Discrete Math

Induction Practice Problems

Name:	 		 																				
Id:	 																						

1	Prove	the	following	no ic	lentity	by	induction	on	n	>	1
Ι.	TTOVE	une	TOHOWH	18 IC	иенину	Dy	mauchon	OH	$T\iota$	\leq	т.

$$\sum_{i=1}^{n} i(i+1) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

2. Prove the following identity by induction on $n \geq 2$.

$$\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 1 - \frac{1}{n}$$