Example #3: Consider the set of rational numbers: $\mathbb{Q}$. Each number can be written in more than one way, e.g., $\frac{1}{2} \;$$= \frac{2}{4} \;$$= 0.5 \;$$= 50:100 \;$$= 50\%$, etc.
The relation that relates ways of writing out the same number:
$\text{Same-$\mathbb{Q}$-Num} \;$$= \{(\frac{1}{2}, \,$$\frac{1}{2}), \,$$(\frac{1}{2}, 0.5), \,$$(0.5, \frac{1}{2}), \,$$(0.5, 0.5), \,$$(\frac{1}{2}, 50:100), \,$$\dots\}$
is an equivalence relation. This is true because: