Set Laws/Identities

The table below contains several set laws or identities, which are pairs of sets that are equal to each other (we will show that these laws are true in Topic 3:)

NameIntersection ($\boldsymbol{\cap}$) versionUnion ($\boldsymbol{\cup}$) version
Identity Law$A \cap U = U \cap A = A$$A \cup \emptyset = \emptyset \cup A = A$
Null Law$A \cap \emptyset = \emptyset$$A \cup U = U$
Idempotent Law$A \cap A = A$$A \cup A = A$
Complement Law$A \cap A^c = \emptyset$$A \cup A^c = U$
Commutative Law$A \cap B = B \cap A$$A \cup B = B \cup A$
Associative Law$(A \cap B) \cap C = A \cap (B \cap C)$$(A \cup B) \cup C = A \cup (B \cup C)$
Distributive Law$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Absorption Law$A \cap (A \cup B) = A$$A \cup (A \cap B) = A$
DeMorgan's Law$(A \cap B)^c = A^c \cup B^c$$(A \cup B)^c = A^c \cap B^c$
Double Complement (Involution) Law${(A^c)}^c = {A^c}^c = A$