Equivalence Classes
Examples:
- $P_1 = \;$$\{[0], [0.25]\} \;$$= \{\{0, 1, -15\}, \{0.25, 0.5, 1.5, -15.67\}\}$ would correspond to an equivalence relation that relates integers to integers, and fractions to fractions. We can call it $\text{Int-vs-Frac}$.
- $P_2 = \{\{0\}, \{0.25\}, \{0.5\}, \{1\}, \{1.5\}, \{-15\}, \{-15.67\}\}$ corresponds to the $\text{Equals}$ relation on $S$.
- $P_3 \;$$= \{[0], [1], [-15]\} \;$$= \{\{0, 0.25, 0.5\}, \{1, 1.5\}, \{-15, -15.67\}\}$ corresponds to the $\text{Same-Int-Parts}$ relation on $S$.
Fun Class Activity: Let $S = \{1, 1.23, 2, 2.0, 2.5, 3, \frac{9}{3}\}$.
- Write out the partition on $S$ that corresponds to the relation $\text{Same-$\mathbb{Q}$-Num}$.
- What relation does the following partition of $S$ correspond to: $\{\{1, 1.23\}, \{2, 2.0, 2.5\}, \{3, \frac{9}{3}\}\}?$