The table below contains several set laws or identities, which are pairs of sets that are equal to each other (we will show that these laws are true in Topic 3:)
| Name | Intersection ($\boldsymbol{\cap}$) version | Union ($\boldsymbol{\cup}$) version |
|---|---|---|
| Identity Law | $A \cap U = U \cap A = A$ | $A \cup \emptyset = \emptyset \cup A = A$ |
| Null Law | $A \cap \emptyset = \emptyset$ | $A \cup U = U$ |
| Idempotent Law | $A \cap A = A$ | $A \cup A = A$ |
| Complement Law | $A \cap A^c = \emptyset$ | $A \cup A^c = U$ |
| Commutative Law | $A \cap B = B \cap A$ | $A \cup B = B \cup A$ |
| Associative Law | $(A \cap B) \cap C = A \cap (B \cap C)$ | $(A \cup B) \cup C = A \cup (B \cup C)$ |
| Distributive Law | $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ | $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ |
| Absorption Law | $A \cap (A \cup B) = A$ | $A \cup (A \cap B) = A$ |
| DeMorgan's Law | $(A \cap B)^c = A^c \cup B^c$ | $(A \cup B)^c = A^c \cap B^c$ |
| Double Complement (Involution) Law | ${(A^c)}^c = {A^c}^c = A$ | |