Let's also practice converting to base 16. First, a handy list of common powers of $16$:
$16^0$ | $16^1$ | $16^2$ | $16^3$ | $16^4$ | $16^5$ | $16^6$ | $16^7$ | $16^8$ |
---|---|---|---|---|---|---|---|---|
$1$ | $16$ | $256$ | $4,096$ | $65,536$ | $1,048,576$ | $16,777,216$ | $268,435,456$ | $4,294,967,296$ |
Example: To convert $100,000_{10}$ to base $16$, we do:
$100000_{10} = 1\cdot65536 + 8\cdot4096 + 6\cdot256 + 10\cdot16 = 1\cdot16^{4} + 8\cdot16^{3} + 6\cdot16^{2} + 10\cdot16^1 + 0\cdot16^0 = 186\mathrm{A}0_{16}.$
Note: Base $16$ has $6$ more symbols besides the digits $0-9$: $\mathrm A$ stands for $10$, $\mathrm B$ stands for $11$, $\mathrm C$ stands for $12$, $\mathrm D$ stands for $13$, $\mathrm E$ stands for $14$, and $\mathrm F$ stands for $15$. Examples demonstrating the use of these hexadecimal symbols: