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Abstract

Given a Boolean function f , ess(f) denotes the largest set
of assignments that falsify f , no two of which falsify a com-
mon implicate of f . The quantity ess(f) is a lower bound
on cnf size(f) (the minimum number of clauses in a CNF
formula for f ). C̆epek et al. gave examples of functions f for
which there is a small gap between ess(f) and cnf size(f).
We demonstrate significantly larger gaps. We show that the
gap can be exponential in n for arbitrary Boolean functions,
and Ω(

√
n) for Horn functions, where n is the number of

variables of f .

Introduction
Determining the smallest CNF formula for a given Boolean
function f is a difficult problem that has been studied for
many years (cf. (Coudert 1994)). Recently, C̆epek et al.
introduced a combinatorial quantity, ess(f), which lower
bounds cnf size(f), the minimum number of clauses in a
CNF formula representing f (C̆epek, Kuc̆era, and Savický
2010). The quantity ess(f) is equal to the size of the largest
set of falsepoints of f , no two of which falsify the same im-
plicate of f . 1

For certain subclasses of Boolean functions, such as
the monotone (i.e., positive) functions, ess(f ) is equal to
cnf size(f). However, C̆epek et al. demonstrated that there
can be a gap between ess(f) and cnf size(f). They con-
structed a Boolean function f on n variables such that there
is a multiplicative gap of size Θ(log n) between cnf size(f)
and ess(f). 2 Their constructed function f is a Horn func-
tion. Their results leave open the possibility that ess(f)
could be a close approximation to cnf size(f).

We show that this is not the case. We construct a Boolean
function f on n variables such that there is a multiplica-
tive gap of size 2Θ(n) between cnf size(f) and ess(f).
Note that such a gap could not be larger than 2n−1, since
cnf size(f) ≤ 2n−1 for all functions f .

1This definition immediately follows from Corollary 3.2 of
C̆epek et al. (C̆epek, Kuc̆era, and Savický 2010).

2Their function is actually defined in terms of two parameters
n1 and n2. Setting them to maximize the multiplicative gap be-
tween ess(f) and cnf size(f), as a function of the number of
variables n, yields a gap of size Θ(log n).

We also construct a Horn function f such that there is a
multiplicative gap of size Θ(

√
n) between cnf size(f) and

ess(f). We show that no gap larger than Θ(n) is possible.
If one expresses the gaps as a function of cnf size(f),

rather than as a function of the number of variables n, then
the gap we obtain with both the constructed non-Horn and
Horn functions f is cnf size(f)1/3. Clearly, no gap larger
than cnf size(f) is possible.

This is an extended abstract. Additional material can be
found in a full version of this paper (Hellerstein and Kletenik
2011).

Preliminaries
Definitions
A variable xi and its negation ¬xi are literals (positive and
negative respectively). A clause is a disjunction (∨) of lit-
erals. A term is a conjunction (∧) of literals. A CNF for-
mula is a formula of the form c0 ∧ c1 ∧ . . . ck, where each
ci is a clause. A DNF formula is a formula of the form
t0 ∨ t1 ∨ . . . tk, where each ti is a term.

A clause c containing variables from Xn = {x1, . . . , xn}
is an implicate of f if for all x ∈ {0, 1}n, if c is falsified by x
then f(x) = 0. A term t containing variables from Xn is an
implicant of function f(x1, . . . , xn) if for all x ∈ {0, 1}n, if
t is satisfied by x then f(x) = 1. An implicate (implicant)
is prime if removing any literal from it would cause it to
become a non-implicate (non-implicant).

We define the size of a CNF formula to be the number of
its clauses, and the size of a DNF formula to be the number
of its terms.

Given a Boolean function f , cnf size(f) is the size of
the smallest CNF formula representing f , and dnf size(f)
is the size of the smallest DNF formula representing f .

An assignment x ∈ {0, 1}n is a falsepoint of f if f(x) =
0, and is a truepoint of f if f(x) = 1. We say that a clause c
covers a falsepoint x of f if x falsifies c. A term t covers a
truepoint x of f if x satisfies t.

A CNF formula φ representing a function f forms a cover
of the falsepoints of f , in that each falsepoint of f must be
covered by at least one clause of φ. Further, if x is a true-
point of f , then no clause of φ covers x. Similarly, a DNF
formula φ representing a function f forms a cover of the
truepoints of f , in that each truepoint of f must be covered



by at least one term of φ. Further, if x is a falsepoint of f ,
then no term of φ covers x.

Given two assignments x, y ∈ {0, 1}n, we write x ≤ y if
∀i, xi ≤ yi. An assignment r separates two assignments p
and q if ∀i, pi = ri or qi = ri.

A partial function f maps {0, 1}n to {0, 1, ∗}, where ∗
indicates that the value of f is undefined. A Boolean for-
mula φ is consistent with a partial function f if φ(a) = f(a)
for all a ∈ {0, 1}n where f(a) 6= ∗. If f is a partial Boolean
function, then cnf size(f) and dnf size(f) are the size of
the smallest CNF and DNF formulas consistent with f , re-
spectively.

A Boolean function f(x1, . . . , xn) is monotone if for all
x, y ∈ {0, 1}n, if x ≤ y then f(x) ≤ f(y). Function f
is anti-monotone if for all x, y ∈ {0, 1}n, if x ≥ y then
f(x) ≤ f(y).

A DNF or CNF formula is monotone if it contains no
negations. A CNF formula is a Horn-CNF if each clause
contains at most one variable without a negation. If each
clause contains exactly one variable without a negation it is a
pure Horn-CNF. A Horn function is a Boolean function that
can be represented by a Horn-CNF. It is a pure Horn function
if it can be represented by a pure Horn-CNF. Horn functions
are a generalization of anti-monotone functions, and have
applications in artficial intelligence (see e.g. (Russell and
Norvig 2003)).

We say that two falsepoints, x and y, of a function f are
independent if no implicate of f covers both x and y. Simi-
larly, we say that two truepoints x and y of a function f are
independent if no implicant of f covers both x and y. We say
that a set S of falsepoints (truepoints) of f is independent if
all pairs of falsepoints (truepoints) in S are independent.

The set covering problem is as follows: Given a ground
set A = {e1, . . . , em} of elements, a set S = {S1, . . . , Sn}
of subsets of A, and a positive integer k, does there exist
S ′ ⊆ S such that

⋃
Si∈S′ = S and |S ′| ≤ k? Each set

Si ∈ S is said to cover the elements it contains. Thus the
set covering problem asks whether A has a “cover” of size
at most k.

A set covering instance is r-uniform, for some r > 0, if
all subsets Si ∈ S have size r.

Given an instance of the set covering problem, we say
that a subset A′ of ground set A is independent if no two
elements of A′ are contained in a common subset Si of S.

The quantity ess(f)

We begin by restating the definition of ess(f) in terms of
independent falsepoints. We also introduce an analogous
quantity for truepoints. (The notation essd refers to the fact
that this is a dual definition.)

Definition: Let f be a Boolean function. The quantity
ess(f) denotes the size of the largest independent set of
falsepoints of f . The quantity essd(f) denotes the largest
independent set of truepoints of f .

The fact that ess(f) ≤ cnf size(f) follows easily from
the above definitions, and from the following facts: (1) if φ
is a CNF formula representing f , then every falsepoint of f

must be covered by some clause of φ, and (2) each clause of
φ must be an implicate of f .

Let f ′ denote the function that is the complement of f ,
i.e. f ′(a) = ¬f(a) for all assignments a. Since, by dual-
ity, ess(f ′) = essd(f) and cnf size(f ′) = dnf size(f), it
follows that ess(f ′) ≤ dnf size(f). We use the following
property (cf. (C̆epek, Kuc̆era, and Savický 2010)).
Property 1: Two falsepoints of f , x and y, are independent
iff there exists a truepoint a of f that separates x and y.

Consider the following decision problem, which we will
call ESS: “Given a CNF formula representing a Boolean
function f , and a number k, is ess(f) ≤ k?” Using Prop-
erty 1, this problem is easily shown to be in co-NP (C̆epek,
Kuc̆era, and Savický 2010). We can combine the fact that
ESS is in co-NP with results on the hardness of approxi-
mating CNF-minimization, to get the following preliminary
result, based on a complexity-theoretic assumption.

Proposition 1. If co-NP 6= ΣP2 , then for some γ > 0,
there exists an infinite set of Boolean functions f such that
ess(f)nγ < cnf size(f), where n is the number of vari-
ables of f .

The proof of the proposition follows from a result of
Umans, which states that it is ΣP2 -complete to approximate
the minimum-size CNF formula equivalent to a given CNF
formula f to within a factor of nγ . Here γ is a positive con-
stant, and n is the number of variables of f (Umans 1999).
We omit the details here.

The assumption that ΣP2 6= co-NP is not unreasonable,
so we have grounds to believe that there is an infinite
set of functions for which the gap between ess(f) and
cnf size(f) is greater than nγ (or cnf size(f)γ) for some
γ. Below, we will explicitly construct such sets with larger
gaps than that of Proposition 1, and with no complexity the-
oretic assumptions.

We can also prove a proposition similar to Proposition 1
for Horn functions, using a different complexity theoretic
assumption. (Since the statement of the proposition includes
a complexity class parameterized by the standard input-size
parameter n, we use N instead of n to denote the number of
inputs to a Boolean function.)

Proposition 2. If NP 6⊆ co-NTIME(npolylog(n)), then for
some ε such that 0 < ε < 1, there exists an infinite set of
Horn functions f such that cnf size(f)

ess(f) ≥ 2log1−εN , where
N is the number of input variables of f .

The proof follows from a non-approximability result of
Bhattacharya et al. (Bhattacharya et al. 2010) for the prob-
lem of minimizing Horn formulas.

Constructions of functions with large gaps
between ess(f) and cnf size(f)

We will begin by constructing a function f , such that
cnf size(f)

ess(f) = Θ(n). This is already a larger gap than the
multiplicative gap of log(n) achieved by the construction
of (C̆epek, Kuc̆era, and Savický 2010), and the gap of nγ
in Proposition 1. We describe the construction of f , prove



bounds on cnf size(f) and ess(f), and then prove that the
ratio cnf size(f)

ess(f) = Θ(n).
We will then show how to modify this construction to give

a function f such that cnf size(f)
ess(f) = 2Θ(n), thus increasing

the gap to be exponential in n.
Finally, in Section , we give our Horn function construc-

tions.

Constructing a function with a linear gap
Theorem 1. There exists a function f(x1, . . . , xn) such that
cnf size(f)

ess(f) = Θ(n).

Proof. We construct a function f such that dnf size(f)
essd(f)

=
Θ(n). Theorem 1 then follows immediately by duality.

Our construction relies heavily on a reduction of Gimpel
from the 1960’s (Gimpel 1965), which reduces a generic in-
stance of the set covering problem to a DNF-minimization
problem. See (Czort 1999) or (Allender et al. 2008) for more
recent discussions of this reduction.

Gimpel’s reduction is as follows. Let A = {e1, . . . , em}
be the ground set of the set covering instance, and let S be
the set of subsets A from which the cover must be formed.
With each element ei in A, associate a Boolean input vari-
able xi. For each S ∈ S, let xS denote the assignment in
{0, 1}m where xi = 0 iff ei ∈ S. Define the partial function
f(x1, . . . , xm) as follows:

f(x) =

{ 1 if x contains exactly m− 1 ones
∗ if x ≥ xS for some S ∈ S
0 otherwise

There is a DNF formula of size at most k that is consistent
with this partial function if and only if the elements ei of
the set covering instance A can be covered using at most k
subsets in S (cf. (Czort 1999)).

We apply this reduction to the simple, 2-uniform, set cov-
ering instance over m elements where S consists of all sub-
sets containing exactly two of those m elements. The small-
est set cover for this instance is clearly dm/2e. The largest
independent set of elements is only of size 1, since every pair
of elements is contained in a common subset of S. Note that
this gives a ratio of minimal set cover to largest independent
set of Θ(m).

Applying Gimpel’s reduction to this simple set covering
instance, we get the following partial function f̂ :

f̂(x) =


1 if x contains exactly m− 1 ones
∗ if x contains exactly m− 2 ones
∗ if x contains exactly m ones
0 otherwise

Since the smallest set cover for the instance has size
dm/2e,

dnf size(f̂) = dm/2e.
Allender et al. extended the reduction of Gimpel by con-

verting the partial function f to a total function g. The con-
version is as follows:

Let t = m + 1 and let s be the number of ∗’s in f(x).
Let y1 and y2 be two additional Boolean variables, and let
z = z1 . . . zt be a vector of t more Boolean variables. Let
S ⊆ {0, 1}t be a collection of s vectors, each containing an
odd number of 1’s (since s ≤ 2m, such a collection exists).
Let χ be the function such that χ(x) = 0 if the parity of x is
even and χ(x) = 1 otherwise.

The total function g is defined as follows:

g(x, y1, y2, z) =


1 if f(x) = 1 and y1 = y2 = 1 and z ∈ S
1 if f(x) = ∗ and y1 = y2 = 1
1 if f(x) = ∗, y1 = χ(x), and y2 = ¬χ(x)
0 otherwise

Allender et al. proved that this total function g obeys the
following property:

dnf size(g) = s(dnf size(f) + 1).

Let ĝ be the total function obtained by setting f = f̂ in
the above definition of g.

We can now compute dnf size(ĝ). Let n be the number
of input variables of f̂ . The total function ĝ is defined on
n = 2m + 3 variables. Since dnf size(f̂) = dm/2e, we
have

dnf size(ĝ) = s
(
dm

2
e+ 1

)
≥ s

(
n− 3

4
+ 1
)

where s is the number of assignments x for which f̂(x) = ∗.
We will upper bound essd(ĝ) by dividing the truepoints

of ĝ into two disjoint sets and upper-bounding the size of a
maximum independent set of truepoints in each. (Recall that
two truepoints of ĝ are independent if they do not satisfy a
common implicant of ĝ.)

Set 1: The set of all truepoints of ĝ whose x component has the
property f(x) = ∗.
Let a1 be a maximum independent set of truepoints of ĝ
consisting only of points in this set. Consider two true-
points p and q in this set that have the same x value. It
follows that they share the same values for y1 and y2. Let
t be the term containing all variables xi, and exactly one
of the two yj variables, such that each xi appears without
negation if it set to 1 by p and q, and with negation oth-
erwise, and yj is set to 1 by both p and q. Clearly, t is an
implicant of ĝ by definiton of ĝ, and clearly t covers both
p and q. It follows that p and q are not independent.
Because any two truepoints in this set with the same x
value are not independent, |a1| cannot exceed the number
of different x assignments. There are s assignments such
that f̂(x) = ∗, so |a1| ≤ s.

Set 2: The set of all truepoints of ĝ whose x component has the
property f̂(x) = 1.
Let a2 be a maximum independent set consisting only of
points in this set. Consider any two truepoints p and q
in this set that contain the same assignment for z. We can
construct a term t of the formwy1y2z̃ such thatw contains
exactly m − 2 xi’s that are set to 1 by both p and q, and



all zis that are set to 1 by p and q appear in z̃ without
negation, and all other zis appear with negation. It is clear
that t is an implicant of ĝ and that t covers both p and q.
Once again, it follows that p and q are not independent
truepoints of g.
Because any two truepoints in this set with the same z
value are not independent, |a2| cannot exceed the number
of different z assignments. There are s assignments to z
such that z ∈ S, so |a2| ≤ s.

Since a maximum independent set of truepoints of ĝ can
be partitioned into an independent set of points from the first
set, and an independent set of points from the second set, it
immediately follows that 3

essd(ĝ) ≤ |a1|+ |a2| ≤ s+ s = 2s.

Hence, the ratio between the DNF size and ess(g) size is:

s(n−3
4 + 1)
2s

≥ n+ 1
8

= Θ(n)

Note that the above construction gives a class of functions
satisfying the conditions of Proposition 1, for γ = 1. The
construction also yields the following corollary.

Corollary 1. There exists a function f such that
cnf size(f)

ess(f) ≥ cnf size(f)ε for an ε ≥ 0.

Constructing a function with an exponential gap
Theorem 2. There exists a function f on n variables such
that cnf size(f)

ess(f) ≥ 2Θ(n).

Proof. As before, we will reduce a set covering instance to
a DNF-minimization problem involving a partial Boolean
function f . However, here we will rely on a more general
version of Gimpel’s reduction, due to Allender et al., de-
scribed in the following lemma.

Lemma 1. (Allender et al. 2008) Let S = {S1, . . . , Sp} be
a set of subsets of ground set A = {e1, . . . , em}. Let t > 0
and let V = {vi : i ∈ {1, . . . ,m}} and W = {wj : j ∈
{1, . . . , p}} be sets of vectors from {0, 1}t such that for all
j ∈ {1, . . . , p} and i ∈ {1, . . . ,m},

ei ∈ Sj iff vi ≥ wj

Let f : {0, 1}t → {0, 1, ∗} be the partial function such
that

f(x) =

{ 1 if x ∈ V
∗ if x ≥ w for some w ∈W and x /∈ V
0 otherwise

Then S has a minimum cover of size k iff dnf size(f) =
k.

3It can actually be proved that in fact, essd(ĝ) = 2s, but details
of this proof are omitted.

(Note that the construction in the above lemma is equiva-
lent to Gimpel’s if we take t = m, V = {v ∈ {0, 1}m|v con-
tains exactly m− 1 1’s }, and W = {xS |S ∈ S}, where xS
denotes the assignment in {0, 1}m where xi = 0 iff ei ∈ S.)

As before, we use the simple 2-uniform set covering in-
stance over m elements where S consists of all subsets of
two of those elements. The next step is to construct sets V
and W satisfying the properties in the above lemma for this
set covering instance. To do this, we use a randomized con-
struction of Allender et al. that generates sets V andW from
an r-uniform set-covering instance, for any r > 0. This ran-
domized construction appears in the appendix of (Allender
et al. 2008), and is described in the following lemma.

Lemma 2. Let r > 0 and let S = {S1, . . . , Sp} be a set
of subsets of {e1, . . . , em}, where each Si contains exactly
r elements. Let t ≥ 3r(1 + ln(pm)). Let V = {v1, . . . , vm}
be a set of m vectors of length t, where each vi ∈ V is
produced by randomly and independently setting each bit of
vi to 0 with probability 1/r. Let W = {w1, . . . , wp}, where
eachwj = the bitwise AND of all vi such that ei ∈ Sj . Then,
the following holds with probability greater than 1/2: For all
j ∈ {1, . . . , p} and i ∈ {1, . . . ,m}, ei ∈ Sj iff vi ≥ wj .

By Lemma 2, there exist sets V and W , each consisting
of vectors of length 6(1 + ln(m2(m− 2)/2)) = O(logm),
satisfying the conditions of Lemma 1 for our simple 2-
uniform set covering instance. Let f̃ be the partial function
on O(logm) variables obtained by using these V and W in
the definition of f in Lemma 1,

The DNF-size of f̃ is the size of the smallest set cover,
which is dm/2e, and the number of variables n = Θ(log m);
hence the DNF size is 2Θ(n).

We can convert the partial function f̃(x) to a total function
g̃(x) just as done in the previous section. The arguments
regarding DNF-size and essd(g̃) remain the same. Hence,
the DNF-size is now s

(
2Θ(n) + 1

)
, and essd(g̃) is again at

most 2s.
The ratio between the DNF-size and essd(g̃) is therefore

at least 2Θ(n). Once again, the CNF result follows.

Size of the gap for Horn Functions
Because Horn-CNFs contain at most one unnegated variable
per clause, they can be expressed as implications; eg. ā ∨ b
is equivalent to a → b. Moreover, a conjunction of several
clauses that have the same antecedent can be represented as
a single meta-clause, where the antecedent is the antecedent
common to all the clauses and the consequent is comprised
of a conjunction of all the consequents, eg. (a→ b) ∧ (a→
c) can be represented as a→ (b ∧ c).

Bounds on the ratio between cnf size(f) and
ess(f)
Angluin, Frazier and Pitt (Angluin, Frazier, and Pitt 1992)
presented an algorithm (henceforth:the AFP algorithm) to
learn Horn-CNFs, where the output is a series of meta-
clauses. It can be proven (Arias and Balcázar 2008; 2011)
that the output of the algorithm is of minimum implication



size (henceforth: min imp(f)) – that is, it contains the
fewest number of meta-clauses needed to represent func-
tion f . Each meta-clause can be a conjunction of at most
n clauses; hence, each implication is equivalent to the con-
junction of at most n clauses. Therefore,

cnf size(f) ≤ n×min imp(f).

The learning algorithm maintains a list of negative and pos-
itive examples (falsepoints and truepoints of the Horn func-
tion, respectively), containing at most min imp(f) exam-
ples of each.

Lemma 3. The set of negative examples maintained by the
AFP algorithm is an independent set.

Proof. The proof of this lemma relies heavily on (Arias and
Balcázar 2008); see that paper for further details.

Let us consider any two negative examples, ni and nj ,
maintained by the algorithm. There are two possibilities:

1. ni ≤ nj or nj ≤ ni. (These two examples are comparable
points; one is below the other on the Boolean lattice.)

2. ni and nj are incomparable points (Neither is below the
other on the lattice).

Let us consider the first type of points: Without loss of gen-
erality, assume that ni ≤ nj . Arias et al. define a pos-
itive example n∗i for each negative example ni. This ex-
ample n∗i has several unique properties; amongst them, that
ni < n∗i for all negative examples ni (Section 3 in (Arias
and Balcázar 2008)). They further prove (Lemma 6 in (Arias
and Balcázar 2008)) that if ni ≤ nj , then n∗i ≤ nj as well.
Hence, any attempt to falsify both falsepoints, ni and nj ,
with a common implicate of the Horn function would falsify
the positive example (n∗i ) that lies between them as well.
Therefore, these two points are independent.

Now let us assume that ni and nj are incomparable. Any
implicate that falsifies both points is composed of variables
on which the two points agree. Clearly, this implicate would
likewise cover a point that is the componentwise intersec-
tion of ni and nj . However, Arias et al. prove (Lemma 7 in
(Arias and Balcázar 2008)) that ni ∧ nj is a positive point
if ni and nj are incomparable. Hence, any implicate that
falsifies both ni and nj would likewise falsify the truepoint
ni ∧ nj that lies between them. Therefore, these two points
cannot be falsified by the same implicate and they are inde-
pendent.

Theorem 3. For any Horn function f , cnf size(f)
ess(f) ≤ n

Proof. For any Horn function f , there exists a set of negative
examples of size at most min imp(f), and these examples
are all independent. Hence, ess(f) ≥ min imp(f). We
have already stated that min imp(f) is at most a factor of n
times larger than the minimum CNF size for this function.

Hence, cnf size(f) ≤ n× ess(f).
Moreover, since Lemma 3 holds for general Horn func-

tions in addition to pure Horn (Arias and Balcázar 2011),
this bound holds for all Horn functions.

Constructing a Horn function with a large gap
between ess(f) and cnf size(f)
Theorem 4. There exists a definite Horn function f on n
variables such that cnf size(f)

ess(f) ≥ Θ(
√
n).

To prove this theorem, we construct f by embedding the
2-uniform set-covering instance consisting of all subsets of
two elements into a definite Horn function. The construction
uses techniques of (Crama and Hammer 2011), with modi-
fications based on (Bhattacharya et al. 2010). Details are in
the full version of the paper.

We earlier posited that if Σ2
p 6= co-NP, there exists an in-

finite set of functions for which cnf size(f)
ess(f) ≥ cnf size(f)γ

for some γ > 0. The construction in the proof of the previ-
ous theorem yields a stronger result:
Theorem 5. There exists an infinite set of Horn functions f
for which cnf size(f)

ess(f) ≥ cnf size(f)γ .

Acknowledgements
This work was partially supported by the US Department of
Education GAANN grant P200A090157, and by NSF Grant
CCF-0917153.

References
Allender, E.; Hellerstein, L.; McCabe, P.; Pitassi, T.; and
Saks, M. E. 2008. Minimizing disjunctive normal form for-
mulas and AC0 circuits given a truth table. SIAM J. Comput.
38(1):63–84.
Angluin, D.; Frazier, M.; and Pitt, L. 1992. Learning con-
junctions of horn clauses. Machine Learning 9:147–164.
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