Definition 1. [Even integers] An integer n is called **even** if there exists an integer k such that n = 2k.

Theorem 1. [Sum of even integers] If m and n are both even integers, then their sum, m + n, is also even.

Proof. [Sum of even integers] Let m and n be two even integers. According to the definition of even integers, there exists $k_1 \in \mathbb{Z}$ such that $m = 2k_1$ and $k_2 \in \mathbb{Z}$ such that $n = 2k_2$.

Notice that

$$m + n = 2k_1 + 2k_2 = 2(k_1 + k_2),$$

which is, by definition, an even integer because $(k_1 + k_2)$ is an integer. \Box

Corollary 1. [Square of an odd integer] If n is an odd integer, then n^2 is also odd.

This is a corollary of a probably more general theorem:

Theorem 2. [Product of odd integers] If $n_1, n_2, n_3, \ldots, n_m$ are odd integers, then their product, $n_1 \cdot n_2 \cdot n_3 \cdot \cdots \cdot n_m$, is also odd.