
Evaluation of DNF Formulas
Sarah R. Allen

Carnegie Mellon University
Computer Science Department

Pittsburgh, PA, USA

Lisa Hellerstein and Devorah Kletenik
Polytechnic Institute of NYU

Dept. of Computer Science and Engineering
Brooklyn, NY, USA

Tonguç Ünlüyurt
Sabanci University

Fac. of Engineering and Natural Sciences
Istanbul, Turkey

Abstract

We consider the Stochastic Boolean Func-
tion Evaluation (SBFE) problem for classes
of DNF formulas. The SBFE problem for
DNF formulas is a “sequential testing” prob-
lem where we need to determine the value of
DNF formula on an initially unknown input
x = (x1, ..., xn), when there is a cost ci as-
sociated with obtaining the value of xi, each
xi is equal to 1 with known probability pi,
and the xi are independent. The goal is to
minimize expected cost. The SBFE problem
is inapproximable for general DNF formulas.
We give approximate and exact algorithms
for two subclasses of DNF formulas: mono-
tone k-DNF and monotone k-term DNF. We
also prove a lower bound result for evaluation
of monotone CDNF formulas.

1 Introduction
Stochastic Boolean Function Evaluation (SBFE) is
the problem of determining the value of a given
Boolean function f on an unknown input x, when
each bit xi of x can only be determined by paying a
given associated cost ci. Further, x is drawn from a
given product distribution: for each xi, Prob[xi =
1] = pi, and the bits are independent. The goal is
to minimize the expected cost of evaluation. This
problem has been studied in the Operations Re-
search literature, where it is known as “sequen-
tial testing” of Boolean functions (cf. (Ünlüyurt
2004)). It has been studied in learning theory in
the context of learning with attribute costs (Ka-
plan, Kushilevitz, and Mansour 2005).

In this paper, we study the complexity of the
SBFE problem for classes of DNF formulas. We

consider both exact and approximate versions of
the problem for subclasses of DNF, for arbitrary
costs and product distributions, and for unit costs
and/or the uniform distribution. Because of the
NP-hardness of satisfiability, the general SBFE
problem is easily shown to be NP-hard for arbi-
trary DNF formulas (Greiner et al. 2006).

We consider the SBFE problem for monotone
k-DNF and k-term DNF formulas. We use a sim-
ple reduction to show that the SBFE problem for
k-DNF is NP-hard, even for k = 2. We present
an algorithm for evaluating monotone k-DNF that
achieves a solution that is within a factor of 4

ρk

of optimal, where ρ is either the minimum pi
value, or the minimum 1 − pi value, whichever
is smaller. We present an algorithm for evaluating
monotone k-term DNF with an approximation fac-
tor of max{2k, 2ρ (1 + ln k)}. We also prove that
the SBFE problem for monotone k-term DNF can
be solved exactly in polynomial time for constant
k.

Previously, Kaplan et al. gave an approximation
algorithm solving the SBFE problem for CDNF
formulas (and decision trees) for the special case
of unit costs, the uniform distribution, and mono-
tone CDNF formulas (Kaplan, Kushilevitz, and
Mansour 2005). CDNF formulas are formulas con-
sisting of a DNF formula together with an equiv-
alent CNF formula, so the size of the input de-
pends both on the size of the CNF and the size of
the DNF. Having both formulas makes the evalua-
tion problem easier. They showed that their algo-
rithm achieves a solution whose cost is within an
O(log kd) factor of the expected certificate cost,
where k is the number of terms of the DNF, and

d is the number of clauses in the CNF. The ex-
pected certificate cost is a lower bound on the cost
of the optimal solution. Deshpande et al. subse-
quently gave an algorithm solving the unrestricted
SBFE problem for CDNF formulas, whose solu-
tion is within a factor of O(log kd) of optimal, for
arbitrary costs, arbitrary probabilities, and without
the monotonicity assumption (Deshpande, Heller-
stein, and Kletenik 2013). Thus the Deshpande et
al. result solves a more general problem than that
of Kaplan et al., but their approximation bound is
weaker because it is not in terms of expected cer-
tificate cost.

The Kaplan et al. algorithm uses a round robin
technique that alternates between two processes,
one of which attempts to achieve a 0-certificate and
one which attempts to achieve a 1-certificate. The
technique requires unit costs. We modify the tech-
nique to handle arbitrary costs with no change in
the approximation factor. The algorithm can also
be trivially extended to remove the uniform dis-
tribution restriction, changing the approximation
bound to O(1

ρ log kd).
We do not know how to remove the assumption

of Kaplan et al. that the CDNF formula is mono-
tone while still achieving an approximation factor
that is within O(log kd) of the expected certificate
cost. We do show, however, that this approximation
factor is close to optimal, even for the special case
they considered. We prove that, with respect to the
expected certificate cost, the approximation factor
must be Ω((log kd)ε), for any constant ε where
0 < ε < 1.

This proof also implies that the (optimal) aver-
age depth of a decision tree computing a Boolean
function can be exponentially larger than the aver-
age certificate size for that function (i.e., the aver-
age of the minimum-size certificates for all 2n as-
signments). In contrast, the depth complexity of a
decision tree for a function, (a worst-case measure)
is at most quadratic in its certificate complexity (cf.
(Buhrman and Wolf 1999)).

The proofs of the results are omitted in this ex-
tended abstract. The interested reader is referred to
(Allen et al. 2013) for the proofs.

2 Stochastic Boolean Function
Evaluation

The formal definition of the Stochastic Boolean
Function Evaluation (SBFE) problem is as follows.

The input is a representation of a Boolean func-
tion f(x1, . . . , xn) from a fixed class of represen-
tations C, a probability vector p = (p1, . . . , pn),
where 0 < pi < 1, and a real-valued cost vec-
tor (c1, . . . , cn), where ci ≥ 0. An algorithm for
this problem must compute and output the value
of f on an x ∈ {0, 1}n, drawn randomly from the
product distributionDp, i.e., the distribution where
pi = Prob[xi = 1] with pi + qi = 1 and the xi are
independent. However, the algorithm is not given
direct access to x. Instead, it can discover the value
of any xi only by “testing” it, at a cost of ci. The
algorithm must perform the tests sequentially, each
time choosing the next test to perform. The algo-
rithm can be adaptive, so the choice of the next test
can depend on the outcomes of the previous tests.
The expected cost of the algorithm is the cost it
incurs on a random x from Dp. (Note that since
each pi is strictly between 0 and 1, the algorithm
must continue doing tests until it has obtained a 0-
certificate or 1-certificate for the function.) The al-
gorithm is optimal if it has the minimum possible
expected cost with respect to Dp. An interesting
special case is when we have unit-costs and uni-
form distribution where ci = 1 and pi = 0.5 for
all i = 1, ..., n.

We consider the running time of the algorithm
to be the (worst-case) time it takes to determine the
single next variable to be tested, or to compute the
value of f(x) after the last test result is received.
The algorithm corresponds to a Boolean decision
tree (testing strategy) computing f , indicating the
adaptive sequence of tests.

SBFE problems arise in many different applica-
tion areas. For example, in medical diagnosis, the
xi might correspond to medical tests performed
on a given patient, where f(x) = 1 if the patient
should be diagnosed as having a particular disease.
In query optimization in databases, f could cor-
respond to a Boolean query, on predicates corre-
sponding to x1, . . . , xn, that has to be evaluated
for every tuple in the database in order to find
tuples satisfying the query (Ibaraki and Kameda
1984; Krishnamurthy, Boral, and Zaniolo 1986;
Deshpande and Hellerstein 2008; Srivastava et al.
2006).

There are polynomial-time algorithms solving
the SBFE problem exactly for a small number of
classes of Boolean formulas, including read-once
DNF formulas and k-of-n formulas (see (Ünlüyurt

2004) for a survey of exact algorithms). There is a
naive approximation algorithm for evaluating any
function under any distribution that achieves an ap-
proximation factor of n: Simply test the variables
in increasing order of their costs. This follows eas-
ily from the fact that the cost incurred by the naive
algorithm in evaluating function f on an input x is
at most n times the cost of the min-cost certificate
for f , contained in x (cf. (Kaplan, Kushilevitz, and
Mansour 2005)).

Deshpande et al. explored a generic approach
to developing approximation algorithms for SBFE
problems, called the Q-value approach. It involves
reducing the problem to an instance of Stochas-
tic Submodular Set Cover and then solving it us-
ing the Adaptive Greedy algorithm of Golovin and
Krause (Golovin and Krause 2011). They proved
that the Q-value approach does not yield a sub-
linear approximation bound for evaluating k-DNF
formulas, even for k = 2. They also developed
a new algorithm for solving Stochastic Submod-
ular Set Cover, called Adaptive Dual Greedy, and
used it to obtain a 3-approximation algorithm solv-
ing the SBFE problem for linear threshold formu-
las (Deshpande, Hellerstein, and Kletenik 2013).

Table 1 summarizes work on the SBFE prob-
lem for classes of DNF formulas, and for mono-
tone versions of those classes. The table includes
both previous results and the results in this paper.

3 Preliminaries
A literal is a variable or its negation. A term is a
possibly empty conjunction (∧) of literals. If the
term is empty, all assignments satisfy it. A clause
is a possibly empty disjunction (∨) of literals. If
the clause is empty, no assignments satisfy it. The
size of a term or clause is the number of literals in
it.

A DNF (disjunctive normal form) formula is ei-
ther the constant 0, the constant 1, or a formula of
the form t1∨ · · ·∨ tk, where k ≥ 1 and each ti is a
term. Likewise, a CNF (conjunctive normal form)
formula is either the constant 0, the constant 1, or
a formula of the form c1 ∧ · · · ∧ ck, where each ci
is a clause.

A k-term DNF is a DNF formula consisting of at
most k terms. A k-DNF is a DNF formula where
each term has size at most k. The size of a DNF
(CNF) formula is the number of its terms (clauses);
if it is the constant 0 or 1, its size is 1. A DNF

formula is monotone if it contains no negations. A
read-once DNF formula is a DNF formula where
each variable appears at most once.

Given a Boolean function f : {0, 1}n →
{0, 1}, a partial assignment b ∈ {0, 1, ∗}n is a 0-
certificate (1-certificate) of f if f(a) = 0 (f(a) =
1) for all a such that ai = bi for all bi 6= ∗. It is
a certificate for f if it is either a 0-certificate or a
1-certificate. Given a cost vector c = (c1, . . . , cn),
the cost of a certificate b is

∑
j:bj 6=∗ cj . We say that

input x contains certificate b if xi = bi for all i
with xi 6= ∗. The variables in a certificate b are
the xi such that bi 6= ∗. If S is a superset of the
variables in b, then we say that S contains b.

The expected certificate cost of a function
f , with respect to cost vector c and probabil-
ity vector p, is Ef [CERT], where Ef [CERT] =∑
x CERTf (x)Prob[x]. The expectation is with re-

spect to x drawn from product distributionDp, and
CERTf (x) is the minimum cost of a certificate b of
f contained in x.

Given a Boolean function f , letEf [OPT] denote
the minimum expected cost of any algorithm solv-
ing the SBFE for f .

The set covering problem is as follows: Given a
ground set A = {e1, . . . , em} of elements, a set
S = {S1, . . . , Sn} of subsets of A, and a posi-
tive integer k, does there exist S ′ ⊆ S such that⋃
Si∈S′ = S and |S ′| ≤ k? Each set Si ∈ S is

said to cover the elements it contains. Thus the set
covering problem asks whether A has a “cover” of
size at most k.

4 Hardness of the SBFE problem for
monotone DNF

Before presenting approximation algorithms solv-
ing the SBFE problem for classes of monotone
DNF, we begin by discussing the hardness of the
exact problem.

Greiner et al. (Greiner et al. 2006) showed that
the SBFE problem for CNF formulas is NP-hard,
as follows. If a CNF formula is unsatisfiable, then
no tests are necessary to determine its value on an
assignment x. If there were a polynomial-time al-
gorithm solving the SBFE problem for CNF for-

1This follows from the fact that any DNF formula
with at most k terms can be expressed as a CNF for-
mula with at most nk clauses.(Deshpande, Hellerstein,
and Kletenik 2013)

Table 1: Complexity of the SBFE Problem for DNF Formulas

DNF formula general case monotone case

read-once DNF

• O(n lnn)-time algorithm
(Kaplan, Kushilevitz, and Mansour 2005;
Greiner et al. 2006; Boros and Ünlüyurt
2000)

• O(n lnn)-time algorithm (Kaplan, Kushilevitz, and Mansour 2005; Greiner et al.
2006; Boros and Ünlüyurt 2000)

k-DNF • inapproximable even
under ud (§ 4)

• NP-hard, even with uc (§ 4)
• poly-time (4

ρk
)-approx. algorithm (§ 5)

k-term DNF • poly-timeO(k logn)-approx. 1

• O(n2k)-time algorithm for general case (§ 6)

• O(22
k
)-time algorithm for uc/ud case (§ 6)

• poly-time
max{2k, 2

ρ
(1 + ln k)}-approx. (§ 5)

CDNF
• poly-timeO(log(kd))-approx.

(wrt Ef [OPT]) (Deshpande, Hellerstein,
and Kletenik 2013)

• No known poly-time exact algorithm or NP-hardness proof

• poly-time O(log(kd))-approx. for uc and ud (Kaplan, Kushilevitz, and Mansour
2005)

• poly-timeO(log(kd))-approx.
(wrtEf [OPT])(Deshpande, Hellerstein, and Kletenik 2013)

general DNF • inapproximable even under ud (§ 4)
• NP-hard, even with uc (§ 4)

• inapproximable within a factor of
c lnn for a constant c (§ 4)

The abbreviations uc and ud are used to refer to unit costs and uniform distribution, respectively. k refers to the number of terms in the DNF, d refers to the number of clauses in the CNF.
ρ is the minimum value of any pi or 1 − pi . Citations of results from this paper are enclosed in parentheses and include the section number. All approximation factors are with respect
to Ef [CERT], the expected certificate cost, except for the CDNF bound of (Deshpande, Hellerstein, and Kletenik 2013). That bound is with respect to Ef [OPT], the expected cost of the
optimal strategy, which is lower bounded byEf [CERT].

mulas, we could use it to solve SAT: given CNF
Formula φ, we could run the SBFE algorithm on φ
(with arbitrary p and c), and just observe whether
the algorithm begins by choosing a variable to test,
or whether it immediately outputs 0 as the value of
the formula. Thus the SBFE problem on CNF for-
mulas is NP-hard, and by duality, the same is true
for DNF formulas.

Moreover, if P 6= NP, we cannot approximate
the SBFE problem for DNF within any factor ρ >
1. If a ρ-approximation algorithm existed, then on
a tautological DNF φ, the algorithm would have to
immediately output 1 as the value of φ, because
ρ × 0 = 0. On non-tautological φ, the algorithm
would instead have to specify a variable to test.

The SBFE problem for DNF is still NP-hard
even when the DNF is monotone. To show this,
we use an approach used by Cox (Cox, Qiu, and
Kuehner 1989) in proving NP-hardness of linear
threshold evaluation. Intuitively, in an instance of
SBFE with unit costs if the probabilities pi are
very close to 0 (or 1), then the expected cost of
evaluation is dominated by the cost of evaluating
the given function f on a specific input x∗. That
cost is minimized by testing only the variables in

a minimum-cost certificate for f on x∗. The idea,
then, is to show hardness of the SBFE problem
for a class of formulas C by reducing an NP-hard
problem to the problem of finding, given f ∈ C
and a particular input x∗, a smallest size certificate
of f contained in x∗. Cox reduced from Knapsack,
and here we reduce from Vertex-Cover.

Theorem 1 If P 6= NP, there is no polyno-
mial time algorithm solving the SBFE problem for
monotone DNF. This holds even with unit costs,
and even for k-DNF where k ≥ 2. Also, if P 6=
NP, the SBFE problem for monotone DNF, even
with unit costs, cannot be approximated to within
a factor of less than c lnn, for some constant c.

Given the difficulty of exactly solving the SBFE
problem for monotone DNF formulas, we now
consider approximation algorithms.

5 Approximation algorithms for the
evaluation of monotone k-DNF and

k-term DNF
In this section, we will present a polynomial time
algorithm for evaluating monotone k-DNF formu-
las. To evaluate f we will alternate between two al-

gorithms, Alg0 and Alg1, each of which performs
tests on the variables. Alg0 tries to find a min-cost
0-certificate for f , and Alg1 tries to find a min-cost
1-certificate for f . As soon as one of these algo-
rithms succeeds in finding a certificate, we know
the value of f(x) and can output it.

This basic approach was used previously by
Kaplan et al. (Kaplan, Kushilevitz, and Mansour
2005) in their algorithm for evaluating monotone
CDNF formulas in the unit cost, uniform distribu-
tion case. They used a standard greedy set-cover
algorithm for both Alg0 and Alg1, with a strict
round-robin policy that alternated between doing
one test of Alg0 and one test of Alg1. Our algo-
rithm uses a dual greedy set-cover algorithm for
Alg0 and a different, simple algorithm for Alg1.
The strict round-robin policy used by Kaplan et al.
is only suitable for unit costs, and our algorithm
has to handle arbitrary costs. Our algorithm uses
a modified round-robin protocol instead. We begin
by presenting that protocol.

Although we will use the protocol with a par-
ticular Alg0 and Alg1, it works for any Alg0
and Alg1 that “try” to find 0-certificates and 1-
certificates respectively. In the case of Alg0, this
means that Alg0 will succeed in outputing a 0-
certificate of f contained in x if f(x) = 0, and
will eventually terminate and report failure oth-
erwise. Similarly, Alg1 will output a 1-certificate
contained in x if f(x) = 1, and will report failure
otherwise.

The modified round-robin protocol works as fol-
lows. It maintains two values: K0 and K1, where
K0 is the cumulative cost of all tests performed
so far in Alg0, and K1 is the cumulative cost of
all tests performed so far in Alg1. At each step
of the protocol, each of Alg0 and Alg1 indepen-
dently determines a test to be performed next and
the protocol chooses one of them. (Initially, the
two tests are the first tests of Alg0 and Alg1 re-
spectively.) Let C0 and C1 denote the respective
costs of these tests. Let xj1 denote the next test of
Alg1 and let xj0 denote the next test of Alg0. To
choose which test to perform, the protocol uses the
following rule: if K0 +C0 ≤ K1 +C1 it performs
test xj0, otherwise it performs test xj1.

The result of the test is given to the algorithm
to which it belongs, and that algorithm continues
until it either (1) computes a new next test, (2) ter-
minates successfully and outputs a certificate, or

(3) terminates by reporting failure. In the first case,
the protocol again chooses between the next test of
Alg0 and Alg1, using the rule above. In the sec-
ond, the protocol terminates because one of the al-
gorithms has output a certificate. In the third, the
protocol runs the other algorithm (the one that did
not terminate) until completion, performing all of
its remaining tests. That algorithm is guaranteed to
output a certificate, because if x doesn’t have a 0-
certificate for f , it must have a 1-certificate, and
vice-versa.

Note that it would be possible for the above pro-
tocol to share information between Alg0 and Alg1,
so that if xi were tested by Alg0, Alg1 would not
need to retest xi. However, to simplify the analy-
sis, we do not have the protocol do such sharing. It
can be shown that the following invariant holds at
the end of each step of the protocol, provided that
neither Alg0 nor Alg1 terminated in that iteration.

Lemma 1 At the end of each step of the above
modified round-robin protocol, if xj1 was tested in
that step, then K1 − cj0 ≤ K0 ≤ K1. Otherwise,
if xj0 was tested, then K0 − cj1 ≤ K1 ≤ K0 at
the end of the step.

We can now prove the following lemma:

Lemma 2 If f(x) = 1, then at the end of the mod-
ified round-robin protocol, K1 ≥ K0. The lemma
holds true symmetrically if f(x) = 0.

We now describe the particular Alg0 and Alg1
that we use in our algorithm for evaluating mono-
tone k-DNF. We describe Alg0 first. Since f
is a monotone function, the variables in any 0-
certificate for f must all be set to 0. Consider an
assignment x ∈ {0, 1}n such that f(x) = 0. Let
Z = {xi|xi = 0}. Finding a min-cost 0-certificate
for f contained in x is equivalent to solving the
set-cover instance where the elements to be cov-
ered are the terms t1, . . . , tm, and for each xi ∈ Z,
there is a corresponding subset {tj |xi ∈ tj} .

Suppose f(x) = 0. If Alg0 were given
both Z and f as input, it could find an ap-
proximate solution to this set cover instance
using Hochbaum’s Dual Greedy algorithm for
(weighted) set cover (Hochbaum 1982). This al-
gorithm selects items to place in the cover, one by
one, based on a certain greedy choice rule.

Alg0 is not given Z, however. It can only dis-
cover the values of variables xi by testing them.

We get around this as follows. Alg0 begins run-
ning Hochbaum’s algorithm, using the assumption
that all variables are in Z. Each time that algo-
rithm chooses a variable xi to place in the cover,
Alg0 tests the variable xi. If the test reveals that
xi = 0, Alg0 continues directly to the next step
of Hochbaum’s algorithm. If, however, the test re-
veals that xi = 1, it removes the xi from consid-
eration, and uses the greedy choice rule to choose
the best variable from the remaining variables. The
variables that are placed in the cover by Alg0 in
this case are precisely those that would have been
placed in the cover if we had run Hochbaum’s al-
gorithm with Z as input.

Hochbaum’s algorithm is guaranteed to con-
struct a cover whose total cost is within a factor
of α of the optimal cover, where α is the maxi-
mum number of subsets in which any ground el-
ement appears. Since each term tj can contain a
maximum of k literals, each term can be covered
at most k times. It follows that when f(x) = 0,
Alg0 outputs a certificate that is within a factor of
at most k of the minimum cost certificate of f con-
tained in x.

If f(x) = 1, Alg0 will eventually test all ele-
ments without having constructed a cover, at which
point it will terminate and report failure.

We now describe Alg1. Alg1 begins by evaluat-
ing the min-cost term t of f , where the cost of a
term is the sum of the costs of the variables in it.
(In the unit-cost case, this is the shortest term. If
there is a tie for the min-cost term, Alg1 breaks the
tie in some suitable way, e.g., by the lexicographic
ordering of the terms.) The evaluation is done by
testing the variables of t one by one in increasing
cost order until a variable is found to equal 0, or
all variables have been found to equal 1. (For vari-
ables xi with equal cost, Alg1 breaks ties in some
suitable way, e.g., in increasing order of their in-
dices i.) In the latter case, Alg1 terminates and out-
puts the certificate setting the variables in the term
to 1.

Otherwise, for each tested variable in t, Alg1 re-
places all occurrences of that variable in f with its
tested value. It then simplifies the formula (delet-
ing terms with 0’s and deleting 1’s from terms, and
optionally making the resulting formula minimal).
Let f ′ denote the simplified formula. Because t
was not satisfied, f ′ does not contain any satis-
fied terms. If f ′ is identically 0, x does not con-

tain a 1-certificate and Alg1 terminates unsuccess-
fully. Otherwise, Alg1 proceeds recursively on the
simplified formula, which contains only untested
variables.

Having presented our Alg0 and Alg1, we are
ready to state the main theorem of this section.

Theorem 2 The evaluation problem for monotone
k-DNF can be solved by a polynomial-time ap-
proximation algorithm computing a strategy that
is within a factor of 4

ρk
of the expected certificate

cost.

We can use techniques from the previous sub-
section to obtain results for the class of monotone
k-term DNF formulas as well. In Section 6, we will
present an exact algorithm whose running time is
exponential in k. Here we present an approxima-
tion algorithm that runs in time polynomial in n,
with no dependence on k.

Theorem 3 The evaluation problem for mono-
tone k-term DNF can be solved by a polynomial-
time approximation algorithm computing a strat-
egy that is within a factor of max{2k, 2ρ (1+ln k)}
of the expected certificate cost.

In the next section, we show that the problem of
exactly evaluating monotone k-term DNF can be
solved in polynomial time for constant k.

6 Evaluation of monotone k-term
DNF

In this section, we provide an exact algorithm for
evaluating k-term DNF formulas in polynomial
time for constant k. First, we will adapt results
from Greiner et al. (Greiner et al. 2006) to show
some properties of optimal strategies for mono-
tone DNF formulas. Then we will use these prop-
erties to compute an optimal strategy monotone
k-term DNF formulas. Greiner et al. (Greiner et
al. 2006) consider evaluating read-once formulas
with the minimum expected cost. Each read-once
formula can be described by a rooted and-or tree
where each leaf node is labeled with a test and
each internal node is labeled as either an or-node
or an and-node. The simplest read-once formu-
las are the simple AND and OR functions, where
the depth of the and-or tree is 1. Other read-once
formulas can be obtained by taking the AND or
OR of other read-once formulas over disjoint sets
of variables. In the and-or tree, an internal node

whose children include at least one leaf is called a
leaf-parent, leaves with the same parent are called
leaf-siblings (or siblings) and the set of all chil-
dren of a leaf-parent is called a sibling class. In-
tuitively, the siblings have the same effect on the
value of the read-once formula. The ratio of a vari-
able xi is defined to be R(i) = pi

ci
. Further, tests

x1 and x2 are R-equivalent if they are leaf-siblings
and R(x1) = R(x2). An R-class is an equiva-
lence class with respect to the relation of being R-
equivalent. Greiner et al. show that, for any and-or
tree, (WLOG they assume that leaf-parents are OR
nodes), there is an optimal strategy S that satisfies
the following conditions:
(a) For any sibling tests x and y such that
R(y) > R(x), x is not performed before y on
any root-to leaf path of S.

(b) For any R-class W , S is contiguous with re-
spect to W .
We observe that by redefining siblings and sib-

ling classes, corresponding properties hold for
general monotone DNF formulas. Let us define a
maximal subset of the variables that appear in ex-
actly the same set of terms as a sibling class in a
DNF formula. All the other definitions can easily
be adapted accordingly. In this case, the ratio of a
variable xi isR(i) = qi

ci
. For instance, all variables

are siblings for an AND function, whereas no two
variables are siblings in an OR function.

It is possible to adapt the proof of Theorem 20
in (Greiner et al. 2006) to apply to monotone DNF
formulas. All the steps of the proof can be adapted
in this context, using the new definitions of siblings
and the ratio of a variable.
Theorem 4 For any monotone DNF, there exists
an optimal testing strategy S that satisfies condi-
tions (a) and (b) stated above.

In other words, there exists an optimal strategy
such that on any path from the root to the leaf, sib-
ling tests appear in non-decreasing order of their
ratios. Further, for this strategy, sibling tests with
the same ratio (R-class) appear one after another
on any path from the root to the leaf. By a du-
ality argument, a similar result holds for mono-
tone CNFs by defining the ratio of a variable as
ci
pi

and sibling class as a set of variables that ap-
pear in exactly the same set of clauses. For a k-
term monotone DNF there are at most 2k − 1 sib-
ling classes, since each sibling class corresponds to

a non-empty subset of the terms of the monotone
DNF formula. It is possible to use a dynamic pro-
gramming based method to find an optimal strat-
egy by exploiting these results.
Theorem 5 The evaluation problem for monotone
k-term DNF formula φ over a product distribution
on input x and with arbitrary costs can be solved
exactly in polynomial time for constant k.
Corollary 1 The evaluation problem for mono-
tone k-term DNF, restricted to the uniform distri-
bution on input x and unit costs, can be solved ex-
actly in polynomial time for k = O(log log n).

7 Expected certificate cost and
optimal expected evaluation cost

Some of the approximation bounds discussed in
this paper are with respect to the optimal ex-
pected cost of an evaluation strategy, while oth-
ers are in terms of the expected certificate cost
of the function, which lower bounds the former
quantity. It has been previously observed in (Desh-
pande, Hellerstein, and Kletenik 2013) that for ar-
bitrary probabilities, there can be a gap of Ω(log n)
between the two measures. In what follows, we
prove that even in the unit-cost, uniform distri-
bution case, the ratio between these two can be
extremely large: Ω(nε) for any constant ε where
0 < ε < 1. (Note that in the unit-cost case,
both measures are at most n.) We also show near-
optimality of the CDNF approximation bound of
Kaplan et al. and give a gap between two complex-
ity measures related to decision trees for Boolean
functions.
Theorem 6 Let β be a constant such that
0 < β < 1. Let f be a read-once DNF formula on
n variables where each term is of length β log2 n,
and every variable appears in exactly one term.
Then Ef [OPT] = Ω(nβ), and Ef [CERT] =
O(log n) for unit-cost, uniform distribution case.

For any constant ε, where 0 < ε < 1, there is
a constant d where 0 < ε < d < 1. For large
enough n, nε log n < nd. We thus have the fol-
lowing corollary.
Corollary 2 There exists a Boolean function f
such that for any constant ε, where 0 < ε < 1,
Ef [OPT]/Ef [CERT] = Ω(nε).

Theorem 6 and the above corollary can also be
interpreted as results on average-case analogs of

depth-complexity and certificate-complexity. The
depth complexity of a Boolean function f is the
minimum, over all decision trees for f , of the
depth of that tree. Note that the depth of the tree
is the worst-case (i.e., maximum), over all 2n as-
signments x to the variables of that function, of
the number of tests (decisions) induced by the
tree on assignment x. The certificate complexity
of a Boolean function is the worst-case (i.e., max-
imum), over all 2n input assignments x, of the
smallest 0-certificate or 1-certificate of f that is
contained in x. The average depth-complexity and
average certificate-complexity of a Boolean func-
tion can be defined analogously, with worst-case
replaced by average case. Thus the average depth-
complexity is equal to Ef [OPT], and the average
certificate-complexity is equal to Ef [CERT].

We can also use Theorem 6 to show near-
optimality of the O(log kd) approximation bound
achieved by Kaplan et al. for monotone CDNF
evaluation, with respect to Ef [CERT], the ex-
pected certificate cost under unit costs and the
uniform distribution. The function computed by
the formula in Theorem 6 has a CNF formula
with (β log2 n)n/(β log2 n) clauses. Thus in this
case O(log kd) is O(n log logn

logn), which is O(n).
The strategy computed by any approximation algo-
rithm for this problem cannot do better than the op-
timal strategy, so its expected cost must be at least
Ef [OPT]/Ef [CERT] times larger than Ef [OPT].
It follows that the approximation O(log kd) bound
of Kaplan et al. has a matching lower bound of
Ω((log kd)ε) (for 0 < ε < 1), with respect to the
expected certificate cost.

We do not know, however, whether it is possi-
ble for a polynomial-time algorithm to achieve an
approximation factor much better than O(log kd)
with respect to the expected cost of the optimal
strategy, Ef [OPT]. We have no non-trivial lower
bound for the approximation algorithm in this
case; clearly such a lower bound would have to de-
pend on complexity theoretic assumptions.

8 Acknowledgments
Sarah R. Allen was partially supported by an
NSF Graduate Research Fellowship under Grant
0946825 and by NSF grant CCF-1116594. Lisa
Hellerstein was partially supported by NSF Grants
1217968 and 0917153. Devorah Kletenik was par-
tially supported by NSF Grant 0917153. Tonguç

Ünlüyurt was partially supported by TUBITAK
2219 programme. Part of this research was per-
formed while Tonguç Ünlüyurt was visiting fac-
ulty at Polytechnic Institute of NYU and Sarah
Allen was a student there.

References
Allen, S.; Hellerstein, L.; Kletenik, D.; and
Ünlüyurt, T. 2013. Evaluation of DNF formulas.
http://arxiv.org/abs/1310.3673.
Boros, E., and Ünlüyurt, T. 2000. Computing Tools
for Modeling, Optimization and Simulation, vol-
ume 12 of Operations Research/Computer Science
Interfaces Series. Springer. chapter Sequential
Testing of Series-Parallel Systems of Small Depth,
39–73.
Buhrman, H., and Wolf, R. D. 1999. Complexity
measures and decision tree complexity: A survey.
Theoretical Computer Science 288:2002.
Cox, L.; Qiu, Y.; and Kuehner, W. 1989. Heuris-
tic least-cost computation of discrete classification
functions with uncertain argument values. Annals
of Operations Research 21:1–29.
Deshpande, A., and Hellerstein, L. 2008. Flow al-
gorithms for parallel query optimization. In ICDE.
Deshpande, A.; Hellerstein, L.; and Kletenik, D.
2013. Approximation algorithms for stochastic
boolean function evaluation and stochastic sub-
modular set cover. http://arxiv.org/abs/
1303.0726.
Golovin, D., and Krause, A. 2011. Adaptive
submodularity: Theory and applications in active
learning and stochastic optimization. JAIR.
Greiner, R.; Hayward, R.; Jankowska, M.; and
Molloy, M. 2006. Finding optimal satisficing
strategies for and-or trees. Artif. Intell. 170(1):19–
58.
Hochbaum, D. S. 1982. Approximation algorithms
for the set covering and vertex cover problems.
SIAM J. Comput. 11(3):555–556.
Ibaraki, T., and Kameda, T. 1984. On the opti-
mal nesting order for computing n-relational joins.
ACM Trans. Database Syst. 9(3):482–502.
Kaplan, H.; Kushilevitz, E.; and Mansour, Y. 2005.
Learning with attribute costs. In STOC, 356–365.
Krishnamurthy, R.; Boral, H.; and Zaniolo, C.
1986. Optimization of nonrecursive queries. In
VLDB.

Srivastava, U.; Munagala, K.; Widom, J.; and Mot-
wani, R. 2006. Query optimization over web ser-
vices. In VLDB.
Ünlüyurt, T. 2004. Sequential testing of complex
systems: a review. Discrete Applied Mathematics
142(1-3):189–205.

