Discrete Math Quiz: Number Theory

Nam	e and ID:
1.	Find the prime factors of the following two numbers:
	(a) $252 = $
	(b) $103 = $
2.	Compute $(n \mod d)$ for the following n and d .
	(a) $(101 \mod 3) = $
	(b) $(101 \mod 5) = $
	(c) $(101 \mod 7) = $
	(d) $(101^2 \mod 3) = $
	(e) $(101^2 \mod 5) = $
	(f) $(101^2 \mod 7) = $
3.	Find, if it exists, $(n^{-1} \mod d)$ (inverse of $n \mod d$) for the following $n \mod d$.
	(a) $(3^{-1} \mod 7) = $
	(b) $(4^{-1} \mod 7) = $
	(c) $(5^{-1} \mod 6) = $
	(d) $(3^{-1} \mod 6) = $
4.	Compute $\varphi(n)$ for the following n .
	(a) $\varphi(17) = _{}$
	(b) $\varphi(25) = $
	(c) $\varphi(35) = $
	(d) $\varphi(54) = _{}$
5.	Compute $(n^k \mod d)$ for the following $n, k, \text{ and } d$.
	(a) $(2^{200} \mod 3) = $
	(b) $(100^{16} \mod 17) = $
	(c) $(1001^8 \mod 15) = $
6.	Find the greatest common divisors for the following set of numbers.
	(a) $gcd(64, 81) = $
	(b) $gcd(18, 27, 45, 63) = $
7.	Find the least common multiply in the first part and answer the question in the second part.
	(a) $lcm(18, 27, 45) = $
	(b) What is the smallest integer $n > 3$ for which $(n \mod 6) = (n \mod 8) = 3$?
8.	Bonus: Compute 10! mod 11 =