Discrete Math

Induction Practice Problems: Solutions

1. Prove the following identity by induction on $n \geq 1$.

$$\sum_{i=1}^{n} i(i+1) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$$

Proof by induction:

• Notations.

$$L(n) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1)$$

$$R(n) = \frac{n(n+1)(n+2)}{3}$$

• Induction base. Prove that L(1) = R(1):

$$L(1) = 1 \cdot 2 = 2 = \frac{1 \cdot 2 \cdot 3}{3} = R(1)$$

• Induction hypothesis. Assume that L(k) = R(k) for $k \ge 1$:

$$\sum_{i=1}^{k} i(i+1) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + k(k+1)$$
$$= \frac{k(k+1)(k+2)}{3}$$

• Inductive step. Prove that L(k+1) = R(k+1) for $k \ge 1$:

$$L(k+1) = 1 \cdot 2 + 2 \cdot 3 + + \dots + k(k+1) + (k+1)(k+2) \qquad (* definition of L(k+1) *)$$

$$= L(k) + (k+1)(k+2) \qquad (* definition of L(k) *)$$

$$= R(k) + (k+1)(k+2) \qquad (* induction hypothesis *)$$

$$= \frac{k(k+1)(k+2)}{3} + (k+1)(k+2) \qquad (* definition of R(k) *)$$

$$= \frac{k(k+1)(k+2) + 3(k+1)(k+2)}{3} \qquad (* algebra *)$$

$$= \frac{(k+3)(k+1)(k+2)}{3} \qquad (* algebra *)$$

$$= \frac{(k+1)(k+2)(k+3)}{3} \qquad (* algebra *)$$

$$= R(k+1) \qquad (* definition of R(k+1) *)$$

A proof without induction: Recall that

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

These two identities imply the following,

$$L(n) = \sum_{i=1}^{n} i(i+1) \qquad (* \text{ definition of } L(n) *)$$

$$= \sum_{i=1}^{n} (i^{2} + i) \qquad (* \text{ algebra } *)$$

$$= \sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} i \qquad (* \text{ algebra } *)$$

$$= \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \qquad (* \text{ applying above identities } *)$$

$$= \frac{n(n+1)(2n+1) + 3n(n+1)}{6} \qquad (* \text{ algebra } *)$$

$$= \frac{n(n+1)((2n+1+3))}{6} \qquad (* \text{ algebra } *)$$

$$= \frac{n(n+1)(2n+4)}{6} \qquad (* \text{ algebra } *)$$

$$= \frac{n(n+1)(2n+2)}{6} \qquad (* \text{ algebra } *)$$

$$= \frac{n(n+1)(n+2)}{3} \qquad (* \text{ algebra } *)$$

$$= R(n) \qquad (* \text{ definition of } R(n) *)$$

Visual proofs:

- https://www.youtube.com/watch?v=U7sQ4b7DAHg
- https://www.youtube.com/watch?v=Hb5NOMoDNH8
- https://www.youtube.com/watch?v=kedEuSNQf6I

2. Prove the following identity by induction on $n \geq 2$.

$$\sum_{i=1}^{n-1} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 1 - \frac{1}{n}$$

Proof by induction:

• Notations.

$$L(n) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n}$$

 $R(n) = 1 - \frac{1}{n}$

• Induction base. Prove that L(2) = R(2):

$$L(2) = \frac{1}{1 \cdot 2} = \frac{1}{2} = 1 - \frac{1}{2} = R(2)$$

• Induction hypothesis. Assume that L(k) = R(k) for $k \ge 2$:

$$\sum_{i=1}^{k-1} \frac{1}{i(i+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(k-1)k}$$
$$= 1 - \frac{1}{k}$$

• Inductive step. Prove that L(k+1) = R(k+1) for $k \ge 2$:

$$L(k+1) = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(k-1)k} + \frac{1}{k(k+1)} \qquad (* \text{ definition of } L(k+1) *)$$

$$= L(k) + \frac{1}{k(k+1)} \qquad (* \text{ definition of } L(k) *)$$

$$= R(k) + \frac{1}{k(k+1)} \qquad (* \text{ induction hypothesis } *)$$

$$= 1 - \frac{1}{k} + \frac{1}{k(k+1)} \qquad (* \text{ definition of } R(k) *)$$

$$= 1 - \frac{k+1}{k(k+1)} + \frac{1}{k(k+1)} \qquad (* \text{ algebra } *)$$

$$= 1 - \frac{k}{k(k+1)} \qquad (* \text{ algebra } *)$$

$$= 1 - \frac{1}{k+1} \qquad (* \text{ algebra } *)$$

$$= 1 - \frac{1}{k+1} \qquad (* \text{ algebra } *)$$

$$= R(k+1) \qquad (* \text{ definition of } R(n) *)$$

A proof without induction: The following is an identity for any integer $i \ge 1$,

$$\frac{1}{i} - \frac{1}{i+1} = \frac{(i+1)-i}{i(i+1)} = \frac{1}{i(i+1)}$$

This identity implies the following,

$$L(n) = \sum_{i=1}^{n-1} \frac{1}{i(i+1)}$$
 (* definition of $L(n)$ *)
$$= \sum_{i=1}^{n-1} \left(\frac{1}{i} - \frac{1}{i+1}\right)$$
 (* applying above identity *)
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-2} - \frac{1}{n-1}\right) + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$
 (* opening the sum *)
$$= \frac{1}{1} - \left(\frac{1}{2} - \frac{1}{2}\right) - \left(\frac{1}{3} - \frac{1}{3}\right) - \dots - \left(\frac{1}{n-1} - \frac{1}{n-1}\right) - \frac{1}{n}$$
 (* rearranging terms *)
$$= 1 - \frac{1}{n}$$
 (* algebra *)
$$= R(n)$$
 (* definition of $R(n)$ *)

3. Prove by induction that $n! > 2^n$ for all integers $n \ge 4$.

The inequality is wrong for $1 \le n \le 3$

$$1! = 1 < 2^{1} = 2$$

$$2! = 2 < 2^{2} = 4$$

$$3! = 6 < 2^{3} = 8$$

$$4! = 24 > 2^{4} = 16$$

$$5! = 120 > 2^{5} = 32$$

$$6! = 720 > 2^{6} = 64$$

Proof by induction:

- Induction base. $4! = 24 > 16 = 2^4$ for n = 4.
- Induction hypothesis. Assume that $k! > 2^k$ for $k \ge 4$.
- Inductive step. Prove that $(k+1)! > 2^{k+1}$ for $k \ge 4$.

$$(k+1)! = (k+1)k!$$
 (* definition of $(k+1)!$ *)
 $> (k+1)2^k$ (* induction hypothesis *)
 $> 2 \cdot 2^k$ (* $k > 1 \Rightarrow (k+1) > 2$ *)
 $= 2^{k+1}$ (* definition of 2^{k+1} *)

4. Prove by induction that $8^n - 1$ is divisible by 7 for all integers $n \ge 1$.

Proof by induction:

- Induction base. $8^1 1 = 7 = 7 \cdot 1$ for n = 1.
- Induction hypothesis. Assume that $8^k 1 = 7 \cdot q$ for an integer q.
- Inductive step. Prove that $8^{k+1} 1 = 7 \cdot p$ for an integer p.

$$8^{k+1} - 1 = 8 \cdot 8^k - 1$$
 (* algebra *)
= $7 \cdot 8^k + (8^k - 1)$ (* algebra *)
= $7 \cdot 8^k + 7 \cdot q$ (* induction hypothesis *)
= $7(8^k + q)$ (* algebra *)

Hence, $8^{k+1} = 7 \cdot p$ for integer $p = 8^k + q$ and is therefore divisible by 7.

Another proof: The following is an identity for any positive real numbers $x \ge y$ and an integer $n \ge 1$,

$$x^{n} - y^{n} = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^{2} + \dots + x^{2}y^{n-3} + xy^{n-2} + y^{n-1})$$

For x = 8 and y = 1 the above identity is equivalent to the following identity,

$$8^{n} - 1 = (8 - 1)(8^{n-1} + 8^{n-2} + \dots + 8 + 1)$$
$$= 7(8^{n-1} + 8^{n-2} + \dots + 8 + 1)$$

This implies that $8^n - 1$ is divisible by 7.

5. A ternary string of length n is a list of n digits in which each digit is either 0, or 1, or 2. Prove by induction that there are 3^n ternary strings of length n for all integers $n \ge 1$.

Proof by induction:

- Induction base. $3^1 = 3$ and there are 3 ternary strings of length 1: (0), (1), and (2).
- Induction hypothesis. Assume that there are 3^k ternary strings of length k for $k \geq 1$.
- Inductive step. Prove that there are 3^{k+1} ternary strings of length k+1 for $k \ge 1$. For any ternary string $s = (d_1 d_2 \cdots d_k)$ of length k in which $d_i \in \{0, 1, 2\}$ for $1 \le i \le k$ define the following three extensions into ternary strings of length k+1:
 - $s_0 = (d_1 d_2 \cdots d_k 0)$
 - $s_1 = (d_1 d_2 \cdots d_k 1)$
 - $s_2 = (d_1 d_2 \cdots d_k 2)$

As a result, by the induction hypothesis, there are at least $3 \cdot 3^k = 3^{k+1}$ ternary strings of length k+1. Equality holds since any ternary string $s' = (d_1 d_2 \cdots d_k d_{k+1})$ is the $s_{d_{k+1}}$ extension of the ternary string $s = (d_1 d_2 \cdots d_k)$.