Relation Properties

Definition. [Congruence] An integer $m \in \mathbb{Z}$ is congruent to $n$ modulo $p$ if $m - n$ is a multiple of $p \in \mathbb{Z}$. If so, we write $m \equiv n (\mod p)$ (

$m \equiv n (\mod p)$
). Example: The congruence relation $\text{Congruent}$ on some the set of integers $\mathbb{Z}$.

In summary, the $\text{Congruent}$ relation has the following $3$ properties: reflexive, symmetric, and transitive.