Discrete Structures Number Theory

Amotz Bar-Noy

Department of Computer and Information Science Brooklyn College

Journey into cryptography: Ancient Cryptography

All videos

https://www.khanacademy.org/computing/computer-science/cryptography

List of videos

- What is cryptography? https://youtu.be/Kf9KjCKmDcU
- The Caesar cipher: https://youtu.be/sMOZf4GN3oc
- Polyalphabetic cipher: https://youtu.be/BgFJD7oCmDE
- The one-time pad: https://youtu.be/Flig3TvQCBQ
- Frequency stability property: https://youtu.be/vVXbgbMp0oY
- The Enigma encryption machine: https://youtu.be/-1ZFVwMXSXY
- Perfect secrecy: https://youtu.be/vKRMWewGE9A
- Pseudorandom number generators: https://youtu.be/GtOt7EBNEwQ

Prime Numbers

Prime and Composite Numbers

- A positive integer $p \ge 2$ is **prime** if its only divisors are 1 and itself.
- A positive integer $n \ge 2$ is **composite** if it has at least 3 divisors.
- 1 is either prime or not but it is not composite.

The Fundamental Theorem of Arithmetic

- Every integer greater than 1 is either prime itself or can be represented with a unique product of primes.
- Corollary: 1 is not prime.
- Story: https://youtu.be/8CluknrLeys

Primality Test and Factoring

Tasks

- Primality test: determine whether an input integer is prime or composite.
- Integer factorization: decompose an input integer into its unique product of primes.

Hardness

- It is relatively easy to test if a very large integer is prime.
 - Can be done almost surely (with high probability).
- It is extremely difficult to factor a very large integer.
 - Especially if the integer is a product of two very large primes.

The Natural Primality Test

Algorithm

- Input: an integer $n \ge 2$
- Set s = n 1
- For all $2 \le d \le s$ check if d is a divisor of n
 - If yes then abort because n is not prime
 - If no then continue
- If this step is reached then *n* is prime

Improvement

- Set $s = |\sqrt{n}|$
- Proof:
 - If $q > \lfloor \sqrt{n} \rfloor$ is a divisor of n then $n = d \cdot q$ for $d < \lfloor \sqrt{n} \rfloor$ and d is another divisor of n.
 - There is no need to check if q divides n because the algorithm will abort after checking if d is a divisor of n.

Example

Check if n = 77 is prime

• Initially: s = 8 and d = 2

$$2 \cancel{1}77 \implies d = 3$$

$$3 \cancel{1}77 \implies d = 4$$

$$4 \cancel{1}77 \implies d = 5$$

$$5 \cancel{1}77 \implies d = 6$$

$$6 \cancel{1}77 \implies d = 7$$

$$7 \cancel{1}77 \implies ABORT$$

• Return: $77 = 7 \cdot 11$ is not prime

Example

Check if n = 97 is prime

• Initially: s = 9 and d = 2

$$2 \cancel{1}97 \implies d = 3$$

$$3 \cancel{1}97 \implies d = 4$$

$$4 \cancel{1}97 \implies d = 5$$

$$5 \cancel{1}97 \implies d = 6$$

$$6 \cancel{1}97 \implies d = 7$$

$$7 \cancel{1}97 \implies d = 8$$

$$8 \cancel{1}97 \implies d = 9$$

$$9 \cancel{1}97$$

Return: 97 is prime

The Natural Integer Factorization Algorithm

Algorithm

- Input: an integer $n \ge 2$
- Set D = () to be an empty list
- Set *d* = 2
- Set m = n
- Repeat the following procedure until m = 1
 - If d is a divisor of m then
 - * Append d at the end of the list D
 - * Set m = m/d
 - If d is not a divisor of m then increment d by one
- Assume: $D = (d_1 \le d_2 \le \cdots \le d_j)$
- Output: $n = d_1 d_2 \cdots d_j = p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h}$

Example

The Prime factors of 360

● Initially:
$$m = 360$$
, $d = 2$, and $D = ()$
 $2 \mid 360 \implies m = 180 \quad d = 2 \quad D = (2)$
 $2 \mid 180 \implies m = 90 \quad d = 2 \quad D = (2,2)$
 $2 \mid 90 \implies m = 45 \quad d = 2 \quad D = (2,2,2)$
 $2 \not\mid 45 \implies m = 45 \quad d = 3 \quad D = (2,2,2)$
 $3 \mid 45 \implies m = 15 \quad d = 3 \quad D = (2,2,2,3)$
 $3 \mid 15 \implies m = 5 \quad d = 3 \quad D = (2,2,2,3,3)$
 $3 \not\mid 5 \implies m = 5 \quad d = 4 \quad D = (2,2,2,3,3)$
 $4 \not\mid 5 \implies m = 5 \quad d = 5 \quad D = (2,2,2,3,3)$
 $5 \mid 5 \implies m = 1 \quad d = 5 \quad D = (2,2,2,3,3,5)$

• Return: $360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 2^3 \cdot 3^2 \cdot 5$

Example

The Prime factors of 1001

• Initially: m = 1001, d = 2, D = () $\{2,3,4,5,6\} \text{ } 1001 \implies m = 1001 \quad d = 7 \quad D = ()$ $\{7,8,9,10\} \text{ } 143 \implies m = 143 \quad d = 11 \quad D = (7)$ $\{7,8,9,10\} \text{ } 143 \implies m = 13 \quad d = 11 \quad D = (7,11)$

$$\{11, 12\}$$
 $/\!\!/$ $13 \implies m = 13$ $d = 13$ $D = (7, 11)$ $13 \implies m = 1$ $d = 13$ $D = (7, 11, 13)$

• Return: $1001 = 7 \cdot 11 \cdot 13$

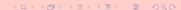
Sieve of Eratosthenes

Algorithm: Find all the primes that are smaller than 0 < N

- Set all the numbers 2, 3, ..., N as prime candidates
- Set p = 2
- Repeat the following procedure until $p > \sqrt{N}$:
 - Mark p as prime
 - Mark the next $\lfloor N/p \rfloor$ 1 multiples of p as composite
 - Set p to be the smallest remaining candidate
- Mark all the remaining candidates as primes

Online resources

- https://www.youtube.com/watch?v=dhfhu9Q5g8U
- https://youtu.be/klcIklsWzrY



There are infinitely many prime numbers

Proof

- Let $p_1 < p_2 < \cdots < p_n$ be a set of n primes.
- Let $Q = p_1 p_2 \cdots p_n + 1$.
- If Q is prime, then a new prime is found.
- Otherwise, Q is a product of two or more primes due to The Fundamental Theorem of Arithmetic.
- Observation: None of these primes can be p_1, \ldots, p_n because a number greater than 1 cannot be a divisor of both Q and Q 1.
- Therefore, at least one of *Q*'s factors must be a new prime.
- This process can continue to find infinitely many primes.

Online resources

- The original proof by Euclid: https://youtu.be/dQmdHpvfyJs
- ullet $pprox rac{n}{\log(n)}$ prime numbers are smaller than n: https://youtu.be/EKfdRks8oMI

Modular Arithmetic

Notations

$$n = q \cdot d + r \ (* \ 0 \le r < d \ *)$$

$$n \mod d = r$$

• n: dividend; d: divisor; q: quotient; r: remainder

Examples

- $7 \mod 3 = 1 \text{ because } 7 = 2 \cdot 3 + 1$
- 25 mod 5 = 0 because $25 = 5 \cdot 5 + 0$
- 101 mod 7 = 3 because $101 = 14 \cdot 7 + 3$
- 17 mod 12 = 5 because $17 = 1 \cdot 12 + 5$

Definitions

- If $n \mod d = 0$ then $d \mid n$
- d divides n and is a divisor of n while n is a multiple of d

Negative Numbers

Which parts can be negative?

- The dividend (n), quotient (q), and remainder (r) can be negative
- The divisor (d) is "always" positive

Negative n and q

- $-18 \mod 7 = 3 \text{ because } -18 = -3 \cdot 7 + 3$
- $-55 \mod 5 = 0$ because $-55 = -11 \cdot 5 + 0$

Negative r

- If $n = q \cdot d + r$ for $0 \le r < d$ then $n = (q + 1) \cdot d (d r)$ for $0 \le d r < d$
 - Useful for modular operations when d r < r
- 103 mod 7 = 5 = -2 since $103 = 14 \cdot 7 + 5 = 15 \cdot 7 2$

Congruence Modulo

Notation

• For integers $-\infty < n, m < \infty$ and positive integer d > 1: If $(n \mod d) = (m \mod d)$ then $n \equiv m \pmod d$

Congruence is an Equivalence Relation

- Reflexive property: n ≡ n (mod d)
 * 27 ≡ 27 (mod 5)
- Symmetry property: $n \equiv m \pmod{d} \iff m \equiv n \pmod{d}$ * $27 \equiv 52 \pmod{5} \iff 52 \equiv 27 \pmod{5}$
- Transitive property:

```
 \begin{array}{c} (n \equiv m \pmod{d}) \land (m \equiv k \pmod{d}) \Longrightarrow n \equiv k \pmod{d} \\ * (52 \equiv 27 \pmod{5}) \land (27 \equiv 12 \pmod{5}) \Longrightarrow 52 \equiv 12 \pmod{5}  \end{array}
```

Proofs idea

• There exist q_n , q_m , q_k , and $0 \le r < d$ such that $n = q_n d + r$; $m = q_m d + r$; and $k = q_k d + r$

Basic Properties

Proposition

• For integers $-\infty < n, k < \infty$ and positive integer d > 1: $(n \mod d) = ((n + kd) \mod d) \implies n \equiv n + kd \pmod d$

Examples

- $(7 \mod 5) = (12 \mod 5) = (112 \mod 5) = 2$ $\implies 7 \equiv 12 \equiv 112 \pmod{5}$
- $(-3 \mod 7) = (4 \mod 7) = (11 \mod 7) = 4$ $\implies -3 \equiv 4 \equiv 11 \pmod{7}$

Proof outline

- o n = ad + r
- \bullet n + kd = (q + k)d + r

Basic Properties

Proposition

• For integers $-\infty < n, m < \infty$ and positive integer d > 1: $(n \mod d) = (m \mod d) \implies d \mid (n - m)$

Examples

- $(100 \mod 7) = (23 \mod 7) = 2 \implies 7 \mid (100 23) = 77$
- $(10 \mod 3) = (-8 \mod 3) = 1 \implies 3 \mid (10 (-8)) = 18$

Proof Outline

- \bullet $n = q_n d + r$
- $m = q_m d + r$
- $(n-m) = (q_n q_m)d$

Modular Addition

Proposition

• For integers $-\infty < n, m < \infty$ and positive integer d > 1:

$$(n+m) \mod d = ((n \mod d) + (m \mod d)) \mod d$$

Example: compute $(34 + 21) \mod 5$

Direct method:

$$(34+21=55) \land (55=11\cdot 5+0) \ \Rightarrow \ (34+21) \ \mathsf{mod} \ 5=0$$

• Modular addition method:

$$(34 + 21) \mod 5 = ((34 \mod 5) + (21 \mod 5)) \mod 5$$

= $(4 + 1) \mod 5$
= $5 \mod 5$
= 0

A Modular Addition Table for d = 5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

A Modular Addition Table for d = 6

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

Modular Subtraction

Proposition

• For integers $-\infty < n, m < \infty$ and positive integer d > 1:

$$(n-m) \mod d = ((n \mod d) - (m \mod d)) \mod d$$

Example: compute $(21 - 13) \mod 5$

• Direct method:

$$(21-13=8) \land (8=1\cdot 5+3) \ \Rightarrow \ (21-13) \ \text{mod} \ 5=3$$

• Modular subtraction method:

$$(21-13) \mod 5 = ((21 \mod 5) - (13 \mod 5)) \mod 5$$

= $(1-3) \mod 5$
= $-2 \mod 5$
= 3

A Modular Subtraction Table for d = 5

_	0	1	2	3	4
0	0	4	3	2	1
1	1	0	4	3	2
2	2	1	0	4	3
3	3	2	1	0	4
4	4	3	2	1	0

A Modular Subtraction Table for d = 6

_	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1	0	5	4	3	2
2	2	1	0	5	4	3
3	3	2	1	0	5	4
4	4	3	2	1	0	5
5	5	4	3	2	1	0

Modular Multiplication

Proposition

• For integers $-\infty < n, m < \infty$ and positive integer d > 1:

$$(n \cdot m) \mod d = ((n \mod d)(m \mod d)) \mod d$$

Example: compute (12 · 11) mod 7

• Direct method:

$$(12 \cdot 11 = 132) \land (132 = 18 \cdot 7 + 6) \implies (12 \cdot 11) \mod 7 = 6$$

Modular multiplication method:

$$(12 \cdot 11) \mod 7 = ((12 \mod 7)(11 \mod 7)) \mod 7$$

= $(5 \cdot 4) \mod 7$
= $20 \mod 7$
= 6

A Modular Multiplication Table for d=5

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

A Modular Multiplication Table for d=6

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

Modular Inverse

Definition

- Let 0 < n < d be two relatively prime (coprime) integers
 - * There is no integer greater than 1 that is a divisor of both n and d
- The **inverse** of *n* modulo *d* is an integer 0 < m < d such that
 - $* (mn \mod d) = 1$

Symmetry

If (mn mod d) = 1 then (nm mod d) = 1 and therefore n is the inverse of m modulo d iff m is the inverse of n modulo d

$$(n^{-1} \mod d) = m \iff (m^{-1} \mod d) = n$$

 $m = n^{-1} \iff n = m^{-1}$

Modular Inverse

Examples

- 3 is the inverse of 5 modulo 7 because $((3 \cdot 5 = 15) \mod 7) = 1$
- 5 is the inverse of itself modulo 6 because $((5 \cdot 5 = 25) \mod 6) = 1$
- 3 has no inverse modulo 6 because $(3 \cdot x) \mod 6$ is either 0 or 3

Propositions

1 is the inverse of itself modulo d

$$((1 \cdot 1) \bmod d) = (1 \bmod d) = 1$$

• d-1 is the inverse of itself modulo d for any integer d>1

$$(d-1)^2 \mod d = (d^2 - 2d + 1) \mod d$$

$$= ((d-2)d + 1) \mod d$$

$$= ((((d-2)d) \mod d) + (1 \mod d)) \mod d$$

$$= (0+1) \mod d$$

$$= 1 \mod d$$

Modular Division

Proposition

• For two integers $-\infty < n, m < \infty$ in which m is relatively prime to a positive integer d > 1

$$(n/m) \mod d = (n \cdot m^{-1}) \mod d$$

= $((n \mod d)(m^{-1} \mod d)) \mod d$

Example: compute (99/3) mod 7

• Direct method:

$$(99/3 = 33) \land (33 = 4 \cdot 7 + 5) \implies (99/3) \mod 7 = 5$$

• Modular division method:

$$(99/3) \mod 7 = ((99 \mod 7)(3^{-1} \mod 7)) \mod 7$$

$$= (1 \cdot 5) \mod 7$$

$$= 5 \mod 7$$

$$= 5$$

A Modular Division Table for d = 5

•	0	1	2	3	4
0	1	0	0	0	0
1	上	1	3	2	4
2	1	2	1	4	3
3		3	4	1	2
4	上	4	2	3	1

A Modular Division Table for d = 6

•	0	1	2	3	4	5
0	0	0	$\{0,3\}$	$\{0, 2, 4\}$	$\{0,3\}$	0
1	{}	1	{}	{}	{}	5
2	{}	2	{1,4}	{}	$\{2,5\}$	4
3	{}	3	{}	$\{1,3,5\}$	{}	3
4	{}	4	{2,5}	{}	{1,4}	2
5	{}	5	{}	{}	$\{0,3\}$	1

Modular Exponentiation

Proposition

• For integers $-\infty < n < \infty$, $k \ge 0$, and d > 1:

$$n^k \mod d = ((n \mod d)^k) \mod d$$

Example: compute 9³ mod 7

• Direct method:

$$(9^3 = 729) \land (729 = 104 \cdot 7 + 1) \ \Rightarrow \ 9^3 \ \mathsf{mod} \ 7 = 1$$

• Modular exponentiation method:

$$(9^3) \mod 7 = ((9 \mod 7)^3) \mod 7$$

= $2^3 \mod 7$
= $8 \mod 7$
= 1

Modular Exponentiation

Example: compute 10⁵ mod 7

Direct method:

$$(10^5 = 100000) \land (100000 = 14285 \cdot 7 + 5) \ \Rightarrow \ 10^5 \ \text{mod} \ 7 = 5$$

Modular exponentiation method:

$$10^{5} \mod 7 = (10 \mod 7)^{5} \mod 7$$

$$= 3^{5} \mod 7$$

$$= ((9 \mod 7) \cdot (9 \mod 7) \cdot (3 \mod 7)) \mod 7$$

$$= (2^{2} \cdot 3) \mod 7$$

$$= 12 \mod 7$$

$$= 5$$

A Modular Exponentiation Table for d = 5

exp	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	1	2	4	3	1	2	4	3
3	1	3	4	2	1	3	4	2
4	1	4	1	4	1	4	1	4

A Modular Exponentiation Table for d = 6

exp	0	1	2	3	4	5
0	1	0	0	0	0	0
1	1	1	1	1	1	1
2	1	2	4	2	4	2
3	1	3	3	3	3	3
4	1	4	4	4	4	4
5	1	5	1	5	1	5

Computing $n^k \mod d$ for n < d and large k

Method I: Outline

- Since n < d, it follows that $n \mod d = n$; therefore, $n^{2^0} \mod d = n$
- Observe that $n^{2^{i+1}} = n^{2^{i} \cdot 2} = (n^{2^i})^2$
- Iteratively compute

$$n^2 = n^{2^1} \mod d$$

 $n^4 = n^{2^2} \mod d$
 $n^8 = n^{2^3} \mod d$
 $n^{16} = n^{2^4} \mod d$

- Stop the computation when $k < n^{2^{i+1}}$
- Using the binary representation of k set $k = 2^{i_1} + 2^{i_2} + \cdots + 2^{i_h}$
- It follows that $n^k = n^{2^{i_1} + 2^{i_2} + \dots + 2^{i_h}} = n^{2^{i_1}} \cdot n^{2^{i_2}} \cdot \dots \cdot n^{2^{i_h}}$
- $n^k \mod d$ can be computed using modular multiplication among the already computed values of $n^{2^i} \mod d$

Computing 2⁵⁷ mod 7 – Method I

Preprocessing

```
2^{1} \mod 7 = 2^{2} \mod 7 = (2^{1})^{2} \mod 7 = 2^{2} \mod 7 = 4
2^{4} \mod 7 = (2^{2})^{2} \mod 7 = 4^{2} \mod 7 = 2
2^{8} \mod 7 = (2^{4})^{2} \mod 7 = 2^{2} \mod 7 = 4
2^{16} \mod 7 = (2^{8})^{2} \mod 7 = 4^{2} \mod 7 = 2
2^{32} \mod 7 = (2^{16})^{2} \mod 7 = 2^{2} \mod 7 = 4
```

Computation: 57 = 32 + 16 + 8 + 1

$$2^{57} \mod 7 = (2^{32}2^{16}2^82^1) \mod 7$$

= $((2^{32} \mod 7)(2^{16} \mod 7)(2^8 \mod 7)(2^1 \mod 7)) \mod 7$
= $(4 \cdot 2 \cdot 4 \cdot 2) \mod 7$
= $64 \mod 7$

Computing 3¹⁰¹ mod 5 – Method I

Preprocessing

$$3^{1} \mod 5 = 3$$
 $3^{2} \mod 5 = (3^{1})^{2} \mod 5 = 3^{2} \mod 5 = 4$
 $3^{4} \mod 5 = (3^{2})^{2} \mod 5 = 4^{2} \mod 5 = 1$
 $3^{8} \mod 5 = (3^{4})^{2} \mod 5 = 1^{2} \mod 5 = 1$
 $3^{16} \mod 5 = 3^{32} \mod 5 = 3^{64} \mod 5 = 1$

Computation: 101 = 64 + 32 + 4 + 1

= 3

$$3^{101} \mod 5 = (3^{64}3^{32}3^43^1) \mod 5$$

= $((3^{64} \mod 5)(3^{32} \mod 5)(3^4 \mod 5)(3^1 \mod 5)) \mod 5$
= $(1 \cdot 1 \cdot 1 \cdot 3) \mod 5$
= $3 \mod 5$

Computing $n^k \mod d$ for n < d and large k

Method II: Outline

- Express k as $k = a\ell + b$ such that $n^{\ell} \mod d$ is 1 or -1 and $n^{b} \mod d$ is relatively easy to compute
- It follows that $n^k = n^{a\ell+b} = (n^\ell)^a \cdot n^b$
- The modular exponentiation rule for d will replace n^{ℓ} and then $(n^{\ell})^a$ with 1 and -1
- The final answer will be $(n^b \mod d)$ or $-(n^b \mod d)$

Computing 2⁵⁷ mod 7 – Method II

Preprocessing

$$(2^3 \mod 7) = (8 \mod 7) = 1$$

Computation: $57 = 3 \cdot 19$

$$2^{57} \mod 7 = 2^{3 \cdot 19} \mod 7$$
 $= (2^3)^{19} \mod 7$
 $= (2^3 \mod 7)^{19} \mod 7$
 $= (8 \mod 7)^{19} \mod 7$
 $= 1^{19} \mod 7$
 $= 1 \mod 7$

Computing 3¹⁰¹ mod 5 – Method II

Preprocessing

$$(3^2 \mod 5) = (9 \mod 5) = -1$$

 $(3^4 \mod 5) = (81 \mod 5) = 1$

First computation: $101 = 2 \cdot 50 + 1$

$$3^{101} \mod 5 = 3^{2 \cdot 50 + 1} \mod 5$$

= $((3^2)^{50} \cdot 3) \mod 5$
= $((-1)^{50} \cdot 3) \mod 5$
= $(1 \cdot 3) \mod 5 = 3$

Second computation: $101 = 4 \cdot 25 + 1$

$$3^{101} \mod 5 = 3^{4 \cdot 25 + 1} \mod 5$$

= $((3^4)^{25} \cdot 3) \mod 5$
= $((1)^{25} \cdot 3) \mod 5$
= $(1 \cdot 3) \mod 5 = 3$

Online Resources

Modular arithmetic

Examples:

https://youtu.be/2zEXtoQDpXY

Modular exponentiation (first two examples):

https://youtu.be/tTuWmcikE0Q

Application

• The Lazy Mathematician:

https://youtu.be/FdmApk9V2-w

The Greatest Common Divisor (GCD)

Definition

- Let n and m be two positive integers and let g be the largest positive integer that is a divisor of both of them
- $g = \gcd(n, m)$ is the **Greatest Common Divisor** of n and m

Examples

- $5 = \gcd(5, 15)$
- $6 = \gcd(12, 18)$
- $1 = \gcd(13, 21)$

Bounds on $g = \gcd(n, m)$

- Lower bound: 1 is a divisor of all integers, therefore $g \ge 1$
- Upper bound: An integer cannot be a divisor of a smaller integer, therefore g ≤ min {n, m}

The Largest Divisor Algorithm

Algorithm

- Let $N = \{1 < n_1 < n_2 < \cdots < n_{r-2} < n\}$ be the set of all the r $(r \ge 2)$ divisors of n including 1 and n
- Let $M = \{1 < m_1 < m_2 < \cdots < m_{s-2} < m\}$ be the set of all the S $(s \ge 2)$ divisors of m including 1 and m
- Let $G = N \cap M$ be the intersection of N and M and let g be the largest number in G
- Then $g = \gcd(n, m)$

Proof

- All the positive integers (including 1) that are divisors of both n
 and m are in G
- Therefore, by definition, $g = \gcd(n, m)$

Examples

Example I

- Input: n = 372 and m = 138
- $N = \{1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372\}$
- $M = \{1, 2, 3, 6, 23, 46, 69, 138\}$
- $G = \{1, 2, 3, 6\}$
- Output: gcd(372, 138) = 6

Example II

- **Input:** n = 480 and m = 360
- $N = \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, ,40, 48, 60, 80, 96, 120, 160, 240, 480\}$
- $M = \{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360\}$
- $G = \{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120\}$
- Output: gcd(480, 360) = 120

The Common Prime Factors Algorithm

Algorithm

- Let $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ be the prime factorization of n
- Let $m = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$ be the prime factorization of m
- Let $G = \{g_1, g_2, \dots, g_t\} = \{p_1, p_2, \dots, p_r\} \cap \{q_1, q_2, \dots, q_s\}$
- If G is empty then gcd(n, m) = 1
- Otherwise:
 - For all 1 ≤ i ≤ t such that $g_i = p_j = q_k$ set $h_i = \min\{a_j, b_k\}$
 - Then $\gcd(n,m)=g_1^{h_1}g_2^{h_2}\cdots g_t^{h_t}$

Proof outline

- Assume g^h is a divisor of gcd(n, m) for a prime integer g and $h \ge 1$
- Then $g = p_i$ and $g = q_k$ for some $1 \le j \le r$ and $1 \le k \le s$
- Also, $h \le a_i$ and $h \le b_k$
- Therefore, $g_1^{h_1}g_2^{h_2}\cdots g_t^{h_t}$ is the prime factorization of gcd(n, m)

Examples

Example I

- Input: n = 372 and m = 138
- $372 = 2^2 \cdot 3^1 \cdot 31^1$
- $138 = 2^1 \cdot 3^1 \cdot 23^1$
- $G = \{2, 3\}$
- Output: $gcd(372, 138) = 2^1 \cdot 3^1 = 6$

Example II

- Input: n = 480 and m = 360
- $480 = 2^5 \cdot 3^1 \cdot 5^1$
- $360 = 2^3 \cdot 3^2 \cdot 5^1$
- $G = \{2, 3, 5\}$
- Output: $gcd(480, 360) = 2^3 \cdot 3^1 \cdot 5^1 = 120$

Idea and proof outline

- Idea: $gcd(n, m) = gcd(m, (n \mod m))$ for n > m
- Proof outline: If d is a divisor of both n and m then it is a divisor of (n mod m)

Algorithm

```
• gcd(n,m) (* n \ge m *)

if (n \mod m) = 0

then return m

else return gcd(m, (n \mod m))
```

Online examples

- https://youtu.be/klTIrnovoEE
- https://youtu.be/fwuj4yzoX1o

Example I

• Input: n = 372 and m = 138

n	m	$n = q \cdot m + r$
372	138	$372 = 2 \cdot 138 + 96$
138	96	$138 = 1 \cdot 96 + 42$
96	42	$96 = 2 \cdot 42 + 12$
42	12	$42 = 3 \cdot 12 + 6$
12	6	$12 = 2 \cdot 6 + 0$

• Output: gcd(372, 138) = 6

Example II

• Input: n = 480 and m = 360

n	m	$n = q \cdot m + r$
480	360	$480 = 1 \cdot 360 + 120$
360	120	$360 = 3 \cdot 120 + 0$

• Output: gcd(480, 360) = 120

Example III

• Input: n = 21 and m = 13

n	m	$n = q \cdot m + r$
21	13	$21 = 1 \cdot 13 + 8$
13	8	$13 = 1 \cdot 8 + 5$
8	5	$8=1\cdot 5+3$
5	3	$5=1\cdot 3+2$
3	2	$3 = 1 \cdot 2 + 1$
2	1	$2 = 2 \cdot 1 + 0$

• Output: gcd(21, 13) = 1

The Extended Euclidean Algorithm

Bézout's identity

- Let $g = \gcd(n, m)$ for two positive integers n and m
- There exist integers (positive and/or negative) x and y such that

$$xn + ym = g$$

 All the integers that can be expressed as zn + wm for two integers z and w are all the multiples of g

Algorithm's idea

- Run the Euclidean Algorithm to find gcd(n, m)
- Find x and y by following the algorithm in a reverse order

Online example

• https://youtu.be/FjliV5u2IVw

Example

Compute $6 = \gcd(372, 138)$

$$372 = 2 \cdot 138 + 96$$

$$138 = 1 \cdot 96 + 42$$

$$96 = 2 \cdot 42 + 12$$

$$42 = 3 \cdot 12 + 6$$

$$12 = 2 \cdot 6$$

Compute $6 = (-10 \cdot 372) + (27 \cdot 138)$

$$\begin{array}{lll} 6 & = & = & (1 \cdot 42) - (3 \cdot 12) \\ & = & (1 \cdot 42) - 3(96 - 2 \cdot 42) & = & (-3 \cdot 96) + (7 \cdot 42) \\ & = & (-3 \cdot 96) + 7(138 - 96) & = & (7 \cdot 138) - (10 \cdot 96) \\ & = & (7 \cdot 138) - 10(372 - 2 \cdot 138) & = & (-10 \cdot 372) + (27 \cdot 138) \end{array}$$

Computing the Modular Inverse

Bézout's identity for relatively prime integers

- Let gcd(n, d) = 1 for two positive integers n and d
- There exist integers x and y such that xn + yd = 1

For relatively prime n and d, find the inverse of n modulo d

- Equivalently, find m such that $(mn \mod d) = 1$
- Set m = x in the above xn + yd = 1 Bézout's identity
- Therefore, mn + yd = 1

$$mn = 1 - yd$$

$$(mn \bmod d) = (1 \bmod d) - (yd \bmod d) = 1$$

• $m = n^{-1}$ is the inverse of n modulo d

Example

Find the inverse of 11 mudulo 17

Using the extended Euclidean algorithm find

$$14 \cdot 11 - 9 \cdot 17 = 1$$

Equivalently,

$$(14 \cdot 11) \mod 17 = 154 \mod 17$$

= $(9 \cdot 17 + 1) \mod 17$
= 1

Therefore 14 is the inverse of 11 modulo 17

Online example

• https://youtu.be/mgvA3z-vOzc

The Least Common Multiple (LCM)

Definition

- Let n and m be two positive integers and let ℓ be the smallest positive integer that is a multiple of both of them
- $\ell = \text{lcm}(n, m)$ is the **Least Common Multiple** of n and m

Examples

- 15 = lcm(5, 15)
- 36 = lcm(12, 18)
- 273 = lcm(13, 21)

Bounds on $\ell = \text{lcm}(n, m)$

- Upper bound: nm is a multiple of both n and m, therefore $\ell \leq nm$
- Lower bound: An integer cannot be a multiple of a larger integer, therefore ℓ ≥ max {n, m}

The Smallest Multiple Algorithm

Algorithm

- Initially h = n and k = m
- While $h \neq k$
 - While h < k set h = h + n
 - While k < h set k = k + m
- Return lcm(n, m) = h = k

Proof outline

- Let $\ell = \operatorname{lcm}(n, m)$
- By definition, any multiple $h < \ell$ of n is different than any multiple $k < \ell$ of m
- Eventually, $h = \ell$ and $k = \ell$ and the algorithm returns ℓ

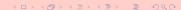
Examples

Example I

- **Input:** n = 48 and m = 36
- h = 48, 96, 144
- k = 36, 72, 108, 144
- Output: lcm(48, 36) = 144

Example II

- Input: n = 126 and m = 60
- *h* = 126, 252, 378, 504, 630, 756, 882, 1008, 1134, 1260
- $k = 60, 120, 180, \dots, 600, 660, \dots, 1140, 1200, 1260$
- Output: lcm(126, 60) = 1260



The Factorization Algorithm

Algorithm

- Let $n = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ be the prime factorization of n
- Let $m = q_1^{b_1} q_2^{b_2} \cdots q_s^{b_s}$ be the prime factorization of m
- Let $L = \{\ell_1, \ell_2, \dots, \ell_w\} = \{p_1, p_2, \dots, p_r\} \cup \{q_1, q_2, \dots, q_s\}$
- For all $1 \le i \le w$:
 - − If $\ell_i = p_j$ for some $1 \le j \le r$, set $f_i = a_j$
 - − If $\ell_i = q_k$ for some $1 \le k \le s$, set $f_i = b_k$
 - If $\ell_i = p_j = q_k$ for some $1 \le j \le r$ and $1 \le k \le s$, set $f_i = \max\{a_i, b_k\}$.
- $f_i = \max \{a_j, b_k\}$ • Then $\operatorname{lcm}(n, m) = \ell_1^{f_1} \ell_2^{f_2} \cdots \ell_W^{f_W}$

Proof outline

- Assume ℓ^f is a divisor of lcm(n, m) for a prime integer ℓ and $\ell \geq 1$
- If $\ell = p_j$ for some $1 \le j \le r$ then $f \ge a_j$
- If $\ell = q_k$ for some $1 \le k \le s$ then $f \ge b_k$
- Therefore, $\ell_1^{f_1}\ell_2^{f_2}\cdots\ell_w^{f_w}$ is the prime factorization of lcm(n,m)

Examples

Example I

- **Input:** n = 48 and m = 36
- $48 = 2^4 \cdot 3^1$
- $36 = 2^2 \cdot 3^2$
- $L = \{2, 3\}$
- Output: $lcm(48, 36) = 2^4 \cdot 3^2 = 16 \cdot 9 = 144$

Example II

- Input: n = 126 and m = 60
- $126 = 2^1 \cdot 3^2 \cdot 7^1$
- $60 = 2^2 \cdot 3^1 \cdot 5^1$
- $L = \{2, 3, 5, 7\}$
- Output: $lcm(126, 60) = 2^2 \cdot 3^2 \cdot 5^1 \cdot 7^1 = 4 \cdot 9 \cdot 5 \cdot 7 = 1260$

Theorem

• $n \cdot m = \gcd(n, m) \cdot \operatorname{lcm}(n, m)$ for any positive integers n and m

Examples

```
75 = 5 \cdot 15 = 5 \cdot 15 = \gcd(5, 15) \cdot \operatorname{lcm}(5, 15)

216 = 12 \cdot 18 = 6 \cdot 36 = \gcd(12, 18) \cdot \operatorname{lcm}(12, 18)

273 = 13 \cdot 21 = 1 \cdot 273 = \gcd(13, 21) \cdot \operatorname{lcm}(13, 21)

7560 = 126 \cdot 60 = 6 \cdot 1260 = \gcd(126, 60) \cdot \operatorname{lcm}(126, 60)
```

Theorem

• $n \cdot m = \gcd(n, m) \cdot \operatorname{lcm}(n, m)$ for any positive integers n and m

A special case

• $lcm(n, m) = n \cdot m$ for any relatively prime positive integers n and m because gcd(n, m) = 1

The Euclidean algorithm to compute lcm(n, m)

- Run the Euclidean algorithm to compute gcd(n, m)
- Return $lcm(n, m) = (n \cdot m)/gcd(n, m)$

Theorem

• $n \cdot m = \gcd(n, m) \cdot \operatorname{lcm}(n, m)$ for any positive integers n and m

Proof idea

- Let N be the multi-set of the prime factors of n
- Let M be the multi-set of the prime factors of m
- Then $N \cap M$ is the multi-set of the prime factors of gcd(n, m)
- Then $N \cup M$ is the multi-set of the prime factors of lcm(n, m)
- Principle of Inclusion Exclusion: for two multi-sets N and M

$$|N| + |M| = |N \cap M| + |N \cup M|$$

Theorem

• $n \cdot m = \gcd(n, m) \cdot \operatorname{lcm}(n, m)$ for any positive integers n and m

Proof outline

- Every prime factor of the product $n \cdot m$ that is a prime factor of both n and m appears twice in the product of n and m, once in gcd(n, m) and once in lcm(n, m) and therefore it also appears twice in the product of gcd(n, m) and lcm(n, m)
- Every prime factor of the product $n \cdot m$ that is a prime factor of only n or only m appears only once in the product of n and m, and since it is a prime factor of lcm(n, m) but it is not a prime factor of gcd(n, m), it also appears only once in the product of gcd(n, m) and lcm(n, m)

GCD and LCM For More Than Two Integers

Definition

- Let n_1, n_2, \ldots, n_k be k positive integers
- $gcd(n_1, n_2, ..., n_k)$ is the largest positive integer that is a divisor of these k integers
- $lcm(n_1, n_2, ..., n_k)$ is the smallest positive integer that is a multiple of these k integers

Computation

- $gcd(n_1, n_2, ..., n_k) = gcd(...(gcd(gcd(n_1, n_2), n_3), ..., n_k))$
- $lcm(n_1, n_2, ..., n_k) = lcm(...(lcm(lcm(n_1, n_2), n_3), ..., n_k))$

Recursive Computation

- $gcd(n_1, n_2, ..., n_k) = gcd(n_1, gcd(n_2, n_3, ..., n_k))$
- $lcm(n_1, n_2, ..., n_k) = lcm(n_1, lcm(n_2, n_3, ..., n_k))$

GCD and LCM For More Than Two Integers

Example

$$\gcd(36,60,90) = \gcd(\gcd(36,60),90) = \gcd(12,90) = 6$$

$$= \gcd(36,\gcd(60,90)) = \gcd(36,30) = 6$$

$$\operatorname{lcm}(36,60,90) = \operatorname{lcm}(\operatorname{lcm}(36,60),90) = \operatorname{lcm}(180,90) = 180$$

$$= \operatorname{lcm}(36,\operatorname{lcm}(60,90)) = \operatorname{lcm}(36,180) = 180$$

Remark

It is not always true that

$$\gcd(n_1,n_2,\ldots,n_k)\cdot \operatorname{lcm}(n_1,n_2,\ldots,n_k) = n_1 n_2 \cdots n_k$$

• Example: $gcd(36, 60, 90) \cdot lcm(36, 60, 90) = 6 \cdot 180 = 1080$ but $36 \cdot 60 \cdot 90 = 194400$



The Efficiency of the gcd and lcm Algorithms

The gcd algorithms

- The largest divisor and the common factors algorithms are not efficient: their running times depend on the values of n and m
- The Euclidean algorithm is very efficient: its running time depends on the values of log(n) and log(m)
- This is an exponential improvement!

The lcm algorithms

- The smallest multiple and the factorization algorithms are not efficient: their running times depend on the values of n and m
- The Euclidean algorithm is very efficient: its running time depends on the values of log(n) and log(m)
- This is an exponential improvement!

Solving Modular Equations

Problem

- Let $0 < d_1 < d_2 < \cdots < d_k$ be k integers and let $0 \le r < d_1$
- Find the smallest n > r such that $n \mod d_i = r$ for all $1 \le i \le k$

Solution

- $n = \text{lcm}(d_1, d_2, \dots, d_k) + r$
- Trivial solution: n = r without the constraint n > r
- All solutions: $q \cdot \text{lcm}(d_1, d_2, \dots, d_k) + r$ for any integer $q \ge 0$

Proof outline

- Suppose $m \mod d_i = r$ for all $1 \le i \le k$
- Then d_i is a divisor of m-r for all $1 \le i \le k$
- Therefore, $lcm(d_1, d_2, ..., d_k)$ is a divisor of m r
- As a result, $m = q \cdot \text{lcm}(d_1, d_2, \dots, d_k) + r$

Example

Equations

$$n \mod 4 = 2$$

$$n \mod 6 = 2$$

$$n \mod 9 = 2$$

Solution

- lcm(4, 6, 9) = 36
- n = lcm(4, 6, 9) + 2 = 38

Verification

- $38 = 9 \cdot 4 + 2 \implies (38 \mod 4) = 2$
- $38 = 6 \cdot 6 + 2 \implies (38 \mod 6) = 2$
- $38 = 4 \cdot 9 + 2 \implies (38 \mod 9) = 2$

The Chinese Remainder Theorem

Theorem

- Let d_1, d_2, \ldots, d_k be k pairwise relatively prime positive integers $-\gcd(d_i, d_i) = 1$ for all $1 \le i \ne j \le k$
- Let $0 \le r_i < d_i$ for all $1 \le i \le k$
- There exists a unique positive integer n < d₁d₂ ··· d_k such that
 n mod d_i = r_i for all 1 ≤ i ≤ k

Example

• n = 53 is the only positive integer less than $105 = 3 \cdot 5 \cdot 7$ such that

Online example

https://youtu.be/ru7mWZJlRQg

Fermat's Little Theorem

Theorem

• For any prime p that is not a divisor of an integer n > 0:

$$p \mid (n^{p-1} - 1)$$

$$p \mid (n^{p-1} - 1)$$
 $n^{p-1} \equiv 1 \pmod{p}$

• For any prime p and any integer n > 0:

$$p \mid (n^p - n)$$

$$p \mid (n^p - n)$$
 $n^p \equiv n \pmod{p}$

Online resources

- Story: https://youtu.be/00Q16YCYksw
- Examples and proof: https://youtu.be/w0ZQvZLx2KA

Examples

$$p=6$$
 $3^5 \mod 6 = 243 \mod 6 = 3 = 3 \neq 1$
 $7^5 \mod 6 = (7 \mod 6)^5 \mod 6 = 1^5 \mod 6 = 1 \mod 6 = 1$
 $11^5 \mod 6 = (11 \mod 6)^5 \mod 6 = (-1)^5 \mod 6 = -1 \mod 6 \neq 1$

Exponentiation Modulo Primes

Example I

```
11<sup>48</sup> mod 17 = 11<sup>16·3</sup> mod 17

= (11^{16})^3 mod 17

= (11^{16} \text{ mod } 17)^3 mod 17

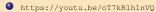
= 1^3 mod 17

= 1
```

Example II

$$57^{38} \mod 13$$
 = $(57 \mod 13)^{38} \mod 13$
= $5^{38} \mod 13$
= $5^{3\cdot 12+2} \mod 13$
= $((5^{12} \mod 13)^3 \cdot (5^2 \mod 13)) \mod 13$
= $(1^3 \cdot 12) \mod 13$
= 12

Online examples



Definition

- For a positive integer n, the Euler's totient function $\varphi(n)$ is the number of positive integers smaller than n that are relatively prime to n
- $\varphi(n)$ is the number of integers k ($1 \le k \le n$) for which gcd(n, k) = 1

Examples

- $\varphi(4) = 2$ because only $\{1,3\}$ are relatively prime to 4
- $\varphi(6) = 2$ because only $\{1,5\}$ are relatively prime to 6
- $\varphi(7) = 6$ because $\{1, 2, 3, 4, 5, 6\}$ are all relatively prime to 7
- $\varphi(8) = 4$ because only $\{1, 3, 5, 7\}$ are relatively prime to 8
- $\varphi(9) = 6$ because only $\{1, 2, 4, 5, 7, 8\}$ are relatively prime to 9

Proposition

• For any prime p

$$\varphi(p)=p-1$$

Proof

• By definition, for a prime integer p, all the numbers 1, 2, ..., p-1 are relatively prime to p

Examples

- The 4 integers in the set $\{1,2,3,4\}$ are relatively prime to 5 and $\varphi(5)=5-1=4$
- The 6 integers in the set $\{1, 2, 3, 4, 5, 6\}$ are relatively prime to 7 and $\varphi(7) = 7 1 = 6$

Proposition

• For any positive integer k and a prime integer p

$$\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)$$

Example I

- The 6 integers {1,2,4,5,7,8} are relatively prime to 9
- $\varphi(9) = \varphi(3^2) = 3^2 3^1 = 9 3 = 9(1 \frac{1}{3}) = 6$

Example II

- The 8 integers {1, 3, 5, 7, 9, 11, 13, 15} are relatively prime to 16
- $\varphi(16) = \varphi(2^4) = 2^4 2^3 = 16 8 = 16\left(1 \frac{1}{2}\right) = 8$

Proposition

• For any positive integer k and a prime integer p

$$\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)$$

The k = 1 special case

$$\varphi(p^1) = p^1 - p^0 = p - 1 = p\left(1 - \frac{1}{p}\right)$$

Proof outline

- Only multiples of p (including p^k) are not relatively prime to p^k
- There are $p^{k-1} = p^k/p$ positive multiples of $p: p, 2p, \dots, p^{k-1}p$
- Therefore, $\varphi(p^k) = p^k p^{k-1}$

Proposition

• For any relatively prime positive integers *n* and *m*,

$$\varphi(nm) = \varphi(n)\varphi(m)$$

Proof

Based on the Chinese Remainder Theorem

Example

- {1,5,7,11,13,17,19,23,25,29,31,35} are relatively prime to 36
- $\varphi(36) = \varphi(4 \cdot 9) = \varphi(4)\varphi(9) = 2 \cdot 6 = 12$
- $\varphi(36) = \varphi(6 \cdot 6) \neq \varphi(6)\varphi(6) = 2 \cdot 2 = 4$
- $\varphi(36) = \varphi(6^2) \neq 6^2 6^1 = 30$

Corollary

For any two different primes p and q,

$$\varphi(pq) = (p-1)(q-1)$$

Proof

• Implied by the two propositions for the φ value of a prime integer and the φ value of a product

$$\varphi(pq) = \varphi(p)\varphi(q) = (p-1)(q-1)$$

Example

- {1,2,4,7,8,11,13,14} are relatively prime to 15
- $\varphi(15) = \varphi(3 \cdot 5) = \varphi(3)\varphi(5) = (3-1)(5-1) = 2 \cdot 4 = 8$

Theorem

• For a positive integer n

$$\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

where the product is over the distinct prime factors of n

Example

• The distinct prime factors of 36 are 2 and 3. Therefore

$$\varphi(36) = 36\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right) = 36 \cdot \frac{1}{2} \cdot \frac{2}{3} = 12$$

Online resources

- https://youtu.be/qa_hksAzpSq
- https://youtu.be/EcAT1XmHouk

Proof

• Let $n = p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h}$ be the prime factorization of n

$$\varphi(n) = \varphi(p_1^{k_1})\varphi(p_2^{k_2})\cdots\varphi(p_h^{k_h})
= p_1^{k_1} \left(1 - \frac{1}{p_1}\right) p_2^{k_2} \left(1 - \frac{1}{p_2}\right)\cdots p_h^{k_h} \left(1 - \frac{1}{p_h}\right)
= \left(p_1^{k_1} p_2^{k_2} \cdots p_h^{k_h}\right) \left(\left(1 - \frac{1}{p_2}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_h}\right)\right)
= n \prod_{i=1}^h \left(1 - \frac{1}{p_i}\right)
= n \prod_{i=1}^h \left(1 - \frac{1}{p_i}\right)$$

Euler's Theorem

Theorem

• For any relatively prime positive integers *n* and *m*

$$m^{\varphi(n)} \equiv 1 \pmod{n}$$

The Fermat's Little Theorem special case

- If *n* is prime then $\varphi(n) = n 1$
- By the Euler's Theorem

$$m^{\varphi(n)} = m^{n-1} \equiv 1 \pmod{n}$$

Examples

• $\varphi(8) = 4$ because only $\{1, 3, 5, 7\}$ are relatively prime to 8

$$1^4 = 1 = 0 \cdot 8 + 1$$

 $3^4 = 81 = 10 \cdot 8 + 1$
 $5^4 = 625 = 78 \cdot 8 + 1$
 $7^4 = 2401 = 300 \cdot 8 + 1$

• $\varphi(12) = 4$ because only $\{1, 5, 7, 11\}$ are relatively prime to 12

$$1^4 = 1 = 0 \cdot 12 + 1$$

 $5^4 = 625 = 52 \cdot 12 + 1$
 $7^4 = 2401 = 200 \cdot 12 + 1$
 $11^4 = 14641 = 1220 \cdot 12 + 1$

Computing 17⁸⁰² mod 24

Preprocessing

- $\varphi(24) = \varphi(3 \cdot 2^3) = \varphi(3)\varphi(2^3) = 2(2^3 2^2) = 2 \cdot 4 = 8$
- Therefore, Euler's Theorem implies that 178 mod 24 = 1

Computation

$$17^{802} \mod 24 = (17^2 \cdot 17^{800}) \mod 24$$

$$= ((17^2 \mod 24) \cdot ((17^8)^{100} \mod 24)) \mod 24$$

$$= ((289 \mod 24) \cdot ((17^8) \mod 24)^{100}) \mod 24$$

$$= (1 \cdot 1^{100}) \mod 24$$

$$= 1$$

Online example (first 4 minutes)

https://youtu.be/FHkS3ydTM3M

Journey into cryptography: Modern Cryptography

All videos

• https://www.khanacademy.org/computing/computer-science/cryptography#modern-crypt

List of videos

- Public key cryptography: What is it? https://youtu.be/Msqqp09R5Hc
- The discrete logarithm problem: https://youtu.be/SL7J8hPKEWY
- Diffie-hellman key exchange: https://youtu.be/M-0qt6tdHzk
- RSA encryption: Step 1: https://youtu.be/EPXilYOa71c
- RSA encryption: Step 2: https://youtu.be/IY8BXNFgnyI
- RSA encryption: Step 3: https://youtu.be/cJvoi0LuutQ
- RSA encryption: Step 4: https://youtu.be/UjIPMJd6Xks

Additional Online Resources

More about Public Key Systems and RSA

- How Encryption Works: https://youtu.be/IBocnou79yI
- RSA Code: https://youtu.be/t5laCDDoQTk

Relevant topics

- Perfect numbers: https://youtu.be/teBtVMSVRPc
- Wilson's Theorem: https://youtu.be/VLFjOP7iFI0

Magic with Modular Arithmetic

The Chinese Remainder Theorem and Cards

https://youtu.be/19dXo5f3zDc