Discrete Structures

Recursion Practice Problems

Name:			
-------	--	--	--

1	α 1 μ 1	C 11 .	recurrences	1		11 1		1		1
	SOLVE THE	touowing	recurrences	ากต	nrove	That	v_{011r}	COLLITIONS	are	COTTACT
т.	DOLVE THE	10110 W III g	1 CC ul I CIICOS	and	DIOVE	unau	your	SOLUTIONS	anc	COLLCCO.

$$T(n) = \begin{cases} 2 & \text{for } n = 1\\ T(n-1) + 7 & \text{for } n \ge 2 \end{cases}$$

$$T(n) = \begin{cases} 3 & \text{for } n = 1\\ 2T(n-1) & \text{for } n \ge 2 \end{cases}$$

$$T(n) = \begin{cases} 2 & \text{for } n = 1\\ (n+1)T(n-1) & \text{for } n \ge 2 \end{cases}$$

2.	Solve	the	following	recurrence	and	prove	that	vour	solution	is	correct.

$$P(n) = \begin{cases} 1 & \text{for } n = 0\\ 2 & \text{for } n = 1\\ 5P(n-1) - 6P(n-2) & \text{for } n \ge 2 \end{cases}$$

Guide: Do the bottom-up evaluation, guess the solution, and prove by induction the correctness of your guess.

$F_n = \begin{cases} 0 & \text{for } n = 0\\ 1 & \text{for } n = 1\\ F_{n-1} + F_{n-2} & \text{for } n \ge 2 \end{cases}$
What is the smallest n for which $F_n > 100$? What is the smallest n for which $F_n > 1000$?
Let $A_n = (F_1 + F_2 + \dots + F_n)/n$ be the average of the first n Fibonacci numbers. What is the smallest n for which $A_n > 10$?
Find all n for which $F_n = n$. Explain why these are the only cases.
Find all n for which $F_n = n^2$. Explain why these are the only cases.

3. Some facts about the Fibonacci sequence: $0,1,1,2,3,5,8,13,21,34,55,89,\ldots$

bers and/or the Golden Ratio that do not appear in the class presentation.						
You do not need to provide proofs.						
Support your findings with pointers to their resources.						

4. Prove the following identity for $n \geq$	4.	Prove	the	following	identity	for	$n \ge$	2
--	----	-------	-----	-----------	----------	-----	---------	---

$$F_{n+1} + F_{n-1} = F_{n+2} - F_{n-2}$$

Hint: There exists a simple proof without induction that is based on the recursive definition of the Fibonacci numbers.

5.	Define	the	following	(almost	Fibonacci) recurrence
				(,

$$G_n = \begin{cases} 0 & \text{for } n = 0\\ 1 & \text{for } n = 1\\ G_{n-1} + G_{n-2} + 1 & \text{for } n \ge 2 \end{cases}$$

$ \left(\begin{array}{c} G_{n-1} + G_{n-2} + 1 & \text{for } n \ge 2 \end{array}\right) $
Find the values of G_0, G_1, \ldots, G_{10} .
Express G_n as a function of Fibonacci numbers.
Prove that your expression for G_n is correct for all $n \geq 0$.

	$F_{2n+1} =$	$F_{n+1}^2 + F_n^2$		

7.	For $n \geq 1$, in how many out of the $n!$ permutations $\pi = (\pi(1), \pi(2), \dots, \pi(n))$ of the numbers $\{1, 2, \dots, n\}$ the value of $\pi(i)$ is either $i - 1$, or i , or $i + 1$ for all $1 \leq i \leq n$?
	Example: The permutation (21354) follows the rules while the permutation (21534) does not because $\pi(3) = 5$.
	Hint: Find the answer for small n by checking all the permutations and then find the recursive formula depending on the possible values for $\pi(n)$.