first.
- Priorities are given to parentheses.

Evaluating Boolean Formulas: Examples

$(\mathbf{x}\vee\mathbf{y})\wedge(\neg\mathbf{y}\wedge\mathbf{z})$

- The formula is **TRUE** only if both $(x \lor y)$ and $(\neg y \land z)$ are **TRUE**.
- $(\neg y \land z)$ is **TRUE** only if y is **FALSE** and z is **TRUE**.
- x must be **TRUE** to force $(x \lor y)$ to be **TRUE** when y is **FALSE**.
- In summary, the formula is TRUE only if x is TRUE, y is FALSE, and z is TRUE.

$$(\mathbf{x} \lor \mathbf{y}) \land (\neg \mathbf{y} \oplus \mathbf{z}) \land (\neg \mathbf{z} \equiv \mathbf{w})$$

- When all the variables are **TRUE** then the formula is **FALSE** because the sub-formula $(\neg z \equiv w)$ is **FALSE**.
- When all the variables except w are TRUE then the formula is TRUE because all the sub-formulas are TRUE.

Truth Tables

Definition

- A formula with k variables has a value for each one of the 2^k possible TRUE/FALSE assignments to its k variables.
- The truth table of a formula with k variables is a table with 2^k rows which gives the value of the formula for each one of the 2^k assignments
- The first k columns of the truth table represent the TRUE/FALSE assignments to the k variables.
- The last column of the truth table represents the value of the formula.
- Usually there are additional columns that represent the values of sub-formulas helping verifying the correctness of the last column.

Truth Table for: $(x \lor y) \land (\neg y \land z)$

X	у	Z	$(x \lor y)$	$\neg y$	$(\neg y \wedge z)$	formula
T	T	T	T	F	F	F
T	T	F	T	F	F	F
T	F	T	T	T	T	T
T	F	F	T	T	F	F
F	T	T	T	F	F	F
F	T	F	T	F	F	F
F	F	T	F	T	T	F
F	F	F	F	T	F	F

Truth Table for: $(x \lor y) \land (\neg y \oplus z) \land (\neg z \equiv w)$

X	У	Z	W	$(x \lor y)$	$(\neg y \oplus z)$	$(\neg z \equiv w)$	formula
T	T	Т	T	T	T	F	F
T	T	T	F	T	T	T	T
T	T	F	T	T	F	T	F
T	T	F	F	T	F	F	F
T	F	T	T	T	F	F	F
T	F	T	F	T	F	T	F
T	F	F	T	T	T	T	T
T	F	F	F	T	T	F	F
F	T	T	T	T	T	F	F
F	T	T	F	T	T	T	T
F	T	F	T	T	F	T	F
F	T	F	F	T	F	F	F
F	F	T	T	F	F	F	F
F	F	T	F	F	F	T	F
F	F	F	T	F	Т	T	F
F	F	F	F	F	T	F	F

Satisfiability

Definition

- A boolean formula is satisfied if there exists at least one TRUE/FALSE assignment to its variables for which the value of the formula is TRUE.
- Such assignments are the truth assignments of the formula.

Example: $(x \lor y) \land (\neg y \land z)$

• This formula is satisfied and it has only one truth assignments:

*
$$x = T$$
, $y = F$, and $z = T$

Example: $(x \lor y) \land (\neg y \oplus z) \land (\neg z \equiv w)$

- This formula is satisfied and has three truth assignments:
 - * x = T, y = T, z = T and w = F
 - * x = T, y = F, z = F and w = T
 - * x = F, y = T, z = T and w = F

Tautologies and Contradictions

Definitions

- A boolean formula is a tautology if its value is TRUE for any TRUE/FALSE assignment to its variables.
- A boolean formula is a contradiction if its value is FALSE for any TRUE/FALSE assignment to its variables.

Trivial examples

- $(x \vee \neg x)$ is a tautology.
- $(x \land \neg x)$ is a contradiction.

Observations

- A tautology is satisfied by all possible assignments to its variables and the entries in the last column of its truth table are all T.
- A contradiction is a non-satisfied formula and the entries in the last column of its truth table are all F.

A Tautology Example

Theorem

• $P \equiv x \vee \neg (x \wedge y)$ is a tautology.

Proof

- If x is TRUE then P is TRUE.
- If x is **FALSE** then $x \wedge y$ is **FALSE** implying that $\neg(x \wedge y)$ is **TRUE** implying that P is **TRUE**.
- It follows that P is always TRUE.

Truth table

X	У	$x \wedge y$	$\neg(x \wedge y)$	$x \vee \neg (x \wedge y)$
T	T	T	F	T
T	F	F	Т	T
F	T	F	Т	T
F	F	F	Т	T

A Contradiction Example

Theorem

• $P \equiv x \land \neg (x \lor y)$ is a contradiction.

Proof

- If x is **FALSE** then P is **FALSE**.
- If x is **TRUE** then $x \lor y$ is **TRUE** implying that $\neg(x \lor y)$ is **FALSE** implying that P is **FALSE**.
- It follows that P is always FALSE.

Truth table

X	у	$x \vee y$	$\neg(x \lor y)$	$x \wedge \neg (x \vee y)$
T	T	T	F	F
T	F	T	F	F
F	T	T	F	F
F	F	F	Т	F

Proving the Associative Laws Using Truth Tables

The \mathcal{AND} associative law

 $\bullet (x \wedge y) \wedge z \equiv x \wedge (y \wedge z)$

Proof

• The last columns in both truth tables are identical:

X	у	Z	$x \wedge y$	$(x \wedge y) \wedge z$
T	T	T	T	T
T	T	F	T	F
T	F	T	F	F
T	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

X	У	Z	<i>y</i> ∧ <i>z</i>	$X \wedge (y \wedge z)$
T	T	T	T	T
T	T	F	F	F
T	F	Т	F	F
T	F	F	F	F
F	Т	Т	T	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

Proving the Associative Laws Using Truth Tables

The \mathcal{OR} associative law

 $(x \vee y) \vee z \equiv x \vee (y \vee z)$

Proof

• The last columns in both truth tables are identical:

X	У	Z	$x \vee y$	$(x \lor y) \lor z$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	T	T
F	T	T	T	T
F	T	F	T	T
F	F	T	F	T
F	F	F	F	F

X	У	Z	$y \lor z$	$x \lor (y \lor z)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	T
F	Т	Т	T	T
F	T	F	T	T
F	F	T	T	T
F	F	F	F	F

The De Morgan's Laws

The two variables case

$$\neg(x \land y) \equiv \neg x \lor \neg y$$
$$\neg(x \lor y) \equiv \neg x \land \neg y$$

The three variables case

$$\neg(x \land y \land z) \equiv (\neg x) \lor (\neg y) \lor (\neg z)$$
$$\neg(x \lor y \lor z) \equiv (\neg x) \land (\neg y) \land (\neg z)$$

The four variables case

$$\neg(x \wedge y \wedge z \wedge w) \equiv (\neg x) \vee (\neg y) \vee (\neg z) \vee (\neg w) \neg(x \vee y \vee z \vee w) \equiv (\neg x) \wedge (\neg y) \wedge (\neg z) \wedge (\neg w)$$

The De Morgan's Laws

A "binary" world

- The outside is rainy (R) or sunny (S).
- The outside is cold (C) or hot (H).

Person I

- Alice does not leave the house if it is (rainy and cold) outside.
- Alice left the house: $\neg(\mathbf{R} \wedge \mathbf{C}) \equiv (\neg \mathbf{R} \vee \neg \mathbf{C}) \equiv (\mathbf{S} \vee \mathbf{H}).$
- It is sunny or hot outside.

Person II

- Bob does not leave the house if it is (rainy or cold) outside.
- Bob left the house: $\neg (\mathbf{R} \lor \mathbf{C}) \equiv (\neg \mathbf{R} \land \neg \mathbf{C}) \equiv (\mathbf{S} \land \mathbf{H}).$
- It is sunny and hot outside.

Proof with a Truth Table: $\neg(x \land y) \equiv \neg x \lor \neg y$

$$\neg(x \land y)$$

X	У	$x \wedge y$	$\neg(x \land y)$
T	T	T	F
T	F	F	T
F	T	F	T
F	F	F	T

$$\neg x \lor \neg y$$

X	У	$\neg x$	$\neg y$	$\neg x \lor \neg y$
T	T	F	F	F
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

Proof with a Truth Table: $\neg(x \lor y) \equiv \neg x \land \neg y$

$$\neg(x \lor y)$$

X	У	$x \vee y$	$\neg(x\vee y)$
T	Т	T	F
T	F	T	F
F	T	T	F
F	F	F	T

$$\neg x \land \neg y$$

X	У	$\neg x$	$\neg y$	$\neg x \wedge \neg y$
T	T	F	F	F
T	F	F	Т	F
F	T	T	F	F
F	F	T	T	T

Proof with a Truth Table: $\neg(x \land y \land z) \equiv \neg x \lor \neg y \lor \neg z$

$$\neg(x \land y \land z)$$

X	у	Z	$x \wedge y \wedge z$	$\neg(x \land y \land z)$
T	T	Т	T	F
T	T	F	F	T
T	F	T	F	T
T	F	F	F	T
F	T	T	F	T
F	T	F	F	T
F	F	T	F	T
F	F	F	F	T

$$\neg x \lor \neg y \lor \neg z$$

X	У	Z	$\neg x$	$\neg y$	$\neg z$	$\neg x \lor \neg y \lor \neg z$
T	T	T	F	F	F	F
T	T	F	F	F	T	T
T	F	T	F	T	F	T
T	F	F	F	T	T	T
F	T	T	T	F	F	T
F	T	F	T	F	T	T
F	F	T	T	T	F	T
F	F	F	T	T	T	T

Proof with a Truth Table: $\neg(x \lor y \lor z) \equiv \neg x \land \neg y \land \neg z$

$$\neg(x \lor y \lor z)$$

	Х	У	Z	$x \lor y \lor z$	$\neg(x \lor y \lor z)$
Γ	Т	Т	Т	T	F
Ī	Т	T	F	T	F
Γ	T	F	T	T	F
Γ	T	F	F	T	F
Γ	F	T	T	T	F
Γ	F	T	F	T	F
Γ	F	F	T	T	F
	F	F	F	F	T

$$\neg x \land \neg y \land \neg z$$

	Х	у	Z	$\neg x$	$\neg y$	$\neg z$	$\neg x \wedge \neg y \wedge \neg z$
П	Т	Т	T	F	F	F	F
	T	Т	F	F	F	T	F
П	T	F	T	F	T	F	F
	T	F	F	F	T	T	F
П	F	T	T	T	F	F	F
	F	T	F	T	F	T	F
	F	F	T	T	T	F	F
	F	F	F	T	T	T	T

The General De Morgan's Laws

Complement of Conjunctions = Disjunction of Complements

$$\left(\bigwedge_{i=1}^n x_i\right)' \equiv (x_1 \wedge x_2 \wedge \cdots \wedge x_n)' \equiv (x_1' \vee x_2' \vee \cdots \vee x_n') \equiv \bigvee_{i=1}^n x_i'$$

Complement of Disjunctions = Conjunction of Complements

$$\left(\bigvee_{i=1}^n x_i\right)' \equiv (x_1 \vee x_2 \vee \cdots \vee x_n)' \equiv (x_1' \wedge x_2' \wedge \cdots \wedge x_n') \equiv \bigwedge_{i=1}^n x_i'$$

The General De Morgan's Laws

Theorem

• Complement of Conjunctions \equiv Disjunction of Complements.

Proof

- Let $L = (x_1 \wedge x_2 \wedge \cdots \wedge x_n)'$ and $R = (x_1' \vee x_2' \vee \cdots \vee x_n')$
- Prove that L is TRUE if and only if R is TRUE

$$L \equiv \textbf{TRUE} \quad \Leftrightarrow \quad (x_1 \wedge x_2 \wedge \dots \wedge x_n)' \equiv \textbf{TRUE}$$

$$\Leftrightarrow \quad (x_1 \wedge x_2 \wedge \dots \wedge x_n) \equiv \textbf{FALSE}$$

$$\Leftrightarrow \quad (x_i \equiv \textbf{FALSE}) \text{ for at least one } i \in \{1, \dots, n\}$$

$$\Leftrightarrow \quad (x_i' \equiv \textbf{TRUE}) \text{ for at least one } i \in \{1, \dots, n\}$$

$$\Leftrightarrow \quad (x_1' \vee x_2' \vee \dots \vee x_n') \equiv \textbf{TRUE}$$

$$\Leftrightarrow \quad R \equiv \textbf{TRUE}$$

The General De Morgan's Laws

Theorem

• Complement of Disjunctions

Conjunction of Complements.

Proof

- Let $L = (x_1 \lor x_2 \lor \cdots \lor x_n)'$ and $R = (x_1' \land x_2' \land \cdots \land x_n')$
- Prove that L is TRUE if and only if R is TRUE

$$L \equiv \mathsf{TRUE} \quad \Leftrightarrow \quad (x_1 \vee x_2 \vee \cdots \vee x_n)' \equiv \mathsf{TRUE}$$

$$\Leftrightarrow \quad (x_1 \vee x_2 \vee \cdots \vee x_n) \equiv \mathsf{FALSE}$$

$$\Leftrightarrow \quad (x_i \equiv \mathsf{FALSE}) \text{ for all } i \in \{1, \dots, n\}$$

$$\Leftrightarrow \quad (x_i' \equiv \mathsf{TRUE}) \text{ for all } i \in \{1, \dots, n\}$$

$$\Leftrightarrow \quad (x_1' \wedge x_2' \wedge \cdots \wedge x_n') \equiv \mathsf{TRUE}$$

$$\Leftrightarrow \quad R \equiv \mathsf{TRUE}$$

Logic puzzles

The lady or the tiger puzzle

https://www.youtube.com/watch?v=eUYWXqk5Aqs

Knights and knaves

- https://www.youtube.com/watch?v=C6PeX4iKJbU
- A good introduction to propositional logic

Fork in the road

- https://www.youtube.com/watch?v=MsV3XRLxX6Q
- https://www.youtube.com/watch?v=F8s03KBjeY0

The Function \mathcal{IMPLY}

 $x \text{ implies } y \equiv \text{ if } x \text{ then } y$

X	у	$X \rightarrow Y$	$\neg x \lor y$
T	T	T	T
T	F	F	F
F	T	T	Т
F	F	T	T

\mathcal{IMPLY} for propositions P, Q

Conditional: $P \rightarrow Q$ is equivalent to **Contrapositive:** $\neg Q \rightarrow \neg P$

Inverse: $\neg P \rightarrow \neg Q$ is equivalent to **Converse:**

 $Q \rightarrow P$

If, Only If, and If and only If (iff)

The propositions P and Q

- P: "Passing".
- Q: "Good grades".

The sufficient condition

- Q → P: "You pass if you have good grades".
 - * $\mathcal{IMPLY}(T,T) = T$: "You pass with good grades".
 - * $\mathcal{IMPLY}(T,F) = F$: "You cannot fail with good grades".
 - * $\mathcal{IMPLY}(F,T) = T$: "You might pass with bad grades".
 - * $\mathcal{IMPLY}(F,F) = T$: "You might fail with bad grades"

The equivalent necessary condition

"You have good grades only if you pass".

If, Only If, and If and only If (iff)

The propositions P and Q

- P: "Passing".
- Q: "Good grades".

The necessary condition

- P → Q: "You pass only if you have good grades".
 - * $\mathcal{IMPLY}(T,T) = T$: "You might pass with good grades".
 - * $\mathcal{IMPLY}(T,F) = F$: "You cannot pass with bad grades".
 - * $\mathcal{IMPLY}(F,T) = T$: "You might fail with good grades".
 - * $\mathcal{IMPLY}(F,F) = T$: "You fail with bad grades".

The equivalent sufficient condition

"You have good grades if you pass".

If, Only If, and If and only If (iff)

The propositions P and Q

- P: "Passing".
- Q: "Good grades".

The necessary and sufficient condition

- $P \equiv Q$: "You pass if only if you have good grades".
 - * $\mathcal{EQUIV}(T,T) = T$: "You pass with good grades".
 - * $\mathcal{EQUIV}(T, F) = F$: "You cannot pass with bad grades".
 - * $\mathcal{EQUIV}(F,T) = F$: "You cannot fail with good grades".
 - * $\mathcal{EQUIV}(F,F) = T$: "You fail with bad grades".

Be Careful with Your Words!

Bad Defense Attorney

- Prosecutor: "If the defendants are guilty, then they had accomplices".
- Defense attorney: "This is not true!!"

What is the defense attorney claiming?

- P: "The defendants are guilty".
- Q: "The defendants had accomplices".
- Prosecutor: $P \rightarrow Q$.
- Defense attorney: P → Q is FALSE.

Conclusion

- $P \rightarrow Q$ is **FALSE** only when P is **TRUE** and Q is **FALSE**.
- P → Q is FALSE only when the defendants are guilty and they did not have accomplices.

Laws With Two Propositions

Notations

Let P and Q be boolean propositions.

IMPLY

- $P \rightarrow Q \equiv \neg Q \rightarrow \neg P$
- $\bullet \neg P \rightarrow \neg Q \equiv Q \rightarrow P$

EQUIV

$$\bullet \ (P \equiv Q) \equiv (\neg Q \equiv \neg P)$$

IMPLY and EQUIV

•
$$(P \rightarrow Q) \land (Q \rightarrow P) \equiv (P \equiv Q)$$

IMPLY and EQUIV

Theorem

Proof with truth tables

P	Q	P o Q	$Q \rightarrow P$	$(P \to Q) \land (Q \to P)$
T	T	T	Т	T
T	F	F	Т	F
F	T	T	F	F
F	F	T	Т	T

P	Q	$P \equiv Q$
T	T	T
T	F	F
F	T	F
F	F	T

Laws With Three Propositions

Notations:

• Let *P* and *Q* and *R* be three boolean propositions.

The \mathcal{IMPLY} and \mathcal{EQUIV} transitive laws

- $((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$
- $((P \equiv Q) \land (Q \equiv R)) \rightarrow (P \equiv R)$

The \mathcal{IMPLY} distributive laws

- $((P \rightarrow Q) \land (P \rightarrow R)) \equiv (P \rightarrow (Q \land R))$
- $((P \rightarrow Q) \lor (P \rightarrow R)) \equiv (P \rightarrow (Q \lor R))$
- $\bullet \ ((Q \to P) \land (R \to P)) \equiv ((Q \lor R) \to P)$
- $((Q \rightarrow P) \lor (R \rightarrow P)) \equiv ((Q \land R) \rightarrow P)$

Truth Tables: $((P \rightarrow Q) \land (P \rightarrow R)) \equiv (P \rightarrow (Q \land R))$

$$(P \rightarrow Q) \land (P \rightarrow R)$$

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$(P \rightarrow Q) \land (P \rightarrow R)$
T	T	T	T	Т	T
T	T	F	T	F	F
T	F	T	F	T	F
T	F	F	F	F	F
F	T	T	T	T	T
F	T	F	T	T	T
F	F	T	T	T	T
F	F	F	T	T	T

$$P \rightarrow (Q \wedge R)$$

P	Q	R	$Q \wedge R$	$P o (Q \wedge R)$
T	T	T	T	T
T	T	F	F	F
T	F	T	F	F
T	F	F	F	F
F	T	T	T	T
F	T	F	F	T
F	F	T	F	T
F	F	F	F	T

Truth Tables: $((P \rightarrow Q) \lor (P \rightarrow R)) \equiv (P \rightarrow (Q \lor R))$

$$(P \rightarrow Q) \lor (P \rightarrow R)$$

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$(P \to Q) \lor (P \to R)$
T	T	T	T	Т	T
T	T	F	T	F	T
T	F	T	F	T	T
T	F	F	F	F	F
F	T	T	T	T	T
F	T	F	T	T	T
F	F	T	T	T	T
F	F	F	T	Τ	T

$$P \rightarrow (Q \vee R)$$

	0	Q	R	$Q \vee R$	$P \rightarrow (Q \lor R)$
	Τ	T	T	T	T
	Τ	T	F	T	T
	Τ	F	T	T	T
	Τ	F	F	F	F
	=	T	T	T	T
	-	T	F	T	T
1	=	F	T	T	T
	=	F	F	F	T

Truth Tables: $((Q \rightarrow P) \land (R \rightarrow P)) \equiv ((Q \lor R) \rightarrow P)$

$$(Q \rightarrow P) \land (R \rightarrow P)$$

P	Q	R	$Q \rightarrow P$	$R \rightarrow P$	$(Q \rightarrow P) \land (R \rightarrow P)$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	T	T
F	T	T	F	F	F
F	T	F	F	T	F
F	F	T	T	F	F
F	F	F	T	T	T

$$(Q \lor R) \to P$$

P	Q	R	$Q \vee R$	$(Q \lor R) \to P$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	T
F	T	T	T	F
F	T	F	T	F
F	F	T	T	F
F	F	F	F	T

Truth Tables: $((Q \rightarrow P) \lor (R \rightarrow P)) \equiv ((Q \land R) \rightarrow P)$

$$(Q \rightarrow P) \lor (R \rightarrow P)$$

P	Q	R	$Q \rightarrow P$	$R \rightarrow P$	$(Q \rightarrow P) \lor (R \rightarrow P)$
T	T	T	T	Т	T
T	T	F	T	T	T
T	F	T	T	T	T
T	F	F	T	T	T
F	T	T	F	F	F
F	T	F	F	T	T
F	F	T	T	F	T
F	F	F	T	T	T

$$(Q \wedge R) \rightarrow P$$

	Р	Q	R	$Q \wedge R$	$(Q \wedge R) \rightarrow P$
П	T	Т	Т	T	T
	T	Т	F	F	T
П	Τ	F	T	F	T
	Τ	F	F	F	T
	F	Т	T	T	F
П	F	T	F	F	T
	F	F	T	F	T
	F	F	F	F	T

The $((P \rightarrow Q) \land (P \rightarrow R)) \equiv (P \rightarrow (Q \land R))$ law

A "binary" world

- The outside is (rainy or sunny) and (cold or hot).
- Alice does not leave the house if it is (rainy and cold) outside.

Notations

- P: "staying in the house".
- Q: "rainy outside".
- R: "cold outside".

- (If Alice stayed in the house then it is rainy outside) and (If Alice stayed in the house then it is cold outside).
- If Alice stayed in the house then it is (rainy and cold) outside.

The $((P \rightarrow Q) \lor (P \rightarrow R)) \equiv (P \rightarrow (Q \lor R))$ law

A "binary" world

- The outside is (rainy or sunny) and (cold or hot).
- Bob does not leave the house if it is (rainy or cold) outside.

Notations

- P: "staying in the house".
- Q: "rainy outside".
- R: "cold outside".

- (If Bob stayed in the house then it is rainy outside) or (If Bob stayed in the house then it is cold outside).
- If Bob stayed in the house then it is (rainy or cold) outside.

The $((Q \rightarrow P) \land (R \rightarrow P)) \equiv ((Q \lor R) \rightarrow P)$ law

A "binary" world

- The outside is (rainy or sunny) and (cold or hot).
- Alice does not leave the house if it is (rainy and cold) outside.

Notations

- P: "leaving the house".
- Q: "sunny outside".
- R: "hot outside".

- (If it is sunny outside then Alice will leave the house) and (If it is hot outside then Alice will leave the house).
- If it is (sunny or hot) outside then Alice will leave the house.

The $((Q \rightarrow P) \lor (R \rightarrow P)) \equiv ((Q \land R) \rightarrow P)$ law

A "binary" world

- The outside is (rainy or sunny) and (cold or hot).
- Bob does not leave the house if it is (rainy or cold) outside.

Notations

- P: "leaving the house".
- Q: "sunny outside".
- R: "hot outside".

- (If it is sunny outside then Bob will leave the house) or (If it is hot outside then Bob will leave the house).
- If it is (sunny and hot) outside then Bob will leave the house.

Online Resources

Why $x \rightarrow y$ is TRUE when x is FALSE?

- https://www.youtube.com/watch?v=XjEEEVXqCMo&feature=youtu.be
- https://www.youtube.com/watch?v=xaq9TEAORK4&feature=youtu.be

Necessary and Sufficient Conditions

- https://www.youtube.com/watch?v=QtMFyTV8jfg
- https://www.youtube.com/watch?v=KCMGWRoPuMY
- https://www.youtube.com/watch?v=FHeimgMWiog
- https://www.youtube.com/watch?v=OnbJ8S1Ainc
- https://www.youtube.com/watch?v=fq_DwgmIadw
- https://www.youtube.com/watch?v=ibjL90iY1d0

The Wason Selection task

https://www.youtube.com/watch?v=hzS3BOwvT4I

An Online Tutorial on Conditional Reasoning

Conditional reasoning and logical equivalence

```
https://www.khanacademy.org/test-prep/lsat/lsat-lessons/logic-toolbox-new/a/logic-toolbox--article--conditional-reasoning-logical-equivalence
```

• If X, then Y — Sufficiency and necessity

```
https://www.khanacademy.org/test-prep/lsat/lsat-lessons/logic-toolbox-new/a/logic-toolbox--article--if-x-then-y--sufficiency-and-necessity
```

The Logic of "If" vs. "Only if"

```
https://www.khanacademy.org/test-prep/lsat/lsat-lessons/logic-toolbox-new/a/logic-toolbox--if-and-only-if
```

A quick guide to conditional logic

```
https://www.khanacademy.org/test-prep/lsat/lsat-lessons/logic-toolbox-new/a/logic-toolbox--article--quick-quide-conditional-logic
```


Complete Sets of Logic Functions

Definition

 A set of logic functions is complete if any boolean formula can be expressed by using only the functions from that set.

The canonical complete set

- The set $\{\mathcal{NOT}, \mathcal{AND}, \mathcal{OR}\}$ $(\{\neg, \land, \lor\})$ is complete.
- All $\{1,2\}$ -variable functions can be expressed using $\{\neg, \land, \lor\}$.
- Any function with more variables can be expressed by a formula containing one-variable and two-variable functions.

Expressing Two-Variable Functions With $\{\neg, \lor, \land\}$

Function(x, y)	(T,T)	(T,F)	(F,T)	(F,F)	Formula
TRUE	T	T	T	T	T
OR	T	T	T	F	$x \lor y$
\mathcal{Y} $\mathcal{I}\mathcal{M}\mathcal{P}$ \mathcal{X}	T	T	F	T	$x \vee \neg y$
$\mathcal{ID}(\mathcal{X})$	T	T	F	F	X
\mathcal{X} $\mathcal{I}\mathcal{M}\mathcal{P}$ \mathcal{Y}	T	F	T	T	$\neg x \lor y$
$\mathcal{ID}(\mathcal{Y})$	T	F	T	F	y
EQUIV	T	F	F	T	$(x \wedge y) \vee (\neg x \wedge \neg y)$
AND	T	F	F	F	$x \wedge y$
$\mathcal{N}\mathcal{A}\mathcal{N}\mathcal{D}$	F	T	T	T	$\neg(x \land y)$
\mathcal{XOR}	F	T	T	F	$(x \vee y) \wedge (\neg x \vee \neg y)$
$\mathcal{NOT}(\mathcal{Y})$	F	T	F	T	$\neg y$
$\neg (\mathcal{X} - \mathcal{I} \mathcal{M} \mathcal{P} - \mathcal{Y})$	F	T	F	F	$x \wedge \neg y$
$\mathcal{NOT}(\mathcal{X})$	F	F	T	T	$\neg X$
$\neg (\mathcal{Y} - \mathcal{I} \mathcal{M} \mathcal{P} - \mathcal{X})$	F	F	T	F	$\neg x \wedge y$
NOR	F	F	F	T	$\neg(x \lor y)$
FALSE	F	F	F	F	F

Other Complete Sets of Logic functions

How to prove that a set S of functions is complete?

- First method: Show how the 4 one-variable and 16 two-variable functions can be expressed with functions from S.
- Second method: Show that \mathcal{NOT} , \mathcal{AND} , \mathcal{OR} can be expressed with functions from \mathcal{S} and then transitivity implies that the 4 one-variable and 16 two-variable functions can be expressed with functions from \mathcal{S} .

$\{\mathcal{NOT}, \mathcal{AND}\}$ is a complete set

- Trivially: $(x \wedge y) \equiv (x \wedge y)$ and $\neg x \equiv \neg x$.
- By one of the De Morgan's laws: $(x \lor y) \equiv \neg(\neg x \land \neg y)$.

$\{\mathcal{NOT}, \mathcal{OR}\}$ is a complete set

- Trivially: $(x \lor y) \equiv (x \lor y)$ and $\neg x \equiv \neg x$.
- By one of the De Morgan's laws: $(x \wedge y) \equiv \neg(\neg x \vee \neg y)$.

\mathcal{NOR} (\downarrow) is a Complete Function

The function \mathcal{NOR} :

Х	У	$x \downarrow y$
T	T	F
T	F	F
F	T	F
F	F	T

Expressing NOT, AND, and OR with NOR:

- $\neg x \equiv x \downarrow x$
- $\bullet \ (x \wedge y) \equiv (x \downarrow x) \downarrow (y \downarrow y)$
- $(x \vee y) \equiv (x \downarrow y) \downarrow (x \downarrow y)$

Expressing XOR and EQUIV with NOR:

- $(x \oplus y) \equiv ((x \downarrow x) \downarrow (y \downarrow y)) \downarrow (x \downarrow y)$
- $(x \equiv v) \equiv (x \downarrow (x \downarrow v)) \downarrow (v \downarrow (x \downarrow v))$

\mathcal{NAND} (†) is a Complete Function

The function \mathcal{NAND} :

Х	У	$x \uparrow y$
T	T	F
T	F	T
F	T	T
F	F	T

Expressing NOT, AND, and OR with NAND:

- $\neg x \equiv x \uparrow x$
- $(x \wedge y) \equiv (x \uparrow y) \uparrow (x \uparrow y)$
- $(x \vee y) \equiv (x \uparrow x) \uparrow (y \uparrow y)$

Expressing \mathcal{XOR} and \mathcal{EQUIV} with \mathcal{NAND} :

- $(x \oplus y) \equiv (x \uparrow (x \uparrow y)) \uparrow (y \uparrow (x \uparrow y))$
- $(x \equiv y) \equiv ((x \uparrow x) \uparrow (y \uparrow y)) \uparrow (x \uparrow y)$

Quantifiers

Notations

• Let P(x) be a boolean proposition (TRUE or FALSE) defined on all the objects $x \in U$.

The universal quantifier

• P(x) is TRUE for every $x \in U$ is denoted by:

$$\forall_{x \in U} P(x)$$

The existential quantifier

• There exists $x \in U$ such that P(x) is TRUE is denoted by:

$$\exists_{x \in U} P(x)$$

Relationships between the quantifiers

Generalizing the De Morgan's laws

$$\neg(\forall_{x\in U}P(x))\equiv\exists_{x\in U}\neg P(x)$$

$$\neg(\exists_{x\in U}P(x))\equiv\forall_{x\in U}\neg P(x)$$

Example: P(x) means x is smart

- $\neg(\forall_{x \in U} P(x))$: Not everyone is smart.
- $\exists_{x \in U} \neg P(x)$: Someone is not smart.
- $\neg(\exists_{x \in U} P(x))$: There is no one who is smart.
- $\forall_{x \in U} \neg P(x)$: Everyone is not smart.

Relationships between the quantifiers

Theorem

$$\neg(\forall_{x\in U}P(x))\equiv\exists_{x\in U}\neg P(x)$$

Proof

- The left side of the equivalence:
 - * $\forall_{x \in U} P(x)$ means that P(x) is **TRUE** for all $x \in U$.
 - * $\neg(\forall_{x \in U} P(x))$ means that P(x) is **FALSE** for at least one $x \in U$.
- The right side of the equivalence:
 - * $\exists_{x \in U} \neg P(x)$ means that $\neg P(x)$ is **TRUE** for at least one $x \in U$.
 - * This is equivalent to P(x) is **FALSE** for at least one $x \in U$.

Remark

This is a generalization of the De Morgan's law:

$$\neg(\bigwedge_{i=1}^n P_i) \equiv \bigvee_{i=1}^n (\neg P_i)$$

Relationships between the quantifiers

Theorem

$$\neg(\exists_{x\in U}P(x))\equiv\forall_{x\in U}\neg P(x)$$

Proof

- The left side of the equivalence:
 - * $\exists_{x \in U} P(x)$ means that P(x) is **TRUE** for at least one $x \in U$.
 - * $\neg(\exists_{x \in U} P(x))$ means that P(x) is **FALSE** for all $x \in U$.
- The right side of the equivalence:
 - * $\forall_{x \in U} \neg P(x)$ means that $\neg P(x)$ is **TRUE** for all $x \in U$.
 - * This is equivalent to P(x) is **FALSE** for all $x \in U$.

Remark

This is a generalization of the De Morgan's law:

$$\neg(\bigvee_{i=1}^n P_i) \equiv \bigwedge_{i=1}^n (\neg P_i)$$

Order Among Quantifiers

Notations

• Let P(x, y) be a boolean proposition (TRUE or FALSE) defined on all the objects $x, y \in U$.

Order does not matter

- $\bullet \ \forall_{x \in U} \forall_{y \in U} P(x, y) \equiv \forall_{y \in U} \forall_{x \in U} P(x, y) \equiv \forall_{x, y \in U} P(x, y).$
- $\bullet \ \exists_{x \in U} \exists_{y \in U} P(x, y) \equiv \exists_{y \in U} \exists_{x \in U} P(x, y) \equiv \exists_{x, y \in U} P(x, y).$

Order matters

- $\bullet \ \forall_{x \in U} \exists_{y \in U} P(x, y) \not\equiv \exists_{y \in U} \forall_{x \in U} P(x, y).$
- A TRUE proposition: "For every integer n there exists an integer m such that $m = n^2$ " $\forall_{n \in \mathbb{Z}} \exists_{m \in \mathbb{Z}} (m = n^2)$.
- A FALSE proposition: "There exists an integer m such that $m=n^2$ for every integer n" $\exists_{m\in\mathbb{Z}}\forall_{n\in\mathbb{Z}}(m=n^2)$.

Quantifications of Two Variables

Summary

Statement	When true?	When False?
$\forall_x \forall_y P(x,y)$	P(x,y)=T	There is a pair x, y
$\forall_y \forall_x P(x,y)$	for every pair x,y	for which $P(x, y) = F$
$\exists_x\exists_y P(x,y)$	There is a pair x, y	P(x,y)=F
$\exists_y \exists_x P(x,y)$	for which $P(x, y) = T$	for every pair x, y
$\forall_X \exists_y P(x,y)$	For every x there is a y	There is an x such that
	for which $P(x, y) = T$	P(x,y) = F for every y
$\exists_x \forall_y P(x,y)$	There is an x such that	For every x there is a y
	P(x,y) = T for every y	for which $P(x, y) = F$

Quantifications of Two Variables

Example: P(x, y) means that x and y are friends

- $\forall_{x,y}P(x,y)$:
 - * TRUE: Everyone is a friend with everyone else.
 - * FALSE: There exists at least one pair who are not friends.
- $\bullet \exists_{x,y} P(x,y)$:
 - * TRUE: At least one pair are friends.
 - * FALSE: There are no friends at all.
- $\forall_x \exists_y P(x, y)$:
 - * TRUE: Everyone has at least one friend.
 - * FALSE: There exists someone who has no friends.
- $\bullet \exists_x \forall_y P(x,y)$:
 - * TRUE: There exists someone who is a friend with everyone else.
 - * FALSE: Everyone has at least someone who is not their friend.

Be Careful and Precise with Logic

The unexpected hanging paradox

Paradox with a logical school solution:

https://www.youtube.com/watch?v=vxlCiV_axQ0

Paradox with a logical and an epistemological school solutions:

https://www.youtube.com/watch?v=EPOXhFJsqlM

Wikipedia:

https://en.wikipedia.org/wiki/Unexpected_hanging_paradox

An Online Tutorial

8 Logic lectures from TrevTutor

- Propositional Logic: www.youtube.com/watch?v=itrXYg41-V0&feature=youtu.be
- Truth Tables: www.youtube.com/watch?v=UiGu57JzLkE&feature=youtu.be
- Proofs with Truth Tables: www.youtube.com/watch?v=9fX6n0_MDic&feature=youtu.be
- Logic laws: www.youtube.com/watch?v=eihhu72YdpQ&feature=youtu.be
- Conditionals: www.youtube.com/watch?v=xag9TEAORK4&feature=youtu.be
- Proof by Contraposition: https://www.youtube.com/watch?v=X-hJ7krlBn0
- Rules of Inference: www.youtube.com/watch?v=8DW0K3mnc-0&feature=youtu.be
- Predicate Logic: www.youtube.com/watch?v=gyoqX0W-NH4&feature=youtu.be

Additional Logic Puzzles

Knights and knaves

https://www.youtube.com/watch?v=Imgus1ispQk

Prisoners with hats

- https://youtu.be/N5vJSNXPEwA
- https://www.youtube.com/watch?v=RtidKw-qDxY

How many liars are at the party?

https://www.youtube.com/watch?v=jqX9nnRiD9g

Can you crack the code?

https://www.youtube.com/watch?v=-etLb-8sHBc&feature=youtu.be