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a b s t r a c t

Given a Boolean function f , the quantity ess(f ) denotes the largest set of assignments that
falsify f , no two of which falsify a common implicate of f . Although ess(f ) is clearly a lower
bound on cnf _size(f ) (the minimum number of clauses in a CNF formula for f ), C̆epek et
al. showed it is not, in general, a tight lower bound [6]. They gave examples of functions f
forwhich there is a small gap between ess(f ) and cnf _size(f ). We demonstrate significantly
larger gaps. We show that the gap can be exponential in n for arbitrary Boolean functions,
and Θ(

√
n) for Horn functions, where n is the number of variables of f . We also introduce

a natural extension of the quantity ess(f ), which we call essk(f ), which is the largest set of
assignments, no k of which falsify a common implicate of f .

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Determining the smallest CNF formula for a given Boolean function f is a difficult problem that has been studied formany
years. (See [7] for an overviewof relevant literature.) Recently, C̆epek et al. introduced a combinatorial quantity, ess(f ), which
lower bounds cnf _size(f ), the minimum number of clauses in a CNF formula representing f [6]. The quantity ess(f ) is equal
to the size of the largest set of falsepoints of f , no two of which falsify the same implicate of f .1

For certain subclasses of Boolean functions, such as the monotone (i.e., positive) functions, ess(f ) is equal to cnf _size(f ).
However, C̆epek et al. demonstrated that there can be a gap between ess(f ) and cnf _size(f ). They constructed a Boolean
function f on n variables such that there is a multiplicative gap of size Θ(log n) between cnf _size(f ) and ess(f ).2 Their
constructed function f is a Horn function. Their results leave open the possibility that ess(f ) could be a close approximation
to cnf _size(f ).

We show that this is not the case. We construct a Boolean function f on n variables such that there is a multiplicative gap
of size 2Θ(n) between cnf _size(f ) and ess(f ). Note that such a gap could not be larger than 2n−1, since cnf _size(f ) ≤ 2n−1 for
all functions f on n > 1 variables.

We also construct a Horn function f such that there is a multiplicative gap of size Θ(
√
n) between cnf _size(f ) and ess(f ).

We show that no gap larger than Θ(n) is possible.
If one expresses the gaps as a function of cnf _size(f ), rather than as a function of the number of variables n, then the gap

we obtain with both the constructed non-Horn and Horn functions f is cnf _size(f )1/3. Clearly, no gap larger than cnf _size(f )
is possible.

We briefly explore a natural generalization of the quantity ess(f ), which we call essk(f ), which is the largest set of
falsepoints, no k of which falsify a common implicate of f . The quantity ess(f )/(k − 1) is a lower bound on cnf _size(f ),
for any k ≥ 2.

The above results concern the size of CNF formulas. Analogous results hold for DNF formulas by duality.

∗ Corresponding author. Tel.: +1 347 587 3112; fax: +1 530 483 3112.
E-mail addresses: hstein@poly.edu (L. Hellerstein), dkletenik@cis.poly.edu (D. Kletenik).

1 This definition immediately follows from Corollary 3.2 of C̆epek et al. [6].
2 Their function is actually defined in terms of two parameters n1 and n2 . Setting them tomaximize themultiplicative gap between ess(f ) and cnf _size(f ),

as a function of the number of variables n, yields a gap of size Θ(log n).

0166-218X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2012.07.004



Author's personal copy

20 L. Hellerstein, D. Kletenik / Discrete Applied Mathematics 161 (2013) 19–27

2. Preliminaries

2.1. Definitions

ABoolean function f (x1, . . . , xn) is amapping {0, 1}n → {0, 1}. (Where it does not cause confusion,weoftenuse theword
‘‘function’’ to refer to a Boolean function.) A variable xi and its negation ¬xi are literals (positive and negative respectively).
A clause is a disjunction (∨) of literals. A term is a conjunction (∧) of literals. A CNF (conjunctive normal form) formula is a
formula of the form c0 ∧ c1 ∧ · · · ck, where each ci is a clause. A DNF (disjunctive normal form) formula is a formula of the
form t0 ∨ t1 ∨ · · · tk, where each ti is a term.

A clause c containing variables from Xn = {x1, . . . , xn} is an implicate of f if for all x ∈ {0, 1}n, if c is falsified by x then
f (x) = 0. A term t containing variables from Xn is an implicant of function f (x1, . . . , xn) if for all x ∈ {0, 1}n, if t is satisfied
by x then f (x) = 1.

We define the size of a CNF formula to be the number of its clauses, and the size of a DNF formula to be the number of its
terms.

Given a Boolean function f , cnf _size(f ) is the size of the smallest CNF formula representing f . Analogously, dnf _size(f )
is the size of the smallest DNF formula representing f . If f is the identically false function, the CNF representation of f is be
the empty clause and the DNF representation is x1¬x1. Representations for the identically true function follow by duality.
In both cases, cnf _size(f ) = dnf _size(f ) = 1.

An assignment x ∈ {0, 1}n is a falsepoint of f if f (x) = 0, and is a truepoint of f if f (x) = 1. We say that a clause c covers
a falsepoint x of f if x falsifies c . A term t covers a truepoint x of f if x satisfies t .

A CNF formula φ representing a function f forms a cover of the falsepoints of f , in that each falsepoint of f must be
covered by at least one clause of φ. Further, if x is a truepoint of f , then no clause of φ covers x. Similarly, a DNF formula φ
representing a function f forms a cover of the truepoints of f , in that each truepoint of f must be covered by at least one
term of φ. Further, if x is a falsepoint of f , then no term of φ covers x.

Given two assignments x, y ∈ {0, 1}n, we write x ≤ y if ∀i, xi ≤ yi. An assignment r separates two assignments p and q if
∀i, pi = ri or qi = ri.

A partial function f maps {0, 1}n to {0, 1, ∗}, where ∗ indicates that the value of f is not defined on the assignment. A
Boolean formula φ is consistent with a partial function f if φ(a) = f (a) for all a ∈ {0, 1}n where f (a) ≠ ∗. If f is a partial
Boolean function, then cnf _size(f ) and dnf _size(f ) are the size of the smallest CNF and DNF formulas consistent with the f ,
respectively.

A Boolean function f (x1, . . . , xn) is monotone if for all x, y ∈ {0, 1}n, if x ≤ y then f (x) ≤ f (y). A Boolean function is
anti-monotone if for all x, y ∈ {0, 1}n, if x ≥ y then f (x) ≤ f (y).

A DNF or CNF formula is monotone if it contains no negations; it is anti-monotone if all variables in it are negated. A
CNF formula is a Horn-CNF if each clause contains at most one variable without a negation. If each clause contains exactly
one variable without a negation it is a pure Horn-CNF. A Horn function is a Boolean function that can be represented by
a Horn-CNF. It is a pure Horn function if it can be represented by a pure Horn-CNF. Horn functions are a generalization of
anti-monotone functions, and have applications in artificial intelligence [11].

We say that two falsepoints, x and y, of a function f are independent if no implicate of f covers both x and y. Similarly, we
say that two truepoints x and y of a function f are independent if no implicant of f covers both x and y. We say that a set S of
falsepoints (truepoints) of f is independent if all pairs of falsepoints (truepoints) in S are independent.

The set covering problem is as follows: Given a ground set A = {e1, . . . , em} of elements, a set S = {S1, . . . , Sn} of subsets
of A, and a positive integer k, does there exist S′

⊆ S such that


Si∈S′ = S and |S′
| ≤ k? Each set Si ∈ S is said to cover the

elements it contains. Thus the set covering problem asks whether A has a ‘‘cover’’ of size at most k.
A set covering instance is r-uniform, for some r > 0, if all subsets Si ∈ S have size r .
Given an instance of the set covering problem, we say that a subset A′ of ground set A is independent if no two elements

of A′ are contained in a common subset Si of S.

3. The quantity ess(f )

We begin by restating the definition of ess(f ) in terms of independent falsepoints. We also introduce an analogous
quantity for truepoints. (The notation essd refers to the fact that this is a dual definition.)

Definition 1. Let f be a Boolean function. The quantity ess(f ) denotes the size of the largest independent set of falsepoints
of f . The quantity essd(f ) denotes the largest independent set of truepoints of f .

As was stated above, C̆epek et al. introduced the quantity ess(f ) as a lower bound on cnf _size(f ). The fact that ess(f ) ≤

cnf _size(f ) follows easily from the above definitions, and from the following facts: (1) if φ is a CNF formula representing f ,
then every falsepoint of f must be covered by some clause of φ, and (2) each clause of φ must be an implicate of f .

Let f ′ denote the function that is the complement of f , i.e. f ′(a) = ¬f (a) for all assignments a. Since, by duality,
ess(f ′) = essd(f ) and cnf _size(f ′) = dnf _size(f ), it follows that ess(f ′) ≤ dnf _size(f ).
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Property 1 ([6]). Two falsepoints of f , x and y, are independent iff there exists a truepoint a of f that separates x and y.

Consider the following decision problem, which we will call ESS: ‘‘Given a CNF formula representing a Boolean function
f , and a number k, is ess(f ) ≤ k?’’. Using Property 1, this problem is easily shown to be in co-NP [6].

We can combine the fact that ESS is in co-NP with results on the hardness of approximating CNF-minimization, to get
the following preliminary result, based on a complexity-theoretic assumption.

Proposition 1. If co-NP ≠ ΣP
2 , then for some γ > 0, there exists an infinite set of Boolean functions f such that ess(f )nγ <

cnf _size(f ), where n is the number of variables of f .

Proof. Consider the Min-CNF problem (decision version): Given a CNF formula representing a Boolean function f , and a
number k, is cnf _size(f ) ≤ k? Umans proved that it is ΣP

2 -complete to approximate this problem to within a factor of nγ ,
for some γ > 0, where n is the number of variables of f [12]. (Approximating this problem to within some factor q means
answering ‘‘yes’’ whenever cnf _size(f ) ≤ k, and answering ‘‘no’’ whenever cnf _size(f ) > kq. If k < cnf _size(f ) ≤ kq, either
answer is acceptable.)

Suppose ess(f )nγ
≥ cnf _size(f ) for all Boolean functions f . Then one can approximate Min-CNF to within a factor of

nγ in co-NP by simply using the co-NP algorithm for ESS to determine whether ess(f ) ≤ k. Even if ess(f )nγ
≥ cnf _size(f )

for a finite set S of functions, one can still approximate Min-CNF to within a factor of nγ in co-NP, by simply handling the
finite number of functions in S explicitly as special cases. Since approximatingMin-CNF towithin this factor isΣP

2 -complete,
ΣP

2 ⊆ co-NP. By definition, co-NP ⊆ ΣP
2 , so ΣP

2 = co-NP. �

The non-approximability result of Umans for Min-CNF, used in the above proof, is expressed in terms of the number of
variables n of the function. Umans also showed [13] that it is ΣP

2 complete to approximateMin-CNF to within a factor ofmγ ,
for some γ ≥ 0, where m = cnf _size(f ). Thus we can also prove that, if NP ≠ ΣP

2 , then for some γ > 0, there is an infinite
set of functions f such that ess(f ) < cnf _size(f )1−γ .

The assumption that ΣP
2 ≠ co-NP is not unreasonable, so we have grounds to believe that there is an infinite set of

functions for which the gap between ess(f ) and cnf _size(f ) is greater than nγ (or cnf _size(f )γ ) for some γ . Below, we will
explicitly construct such sets with larger gaps than that of Proposition 1, and with no complexity theoretic assumptions.

We can also prove a proposition similar to Proposition 1 for Horn functions, using a different complexity theoretic
assumption. (Since the statement of the proposition includes a complexity class parameterized by the standard input-size
parameter n, we use N instead of n to denote the number of inputs to a Boolean function.)

Proposition 2. If NP ⊈ co-NTIME(npolylog(n)), then for some ϵ such that 0 < ϵ < 1, there exists an infinite set of Horn functions
f such that cnf _size(f )

ess(f ) ≥ 2log1−ϵ N , where N is the number of input variables of f .

Proof. Consider the followingMin-Horn-CNF problem (decision version): Given a Horn-CNF φ representing a Horn function
f , and an integer k ≥ 0, is cnf _size(f ) ≤ k? Bhattacharya et al. [5] showed that there exists a deterministic, many–one
reduction (i.e. a Karp reduction), running in timeO(npolylog(n)) (where n is the size of the input), fromanNP-complete problem
to the problem of approximatingMin-Horn-CNF to within a factor of 2log1−ϵ N , where N is the number of input variables of f .

Suppose that cnf _size(f )
ess(f ) is atmost 2log1−ϵ N for all Boolean functions f . It iswell known that given aHorn-CNF f , the size of the

smallest (functionally) equivalent Horn-CNF is precisely cnf _size(f ). Thus given a Horn-CNF φ on N variables, and a number
k, if there does not exist a Horn-CNF equivalent toφ of size less than 2log1−ϵ N

×k, this can be verified non-deterministically in
polynomial time (by verifying that ess(f ) ≥ k). Thus the complement ofMin-Horn-CNF is approximable to within a factor of
2log1−ϵ N , in deterministic time npolylog(n) (where n is the size in bits of the input Horn-CNF, and N is the number of variables
in the input Horn-CNF). Combining this fact with the reduction of Bhattacharya et al. implies that the complement of an
NP-complete problem can be solved in non-deterministic time npolylog(n). Thus NP is contained in co-NTIME(npolylog(n)). The
same holds if cnf _size(f )

ess(f ) is at most 2log1−ϵ n for all but a finite set of Boolean functions f . �

4. Constructions of functions with large gaps between ess(f ) and cnf _size(f )

Wewill begin by constructing a function f , such that cnf _size(f )
ess(f ) = Θ(n). This is already a larger gap than themultiplicative

gap of log(n) achieved by the construction of C̆epek et al. [6], and the gap of nγ in Proposition 1.We describe the construction
of f , prove bounds on cnf _size(f ) and ess(f ), and then prove that the ratio cnf _size(f )

ess(f ) = Θ(n).

We will then show how to modify this construction to give a function f such that cnf _size(f )
ess(f ) = 2Θ(n), thus increasing the

gap to be exponential in n.
At the end of this section, we will explore essk(f ), our generalization of ess(f ).
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4.1. Constructing a function with a linear gap

Theorem 1. There exists a function f (x1, . . . , xn) such that cnf _size(f )
ess(f ) = Θ(n).

Proof. We construct a function f such that dnf _size(f )
essd(f )

= Θ(n). Theorem 1 then follows immediately by duality.
Our construction relies heavily on a reduction of Gimpel from the 1960’s [10], which reduces a generic instance of the

set covering problem to a DNF-minimization problem. (See Czort [9] or Allender et al. [1] for more recent discussions of this
reduction.)

Gimpel’s reduction is as follows. Let A = {e1, . . . , em} be the ground set of the set covering instance, and let S be the set
of subsets A fromwhich the cover must be formed. With each element ei in A, associate a Boolean input variable xi. For each
S ∈ S, let xS denote the assignment in {0, 1}m where xi = 0 iff ei ∈ S. Define the partial function f (x1, . . . , xm) as follows:

f (x) =

1 if x contains exactlym − 1 ones
∗ if x ≥ xS and x does not contain exactlym − 1 ones
0 otherwise.

There is a DNF formula of size at most k that is consistent with this partial function if and only if the elements ei of the
set covering instance A can be covered using at most k subsets in S (cf. [9]).

We apply this reduction to the simple, 2-uniform, set covering instance overm elements where S consists of all subsets
containing exactly two of thosem elements. The smallest set cover for this instance is clearly ⌈m/2⌉. The largest independent
set of elements is only of size 1, since every pair of elements is contained in a common subset of S. Note that this gives a
ratio of minimal set cover to largest independent set of Θ(m).

Applying Gimpel’s reduction to this simple set covering instance, we get the following partial function f̂ :

f̂ (x) =


1 if x contains exactly m − 1 ones
∗ if x contains exactly m − 2 ones
∗ if x contains exactly m ones
0 otherwise.

Since the smallest set cover for the instance has size ⌈m/2⌉,

dnf _size(f̂ ) = ⌈m/2⌉.

Allender et al. [1] extended the reduction of Gimpel by converting the partial function f to a total function g . The
conversion is as follows:

Let t = m+1 and let s be the number of ∗’s in f (x). Let y1 and y2 be two additional Boolean variables, and let z = z1 . . . zt
be a vector of t more Boolean variables. Let S ⊆ {0, 1}t be a collection of s vectors, each containing an odd number of 1’s
(since s ≤ 2m, such a collection exists). Let χ be the function such that χ(x) = 0 if the parity of x is even and χ(x) = 1
otherwise.

The total function g is defined as follows:

g(x, y1, y2, z) =


1 if f (x) = 1 and y1 = y2 = 1 and z ∈ S
1 if f (x) = ∗ and y1 = y2 = 1
1 if f (x) = ∗, y1 = χ(x), and y2 = ¬χ(x)
0 otherwise.

Allender et al. proved that this total function g obeys the following property:

dnf _size(g) = s(dnf _size(f ) + 1).

Let ĝ be the total function obtained by setting f = f̂ in the above definition of g .
We can nowcompute dnf _size(ĝ). Let n be the number of input variables of f̂ . The total function ĝ is defined on n = 2m+3

variables. Since dnf _size(f̂ ) = ⌈m/2⌉, we have

dnf _size(ĝ) = s
m

2


+ 1


≥ s


n − 3
4

+ 1


where s is the number of assignments x for which f̂ (x) = ∗.
We will upper bound essd(ĝ) by dividing the truepoints of ĝ into two disjoint sets and upper-bounding the size of a

maximum independent set of truepoints in each. (Recall that two truepoints of ĝ are independent if they do not satisfy a
common implicant of ĝ .)

Set 1: The set of all truepoints of ĝ whose x component has the property f (x) = ∗.
Let a1 be a maximum independent set of truepoints of ĝ consisting only of points in this set. Consider two truepoints
p and q in this set that have the same x value. It follows that they share the same values for y1 and y2. Let t be the
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term containing all variables xi, and exactly one of the two yj variables, such that each xi appears without negation if
it set to 1 by p and q, and with negation otherwise, and yj is set to 1 by both p and q. Clearly, t is an implicant of ĝ by
the definition of ĝ , and clearly t covers both p and q. It follows that p and q are not independent.
Because any two truepoints in this set with the same x value are not independent, |a1| cannot exceed the number of
different x assignments. There are s assignments such that f̂ (x) = ∗, so |a1| ≤ s.

Set 2: The set of all truepoints of ĝ whose x component has the property f̂ (x) = 1.
Let a2 be a maximum independent set consisting only of points in this set. Consider any two truepoints p and q in
this set that contain the same assignment for z. We can construct a term t of the form wy1y2z such that w contains
exactly m − 2 of the xi variables that are set to 1 by both p and q, and all zis that are set to 1 by p and q appear inz
without negation, and all other zis appear with negation. It is clear that t is an implicant of ĝ and that t covers both p
and q. Once again, it follows that p and q are not independent truepoints of g .
Because any two truepoints in this set with the same z value are not independent, |a2| cannot exceed the number of
different z assignments. There are s assignments to z such that z ∈ S, so |a2| ≤ s.

Since a maximum independent set of truepoints of ĝ can be partitioned into an independent set of points from the first
set, and an independent set of points from the second set, it immediately follows that3

essd(ĝ) ≤ |a1| + |a2| ≤ s + s = 2s.

Hence, the ratio between the DNF size and ess(g) size is:

s
 n−3

4 + 1


2s
≥

n + 1
8

= Θ(n). �

Note that the above function gives a class of functions satisfying the conditions of Proposition 1, for γ = 1.

Corollary 1. There exists a function f such that cnf _size(f )
ess(f ) ≥ cnf _size(f )ϵ for an ϵ ≥ 0.

Proof. In the previous construction, f̂ (x) = ∗ for exactly
m

2


+ 1 points, yielding s = Θ(n2). Hence, the DNF size is Θ(m3),

making the ratio between dnf _size(ĝ) and essd(ĝ) at least Θ(dnf _size(ĝ)
1
3 ). The CNF result follows by duality. �

4.2. Constructing a function with an exponential gap

Theorem 2. There exists a function f on n variables such that cnf _size(f )
ess(f ) ≥ 2Θ(n).

Proof. As before, wewill reduce a set covering instance to a DNF-minimization problem involving a partial Boolean function
f . However, here we will rely on a more general version of Gimpel’s reduction, due to Allender et al., described in the
following lemma.

Lemma 1 ([1]). Let S = {S1, . . . , Sp} be a set of subsets of ground set A = {e1, . . . , em}. Let t > 0 and let V = {vi
: i ∈

{1, . . . ,m}} and W = {wj
: j ∈ {1, . . . , p}} be sets of vectors from {0, 1}t such that for all j ∈ {1, . . . , p} and i ∈ {1, . . . ,m},

ei ∈ Sj iff vi
≥ wj.

Let f : {0, 1}t → {0, 1, ∗} be the partial function such that

f (x) =

1 if x ∈ V
∗ if x ≥ w for some w ∈ W and x ∉ V
0 otherwise.

Then S has a minimum cover of size k iff dnf _size(f ) = k.

(Note that the construction in the above lemma is equivalent to Gimpel’s if we take t = m, V = {v ∈ {0, 1}m|v
contains exactlym − 1 ones}, and W = {xS |S ∈ S}, where xS denotes the assignment in {0, 1}m where xi = 0 iff ei ∈ S.)

As before, we use the simple 2-uniform set covering instance over m elements where S consists of all subsets of two of
those elements. The next step is to construct sets V andW satisfying the properties in the above lemma for this set covering
instance. To do this, we use a randomized construction of Allender et al. that generates sets V and W from an r-uniform
set-covering instance, for any r > 0. This randomized construction appears in the Appendix of [1], and is described in the
following lemma.

3 It can actually be proved that in fact, essd(ĝ) = 2s, but details of this proof are omitted.
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Lemma 2. Let r > 0 and let S = {S1, . . . , Sp} be a set of subsets of {e1, . . . , em}, where each Si contains exactly r elements. Let
t ≥ 3r(1 + ln(pm)). Let V = {v1, . . . , vm

} be a set of m vectors of length t, where each vi
∈ V is produced by randomly and

independently setting each bit of vi to 0with probability 1/r. Let W = {w1, . . . , wp
}, where each wj

= the bitwise AND of all vi

such that ei ∈ Sj. Then, the following holds with probability greater than 1/2: For all j ∈ {1, . . . , p} and i ∈ {1, . . . ,m}, ei ∈ Sj
iff vi

≥ wj.

By Lemma 2, there exist sets V andW , each consisting of vectors of length 6(1+ ln(m2(m−2)/2)) = O(logm), satisfying
the conditions of Lemma 1 for our simple 2-uniform set covering instance. Let f̃ be the partial function on O(logm) variables
obtained by using these V andW in the definition of f in Lemma 1.

The DNF-size of f̃ is the size of the smallest set cover, which is ⌈m/2⌉, and the number of variables n = Θ(logm); hence
the DNF size is 2Θ(n).

We can convert the partial function f̃ (x) to a total function g̃(x) just as done in the previous section. The arguments
regarding DNF-size and essd(g̃) remain the same. Hence, the DNF-size is now s


2Θ(n)

+ 1

, and essd(g̃) is again at most 2s.

The ratio between the DNF-size and essd(g̃) is therefore at least 2Θ(n). Once again, the CNF result follows. �

4.3. The quantity essk(f )

We say that a set S of falsepoints (truepoints) of f is a ‘‘k-independent set’’ if no k of the falsepoints (truepoints) of f can
be covered by the same implicate (implicant) of f .

We define essk(f ) to be the size of the largest k-independent set of falsepoints of f , and essdk(f ) to be the size of the largest
k-independent set of truepoints of f .

If S is a k-independent set of falsepoints of f , then each implicate of f can cover at most k − 1 falsepoints in S. We thus
have the following lower-bound on cnf _size(f ): cnf _size(f ) ≥

essk(f )
k−1 .

Like ess(f ), this lower bound is not tight.

Theorem 3. For any arbitrary 2 ≤ k ≤ h(n), where h(n) = Θ(n), there exists a function f on n variables, such that the gap
between cnf _size(f ) and essk(f )

k−1 is at least 2Θ( n
k ).

Proof. Consider the k-uniform set cover instance consisting of all subsets of {e1, . . . , em} of size k. Construct V and W
randomly using the construction from the Appendix of [1] described in Lemma2, and define a corresponding partial function
f̃ , as in Lemma 1. Note that according to the definition of f̃ , there can be no k vi for any k values of i ∈ {1, . . . ,m}, such that
all vi

≥ wj for some j ∈ {1, . . . , p}. The maximum size k-independent set of truepoints of f̃ consists of k − 1 truepoints.
We can convert the partial function f̃ to a total function g̃ according to the construction detailed in Section 4.1. Once again,

we introduce s new truepoints such that f̃ (x) = ∗, yielding a maximum of s pairwise independent truepoints. Any set of k
truepoints in g̃ that correspond to the same truepoint in f̃ must violate k-independence. Hence, the largest k-independent
set of these points can contain a maximum of s(k − 1) points.

Any set of ground elements (i.e. truepoints of f̃ ) containing k or more elements is not k-independent. Since g̃ has s
truepoints for each truepoint in f̃ , and the points corresponding to the s assignments to z are all independent, the largest
independent set for points of this type is of size no greater than s(k − 1). Since these two types of truepoints are disjoint,
essdk(g̃) ≤ 2s(k − 1).

Since essdk(g̃)/k − 1 ≤ 2s(k − 1)/(k − 1) = 2s, the ratio between essdk(g̃)/k − 1 and dnf _size(g̃) is

s

2Θ( n

k ) + 1


2s
≥ 2Θ( n

k ).

The CNF result clearly follows. �

5. Size of the gap for Horn functions

Because Horn-CNFs contain at most one unnegated variable per clause, they can be expressed as implications; e.g.
¬a ∨ ¬b ∨ c is equivalent to ab → c . Moreover, a conjunction of several clauses that have the same antecedent can be
represented as a singlemeta-clause, where the antecedent is the antecedent common to all the clauses and the consequent
is comprised of a conjunction of all the consequents, e.g. (a → b) ∧ (a → c) can be represented as a → (b ∧ c).

5.1. Bounds on the ratio between cnf _size(f ) and ess(f )

Angluin et al. [2] presented an algorithm (henceforth: the AFP algorithm) to learn Horn-CNFs, where the output
is a series of meta-clauses. It can be proven [3,4] that the output of the algorithm is of minimum implication size
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(henceforth:min_imp(f ))—that is, it contains the fewest number ofmeta-clauses needed to represent function f . Eachmeta-
clause can be a conjunction of atmost n clauses; hence, each implication is equivalent to the conjunction of atmost n clauses.
Therefore,

cnf _size(f ) ≤ n × min_imp(f ).

The learning algorithm maintains a list of negative and positive examples (falsepoints and truepoints of the Horn function,
respectively), containing at mostmin_imp(f ) examples of each.

Lemma 3. The set of negative examples maintained by the AFP algorithm is an independent set.

Proof. This proof relies heavily on [4]; see there for further details.
Let us consider any two negative examples ni and nj maintained by the algorithm. Without loss of generality, assume

i < j. Then, Arias and Balcázar prove (Lemma 14 in [4]) that there exists a positive example z such that ni ∧ nj ≤ z ≤ nj.
Clearly, z separates ni and nj. Hence, ni and nj are independent. �

Theorem 4. For any Horn function f , cnf _size(f )
ess(f ) ≤ n.

Proof. For any Horn function f , there exists a set of negative examples of size at most min_imp(f ), and these examples are
all independent. Hence, ess(f ) ≥ min_imp(f ). We have already stated that cnf _size(f ) ≤ n × min_imp(f ) for this function.

Hence, cnf _size(f ) ≤ n × ess(f ).
Moreover, since Lemma 3 holds for general Horn functions in addition to pure Horn [4], this bound holds for all Horn

functions. �

5.2. Constructing a Horn function with a large gap between ess(f ) and cnf _size(f )

Theorem 5. There exists a pure Horn function f on n variables such that cnf _size(f )
ess(f ) = Ω(

√
n).

Proof. Consider the 2-uniform set covering instance over k elements consisting of all subsets of two elements. We can
construct a pure Horn formula ϕ corresponding to this set covering according to the construction in [8], with modifications
based on [5].

The formula ϕ will contain 3 types of variables:

• Element variables: There is a variable x for each of the k elements.
• Set variables: There is a variable s for each of the


k
2


subsets.

• Amplification variables: There are t variables z1 · · · zt .

The clauses in ϕ are precisely the clauses in the following 3 groups:

• Witness clauses: There is a clause sj → xi for each subset and for each element that the subset covers. There are 2


k
2


such clauses.

• Feedback clauses: There is a clause x1 · · · xk → sj for each subset. There are


k
2


such clauses.

• Amplification clauses: There is a clause zh → sj for every h ∈ {1 · · · t} and for every subset. There are t


k
2


such clauses.

It follows from [8] that any minimum CNF for this function must contain all witness and feedback clauses, along with tc
amplification clauses, where c is the size of the smallest set cover.

This particular function f has a minimum set cover of size k/2; hence, cnf _size(f ) = 2


k
2


+


k
2


+ t(k/2).

Wewill upper bound ess(f ) by dividing the falsepoints of f into three disjoint sets and bounding the size of themaximum
independent set for each.

Set 1: The set of all falsepoints of f that contain at least one xi = 0 for i ∈ {1, . . . , k} and some sj = 1 for a subset sj that
covers xi.
Let a1 be an independent set of f consisting of points in this set. These points can be covered by implicates of the
form sj → xi, of which there are 2


k
2


. If two points in the set both have xi = 0 and sj = 1 for a subset sj that

covers xi, then they are both covered by sj → xi and are not independent. Hence a1 can contain no more than 2


k
2


points.

Set 2: The set of all falsepoints that are not in the first set, have xi = 1 for all i ∈ {1, . . . , k}, and at least one sj = 0 for some

j ∈ {1, . . . ,


k
2


}.
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Let a2 be the largest independent set of f consisting of points in this set. These points can be covered by implicates
of the form x1 · · · xk → sj. There are


k
2


such implicates. Hence, by the same argument as above, a2 can contain no

more than


k
2


points.

Set 3: The set of all falsepoints that are not in the first two sets, and therefore have zh = 1 for some h ∈ {1, . . . , t}, xi = 0
for some i ∈ {1, . . . , k}, and yj = 0 for all subsets yj covering xi.
Let a3 be an independent set of f consisting of points in this set. Consider a falsepoint p in this set where xi = 0 for
at least one i ∈ {1, . . . , k}. If p contained a yj = 1 such that the subset yj covers xi, that point would be a point in the
first set. Hence, the only points of this form in this set have yj = 0 for all k − 1 subsets yj that cover xi.
Now consider another falsepoint q in this set, where xa = 0 for at least one a ∈ {1, . . . , k}. Once again, the only points
in this set must set yb = 0 for all k − 1 subsets yb that cover xa.
Because the set covering problem included a set for each pair of xi points, there exists some yj that covers both xi and
xa. By the previous argument, that yj is set to 0 in all assignments that set xi or xa = 0. If for some h, zh = 1 in both p
and q, then p and q can be covered by the implicate zh → yj. Hence, points p and q are not independent.
In fact, any two falsepoints chosen that are not in the first set and contain zh = 1 for the same h and at least one
xi = 0 are not independent. Because there are t values of h, size at most t .

The largest independent set for all falsepoints cannot exceed the sum of the independent sets for these three disjoint
sets, hence

ess(f ) ≤ |a1| + |a2| + |a3| ≤ 2

k
2


+


k
2


+ t.

The gap between cnf _size(f ) and

ess(f ) =
cnf _size(f )

ess(f )
≥

3


k
2


+ t(k/2)

3


k
2


+ t

.

Let us set t = 3


k
2


. The difference is now:

cnf _size(f )
ess(f )

≥
t(1 + k/2)

2t
= Θ(k).

We have k element variables,


k
2


set variables, and 3


k
2


amplification variables, yielding n = Θ(k2) variables in total.

The ratio between cnf _size(f ) and ess(f ) is therefore Θ(
√
n). �

We earlier posited that ifΣ2
p ≠ co-NP, there exists an infinite set of functions for which cnf _size(f )

ess(f ) ≥ cnf _size(f )γ for some
γ > 0. We can now prove a stronger theorem:

Theorem 6. There exists an infinite set of Horn functions f for which cnf _size(f )
ess(f ) ≥ cnf _size(f )γ .

Proof. See construction above. Because cnf _size(f ) = Θ(k3), cnf _size(f )
ess(f ) = Θ(cnf _size(f )1/3). �
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