Discrete Math

Sets Practice Problems

Name:	
Id:	
į	Grade

1.	Let U be the set of all the positive integers smaller than 19, let A be the set of all the even positive integers smaller than 19, and let B be the set of all the positive integers smaller than 19 that are divided by 3. Find the members of each of the following 11 sets. The complement of sets should be defined relative to the set U which contains both A and B .
	(a) $A = $
	(b) $B = $
	(c) $\neg A = $
	(d) $\neg B =$
	(e) $A \cup B =$
	(f) $A \cap B =$
	(g) $A \setminus B =$
	(h) $B \setminus A =$
	(i) $A \triangle B =$
	$(j) \neg (A \cup B) = $
	$(k) \neg (A \cap B) = $
	notations for a set X : X' , \overline{X} , $\neg X$, and X^C .
3.	Write the principle of inclusion exclusion for the five sets A, B, C, D , and E .

(**)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
(b)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

4. Prove that the distributive laws for sets are correct. You may use Venn diagrams.

	1 4 5 6 41	$A \subset (D \cap C)$		
a) If $A \subseteq B$	and $A \subseteq C$ the	en $A \subseteq (B \cap C)$		
o) If $A \subseteq C$	and $B \subseteq C$ the	en $(A \cup B) \subseteq C$		

$D \cap A \subseteq D$	and $B \subseteq C$ th	ien $A \subseteq C$		
,				
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		
) If $A \in B$	and $B \in C$ the	en $A \in C$		

			your answer.				
1.	C	.1	D 10 0) (4 o D)	(0) 1) 0 (0	(
ove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(X \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
ove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$		
ove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
rove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C$	$(A \setminus B)$	
rove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C \setminus A)$	$(A \setminus B)$	
rove or disp	prove: for any	three sets A ,	B, and C : C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C \setminus A)$		
rove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C \setminus A)$	$(A \setminus B)$	
rove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C \setminus A)$	$(A \setminus B)$	
rove or disp	prove: for any	three sets A ,	B, and C: C	$\setminus (A \cap B) =$	$(C \setminus A) \cap (C \setminus A)$		

the f	$a(t) \leq b(t) \leq c(t)$ be the lengths of the three sides of a triangle t in a non-decreasing order. Define following sets: T: The set of all triangles. X: The set of all triangles t for which $a(t) = b(t)$. Y: The set of all triangles t for which $b(t) = c(t)$.
Using	g only set operations on these three set, define the following sets. Justify your answers.
(a)	The set of all equilateral triangles (all sides equal).
(b)	The set of all isosceles triangles (at least two sides equal).
(c)	The set of all scalene triangles (no two sides equal).

	ments in the set			
Explain you	r answers.			
(a) $A \cap B$				
(b) $A \cup B$				
(c) $A \setminus B$				
(d) $B \setminus A$				

How many students study only Computer Science? How many students study neither Math nor Computer Science? Dlain how you found the answers.	
) How many students study neither Math nor Computer Science?	
Jam now you found the answers.	

12. 3	36 students take the Discrete Structures class. They had 3 quizzes called X, Y , and Z . • Surprisingly, only 1 student did not get an A on any quiz while the rest of the students got an A (
	aced) on at least one quiz.
	• 21 students aced X , 19 students aced Y , and 17 students aced Z .
	• 9 students aced both X and Y , 11 students aced both X and Z , and 8 students aced both Y and Z .
	(a) How many students aced at least one quiz?
	(b) How many students aced all three quizzes?
	(c) How may students aced both X and Y but not Z ?
	(d) How may students aced both X and Z but not Y ?
	(e) How may students aced both Y and Z but not X ?
	(f) How may students aced only X ?
	(g) How may students aced only Y ?
	(h) How may students aced only Z ?
	Justify your answers.