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Abstract

An essential aspect of programmers’ work is the correctness of their code. This makes

current HCI techniques ill-suited to analyze and design the programming systems that

programmers use everyday, since these techniques focus more on problems with learnability

and efficiency of use, and less on error-proneness. We propose a framework and methodology

that focuses specifically on errors by supporting the description and identification of the causes

of software errors in terms of chains of cognitive breakdowns. The framework is based on

both old and new studies of programming, as well as general research on the mechanisms of

human error. Our experiences using the framework and methodology to study the Alice

programming system have directly inspired the design of several new programming tools and

interfaces. This includes the Whyline debugging interface, which we have shown to reduce

debugging time by a factor of 8 and help programmers get 40% further through their tasks.

We discuss the framework’s and methodology’s implications for programming system design,

software engineering, and the psychology of programming.
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1. Introduction

‘‘Human fallibility, like gravity, weather and terrain, is just another foreseeable
hazardy The issue is not why an error occurred, but how it failed to be corrected.
We cannot change the human condition, but we can change the conditions under
which people work.’’

James Reason, Managing the Risks of Organizational Accidents [1]

In 2002, The National Institute of Standards and Technology published a study of
major U.S. software engineering industries, finding that software engineers spend an
average of 70–80% of their time testing and debugging, with the average bug taking
17.4 hours to fix. The study estimated that such testing and debugging costs the US
economy over $50 billion annually [2]. One reason for these immense costs is that as
software systems become increasingly large and complex, the difficulty of detecting,
diagnosing, and repairing software problems has also increased. Because this trend
shows no sign of slowing, there is considerable interest in designing programming
systems that can demonstrably prevent errors, and better help programmers find,
diagnose and repair the unprevented errors.
Unfortunately, the design and evaluation of such ‘‘error-robust’’ programming

systems still poses a significant challenge to HCI research. Most techniques that have
been proposed for evaluating computerized systems, such as GOMS [3] and
Cognitive Walkthroughs [4], have focused on low-level details of interaction,
bottlenecks in learnability and performance, and the close inspection of simple tasks.
In programming activity, however, even ‘‘simple’’ tasks are complex, and
productivity bottlenecks are more often in repairing errors than in learning to avoid
them. Even with the more design-oriented HCI techniques, understanding a
programming system’s error-proneness has been something of a descriptive dilemma.
Nielsen’s Heuristic Evaluation suggests little more than to prevent user errors by
finding common error situations [5]. The Cognitive Dimensions of Notations
framework [6], though applied to numerous programming systems [7,8], char-
acterizes error-proneness simply as ‘‘the degree to which a notation invites mistakes.’’
In this paper, we offer an alternative technique, specifically designed to objectively
analyze a programming system’s influence on errors. We integrate several of our
recent studies with three strands of prior research:
�
 Past classifications of common programming difficulties;

�
 Studies of the cognitive difficulties of programming; and

�
 Research on the general cognitive mechanisms of human error.
From this research, we derive a framework for describing chains of cognitive

breakdowns that lead to error, and a methodology for sampling these chains
by observing programmers’ interaction with a programming system. We hope
that these contributions will not only be valuable tools for improving existing
programming languages and environments, both visual and textual, but also for
guiding the design of new error-robust languages, environments, and interactive
visualizations.
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This paper is divided into six parts. In the next section, we review classifications of
common programming difficulties, studies of programming that suggest several
causes of error, and research on the general mechanisms of human error. In Section
3, we describe our framework in detail and in Section 4 we describe an empirical
methodology for using the framework to study a programming system’s error-
proneness. In Section 5, we describe our experiences using the framework and
methodology to analyze the Alice programming system [10]. We end in Section 6
with a discussion of the strengths and applicability of our framework and
methodology to programming system design, software engineering, and the
psychology of programming.
2. Definitions, classifications and causes

In this section, we review three strands of research: classifications of common
programming difficulties, studies of cognitive difficulties in programming, and
research on the general mechanisms of human error. To help frame our discussion,
let us first define some relevant terminology.

2.1. Terminology

If the goal of software engineering is to build a product that meets a particular
need, the correctness of a software system can be defined relative to interpretations of
this need:
�
 General expectations of the software’s behavior and functionality;

�
 A software designer’s interpretation of these expectations, known as requirement

specifications;

�
 A software architect’s formal and informal interpretations of the requirement
specifications, known as design specifications;
�
 A programmer’s understanding, or mental model, of design specifications.

Because we are interested in how a programming system can help
improve correctness, we define correctness relative to design specifications.
While there can certainly be problems with design specifications, as well as
requirements, such problems are typically outside the influence of programming
systems.
Given this definition of correctness, we define three terms: runtime failures, runtime

faults, and software errors (illustrated in Fig. 1). A runtime failure is an event that
occurs when a program’s behavior—often some form of visual or numerical program
output—does not comply with the program’s design specifications. A runtime fault is
a machine state that may cause a runtime failure (e.g., a wrong value in a CPU
register, branching to an invalid memory address, or a hardware interrupt that
should not have been activated). A software error is a fragment of code that may
cause a runtime fault during program execution. For example, software errors in
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Fig. 1. The relationship between software errors in code, runtime faults during execution, and runtime

failures in program behavior. These images will be used to represent these three concepts throughout this

paper.
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loops include a missing increment statement, a leftover ‘‘break’’ command from a
debugging session, or a conditional expression that always evaluates to true. It is
important to note that while a runtime failure guarantees that one or more runtime
faults have occurred, and a runtime fault guarantees that one or more software
errors exist, software errors do not always cause runtime faults, and runtime faults
do not always cause runtime failures. Also note that under our definition, a single
change to the design specifications can introduce an arbitrary number of software
errors.
Using these definitions, a number of other terms can be clarified. A bug is

an amalgam of one or more software errors, runtime faults, and runtime failures.
For example, a programmer can refer to a software error as a bug, as in
‘‘Oh, there’s the bug on line 43,’’ as a runtime failure, as in ‘‘Oh, don’t worry about
that. It’s just a bugy’’ or even as all three, as in ‘‘I fixed four bugs today.’’
Debugging involves determining what runtime faults led to a runtime failure,
determining what software errors were responsible for those runtime faults, and
modifying the code to prevent the runtime faults from occurring. Testing involves
searching for runtime failures and recording information about runtime faults to aid
in debugging.
A programming system is a set of components (e.g., editors, debuggers,

compilers, and documentation), each with (1) a user interface; (2) some set of
information, such as program code or runtime data, which the programmer
views and manipulates via the user interface; and (3) a notation in which the
information is represented. We illustrate some common programming
system components in the rows of Fig. 2. The figure is read from left to right; for
example, a programmer uses diagrams and printed text to view and manipulate

specifications, which are represented in natural language, UML, or some other
notation; a programmer uses an editor to view and manipulate code, which is

represented in terms of some programming language; a programmer uses a
debugger to view and manipulate a machine’s behavior, which is in terms of stack
traces, registers, and memory; a programmer uses an output device to view a
program’s behavior, which is often represented as graphics, text, animation, and
sound, etc.



ARTICLE IN PRESS

Fig. 2. A programming system has several components (in rows), each with an interface, information, and

notation (in columns). The diagram is read from left to right, as in ‘‘Programmers use interface X to view

and manipulate information Y, which is represented in notation Z.’’
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2.2. Classifications of common programming difficulties

Prior work on classifying common programming difficulties—summarized
chronologically in Table 1—has been reasonably successful in motivating novel
and effective tools for finding, understanding and repairing software errors. For
example, in the early 1980s, the Lisp Tutor drew heavily from analyses of novices’
software errors [11], and nearly approached the effectiveness of a human tutor. More
recently, the testing and debugging features of the Forms/3 visual spreadsheet
language [12] were largely motivated by studies of the type and prevalence of
spreadsheet errors [13].
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Table 1

Studies classifying ‘‘bugs’’, ‘‘errors’’ and ‘‘problems’’ in various languages, expertise, and programming

contexts

Study Bug/Error/

Problem

Description Author’s comments

Gould [14]

Novice Fortran

Assignment bug Software errors in assigning

variables’ values

Requires understanding of

behavior

Iteration bug Software errors in iteration

algorithms

Requires understanding of

language

Array bug Software errors in array index

expressions

Requires understanding of

language

Eisenberg [15]

Novice APL

Visual bug Grouping related parts of

expression

Naive bug Iteration instead of parallel

processing

‘yneed to think step-by-step’

Logical bug Omitting or misusing logical

connectives

Dummy bug Experience with other

languages interfering

‘yseem to be syntax

oversights’

Inventive bug Inventing syntax

Illiteracy bug Difficulties with order of

operations

Gestalt bug Unforeseen side effects of

commands

‘yfailure to see the whole

picture’

Johnson et al. [16]

Novice Pascal

Missing Omitting required program

element

Software errors have context:

input/output, declaration,

initialization and update of

variables, conditionals, and

scope delimiters.

Spurious Unnecessary program element

Misplaced Required program element in

wrong place

Malformed Incorrect program element in

right place

Spohrer and

Soloway [17]

Novice Basic

Data-type

inconsistency

Misunderstanding data types ‘All bugs are not created equal.

Some occur over and over again

in many novice programs, while

others are more rareyMost

bugs result because novices

misunderstand the semantics of

some particular programming

language construct.’

Natural language Applying natural language

semantics to code

Human-

interpreter

Assuming computer interprets

code similarly

Negation &

whole-part

Difficulties constructing

Boolean expressions

Duplicate tail-

digit

Incorrectly typing constant

values
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Table 1 (continued )

Study Bug/Error/

Problem

Description Author’s comments

Knowledge

interference

Domain knowledge interfering

w/constants

Coincidental

ordering

Malformed statements produce

correct output

Boundary Unanticipated problems with

extreme values

Plan dependency Unexpected dependencies in

program

Expectation/

interpretation

Misunderstanding problem

specification

Knuth [18] While

writing TeX in

SAIL and Pascal

Algorithm awry Improperly implemented

algorithms

‘provedyincorrect or

inadequate’

Blunder or botch Accidentally writing code not

to specifications

‘notyenough brainpower’

Data structure

debacle

Software errors in using data

structures

‘did not preserveyinvariants’

Forgotten

function

Missing implementation ‘I did not remember everything’

Language liability Misunderstanding language/

environment

Module mismatch Imperfectly knowing

specification

‘I forgot the conventions I had

built’

Robustness Not handling erroneous input ‘tried to make the code bullet-

proof’’

Surprise scenario Unforeseen interactions in

program elements

‘forced me to change my ideas’

Trivial typos Incorrect syntax, reference, etc. ‘my original pencil draft was

correct’

Eisenstadt [19]

Industry experts

COBOL, Pascal,

Fortran, C

Clobbered

memory

Overwriting memory, subscript

out of bounds

Also identified why software

errors were difficult to find:

cause/effect chasm; tools

inapplicable; failure did not

actually happen; faulty

knowledge of specs;

‘‘spaghetti’’ code.

Vendor problems Buggy compilers, faulty

hardware

Design logic Unanticipated case, wrong

algorithm

Initialization Erroneous type or initialization

of variables

Variable Wrong variable or operator

used

Lexical bugs Bad parse or ambiguous syntax

Language Misunderstandings of language

semantics
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Table 1 (continued )

Study Bug/Error/

Problem

Description Author’s comments

Panko [13]

Novice Excel

Omission error Facts to be put into code, but

are omitted

Quantitative errors: ‘‘errors

that lead to an incorrect,

bottom line value’’

Logic error Incorrect or incorrectly

implemented algorithm

Mechanical error Typing wrong number;

pointing to wrong cell

Overload error Working memory unable to

finish without error

Qualitative errors: ‘‘design

errors and other problems that

lead to quantitative errors in

the future’’

Strong but wrong

error

Functional fixedness (a fixed

mindset)

Translation error Misreading of specification
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Despite the successful use of these classifications, in hindsight it is clear that the
classifications do not actually classify software errors, but rather, the complex
relationships between software errors, runtime faults, runtime failures, and cognitive
failures. Nevertheless, in analyzing these classifications, four salient aspects of
software errors emerge.
The first is a software error’s surface qualities: the particular syntactic or

notational anomalies that make a code fragment incorrect. Eisenberg’s dummy bug is
a class of syntax oversights; Knuth’s trivial typos and Panko’s mechanical errors

simply describe unintended text in a program; Gould identifies particular surface
qualities of erroneous assignment statements and array references in his study of
Fortran. Clearly, the surface qualities of software errors are greatly influenced by the
language syntax. While it may seem that these qualities have little to do with the
actual cause of software errors, the fact that they are common enough to warrant
their own category suggests that language syntax can be a cause of software errors
on its own.
Other categories allude to several cognitive causes of software errors. For example,

Eisenberg’s inventive bug, Spohrer and Soloway’s data-type inconsistency, and
Johnson’s misplaced and malformed categories all refer to programmers’ lack of
knowledge about language syntax, control constructs, data types, and other
programming concepts. Knuth’s forgotten function category and Eisenstadt’s
variable bugs suggest attentional issues such forgetting or a lack of vigilance.
Eisenstadt’s design logic bugs and Knuth’s surprise scenario category indicate
strategic issues, referring to problems like unforeseen code interactions or poorly
designed algorithms.
A third aspect of software errors is the programming activity in which the cause of

the software error occurred. For example, Knuth’s mismatch between modules bugs
and Spohrer and Soloway’s expectation and interpretation problems all occur
in specification activities, in which the programmer’s invalid or inadequate
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Table 2

Actions performed during programming activity

Action Examples of the action in programming activity

Creating Writing code, or creating design and requirement specifications

Reusing Reusing example code, copying and adapting existing code

Modifying Modifying code or changing specifications

Designing Considering various software architectures, data types, algorithms, etc.

Exploring Searching for code, documentation, runtime data

Understanding Comprehending a specification, an algorithm, a comment, runtime behavior, etc.
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comprehension of design specifications later led to software errors. Spohrer and
Soloway’s plan dependency problem occurs during algorithm design activities, in
which unforeseen interactions eventually led to software errors.
A fourth and final aspect of software errors is the type of action that led to the

error. The classifications suggest six types of programming actions, which we list in
Table 2 with examples. For instance, programmers can introduce software errors
when creating code, but the creation of specifications can also predispose software
errors (as in Spohrer and Soloway’s expectation/interpretation problems). Program-
mers also reuse code, modify specifications and code, design software architectures
and algorithms and explore code and runtime data. The classifications also blame the
understanding of specifications, data structures, and language constructs for several
types of software errors.
While these classifications go a long way in conveying the scope and complexity of

several aspects of software errors, they only go so far in relating these aspects
causally. For example, what looks like an erroneously coded algorithm on the
surface may have been caused by an invalid understanding of the specifications, a
lack of experience with a language construct, misleading information from a
debugging session, or simply momentary inattention. Each possible cause motivates
entirely different interventions.

2.3. Human error in programming activity

To fully understand how the interaction between a programmer and a
programming system can lead to software errors, we need a more general
discussion of the underlying cognitive mechanisms of human error. James Reason’s
Human Error [20] provides a solid foundation for this discussion. In this section, we
adapt two aspects of his research to the domain of programming: (1) a systemic view
of the causes of failure, and (2) a brief catalog of common failures in human
cognition.

2.3.1. Systemic causes of failure

Thus far we have considered what Reason refers to as active errors: errors whose
effects are felt almost immediately, such as syntax errors that prevent successful
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compilation or invalid algorithms. Reason also defines latent errors, ‘‘whose adverse
consequences may lie dormant within the system for a long time, only becoming
evident when they combine with other factors to breach the system’s defenses’’ [20].
The fundamental idea is that complex systems have several functional layers, each
with potential latent errors that predispose failure, but also with a set of defenses
that prevent latent errors from becoming active. From this perspective, failures are
ultimately due to a causal chain of failures both within and between layers of a
system.
We apply these ideas to software engineering in Fig. 3. In the figure, we portray

four layers, each with its own type of latent errors and defenses. On the left, we see
that specifications act as high-level defenses against software errors, but if they are
ambiguous, incomplete, or incorrect, they may predispose programmers to
misunderstandings about a software system’s true requirements. By improving
software engineering practices, there will be fewer latent errors in design
specifications, which will prevent programmers’ invalid or incomplete understanding
of specifications. Programmers, the next layer in Fig. 3, have knowledge, attention,
and expertise to defend against software errors. However, programmers are also
prone to cognitive breakdowns in these defenses, which predispose software errors.
We will discuss these breakdowns in detail in the next section. The third layer in Fig.
3, the programming system, consists of several components (compilers, libraries,
languages, environments, etc.). Each has a set of defenses against software errors,
but also a set of latent usability issues that predispose the programmer to cognitive
breakdowns, and thus software errors. For example, compilers defend against syntax
errors, but in displaying confusing error messages, may misguide programmers in
Fig. 3. Dynamics of software error production, based on Reason’s systemic view of failure. Each layer has

latent errors (the holes), predisposing certain types of failures. Layers also have defenses against failures

(where there are no holes). Several layers of failure must go unchecked before software errors are

introduced into code.
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correctly repairing the syntax errors. The last layer, the program, has the latent
errors we know as software errors, which can eventually lead to a program’s runtime
failure.
It is important to note that latent errors in these layers only become active in

particular circumstances. Just as a program may only fail with particular input and
in particular states, programming systems, programmers, and specifications may
only fail in particular situations.

2.3.2. Skill, rule, and knowledge breakdowns

Within the broad view of software errors portrayed in Fig. 3, we now focus on the
programmer’s latent errors—what we will call cognitive breakdowns—and how the
programming system might be involved in predisposing these cognitive breakdowns.
Reason’s central thesis about human behavior is that in any given context,
individuals will behave in the same way they have in the past in that context. Under
most circumstances, these ‘‘default’’ behaviors are sufficient; however, under
exceptional or novel circumstances, they may lead to error. In programming, this
means that when solving problems, programmers tend to prefer programming
strategies that have been successful in the past. These default strategies are usually
successful, but they sometimes break down—hence the term cognitive breakdowns—
and lead to software errors.
In order to clarify the sources of these breakdowns, Reason discusses three general

types of cognitive activity, each prone to certain types of cognitive breakdowns. The
most proceduralized of the three, skill-based activity, usually fails because of a lack
of attention given to performing routine, skillful patterns of actions. Rule-based

activity, which is driven by learned expertise, usually fails because the wrong rule is
chosen, or the rule is inherently bad. Knowledge-based activity, centered on
conscious, deliberate problem solving, suffers from cognitive limitations and biases
inherent in human cognition. We will discuss all three types of cognitive activity and
their accompanying breakdowns in detail.

Skill-based activities are routine and proceduralized, where the focus of attention
is on something other than the task at hand. Some skill-based activities in
programming include typing a text string, opening a source file with a file open
dialog, or compiling a program by pressing a button in the programming
environment. These are practiced and routine tasks that can be left in ‘‘auto-pilot’’
while a programmer attends to more problem-oriented matters. An important
characteristic of skill-based activities is that because attention is focused internally on
problem solving and not externally on performing the routine action, programmers
may not notice important changes in the external environment.
Table 3 lists Reason’s two categories of skill breakdowns. Inattention breakdowns

are a failure to pay attention to performing routine actions at critical times. For
example, imagine a programmer finishing the end of a for loop header when the fire
alarm goes off in his office. When he returns to the loop after the interruption, he
fails to complete the increment statement, introducing a software error. Inattention
breakdowns may also occur because of the intrusion of strong habits. For example,
consider a programmer who tends to save modifications to a source file after every
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Table 3

Types of skill breakdowns, adapted from Reason [20]. The - means ‘‘causes’’

Inattention Type Events resulting in breakdown

Failure to attend to a

routine action at a critical

time causes forgotten

actions, forgotten goals, or

inappropriate actions.

Strong habit

intrusion

In the middle of a sequence of actions - no

attentional check - contextually frequent action

is taken instead of intended action

Interruptions External event - no attentional check - action

skipped or goal forgotten

Delayed action Intention to depart from routine activity - no

attentional check between intention and action-
forgotten goal

Exceptional

stimuli

Unusual or unexpected stimuli - stimuli

overlooked - appropriate action not taken

Interleaving Concurrent, similar action sequences - no

attentional check - actions interleaved

Overattention Type Events resulting in breakdown

Attending to routine action

causes false assumption

about progress of action.

Omission Attentional check in the middle of routine actions

- assumption that actions are already completed

- action skipped

Repetition Attentional check in the middle of routine actions

- assumption that actions are not completed -
action repeated
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change so that important modifications are not lost. At one point, he deletes a large
block of code he thinks is unnecessary, but immediately after, realizes he needed the
code after all. Unfortunately, his strong habit of saving every change has already
intruded, and he loses the code permanently (a good motivation for sophisticated
undo mechanisms in programming environments).

Overattention breakdowns occur when attending to routine actions that would
have been better left to ‘‘auto-pilot.’’ For example, imagine a programmer has
copied and pasted a block of code and is quickly coercing each reference to a
contextually appropriate variable. While planning his next goal in his head, he
notices that he has not been paying attention and interrupts his ‘‘auto-pilot,’’
accidentally looking two lines down from where he actually was. He falsely assumes
that the statements above were already coerced, leaving several invalid references in
his code.

Rule-based activities involve the use of cognitive rules for acting in certain
contexts. These rules consist of some condition, which checks for some pattern of
signs in the current context. If the current context matches the condition, then
corresponding actions are performed. For example, expert C programmers
frequently employ the rule, ‘‘If some operation needs to be performed on the
elements of a list, type for (int i ¼some_initial_value; iosome_terminating_value;
i þþ), choose the initial and terminating values, then perform the operation.’’ These
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rules are much like the concept of programming plans [21], which are thought to
underlie the development of programming expertise [22].
Table 4 lists Reason’s two categories of rule breakdowns, the first of which is

wrong rule. Because rules are influenced by prior experience, they make implicit
predictions about the future state of the world. These predictions of when and how
the world will change are sometimes incorrect, and thus a rule that is perfectly
reasonable in one context may be selected in an inappropriate context. For example,
one common breakdown in Visual Basic.NET is that programmers will use the ‘‘+’’
operator to add numeric values, not realizing that the values are represented as
strings, and so the strings are concatenated instead. Under normal circumstances,
use of the ‘‘+’’ operator to add numbers is a perfectly reasonable rule; however,
because there were no distinguishing signs of the variables’ types in the code, it was
applied inappropriately.
Empirical studies of programming have reliably demonstrated many other

types of wrong rule breakdowns. For example, Davies’ framework of knowledge
Table 4

Types of rule breakdowns, adapted from Reason [20]

Wrong rule Type Events resulting in breakdown

Use of a rule that is successful

in most contexts, but not all.

Problematic signs Ambiguous or hidden signs - conditions

evaluated with insufficient info - wrong

rule chosen - inappropriate action

Information

overload

Too many signs - important signs missed

- wrong rule chosen - inappropriate

action

Favored rules Previously successful rules are favored -
wrong rule chosen - inappropriate action

Favored signs Previously useful signs are favored -
exceptional signs not given enough weight

- wrong rule chosen - inappropriate

action

Rigidity Familiar, situationally inappropriate rules

preferred over unfamiliar, situationally

appropriate rules - wrong rule chosen -
inappropriate action

Bad rule Type Events resulting in breakdown

Use of a rule with problematic

conditions or actions.

Incomplete

encoding

Some properties of problem space are not

encoded - rule conditions are immature

- inappropriate action

Inaccurate

encoding

Properties of problem space encoded

inaccurately - rule conditions are

inaccurate - inappropriate action

Exception proves

rule

Inexperience - exceptional rule often

inappropriate - inappropriate action

Wrong action Condition is right but action is wrong -
inappropriate action
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restructuring in the development of programming expertise suggests that a lack of
training in structured programming can lead to the formation of rules appropriate
for one level of program complexity, but inappropriate for higher levels of
complexity [22]. For example, in Visual Basic, the rule ‘‘if some data needs to be used
by multiple event-handlers, create a global variable on the form’’ is appropriate for
forms with a small number of event-handlers, but quickly becomes unmanageable in
programs with hundreds. Similarly, Shackelford studied the use of three types of
Pascal while loops, finding that while most students had appropriate rules for
choosing the type of loop for a problem, the same rules failed when applied to similar
problems with additional complexities [23].
The second type of rule breakdown is the use of a bad rule: one with problematic

conditions or actions. These rules come from learning difficulties, inexperience, or a
lack of understanding about a particular program’s semantics. For example, Perkins
and Martin demonstrated that ‘‘fragile knowledge’’—inadequate knowledge of
programming concepts, algorithms, and data structures, or an inability to apply the
appropriate knowledge or strategies—was to blame for most novice software errors
when learning Pascal [17]. Not knowing the language syntax—in other words, not
encoding or inaccurately encoding its properties—can lead to simple syntax errors,
malformed Boolean logic, scoping problems, the omission of required constructs,
and so on. An inadequate understanding of a sorting algorithm may cause a
programmer to unintentionally sort a list in the wrong order. Von Mayrhauser and
Vans illustrated that programmers who focused only on comprehending surface level
features of a program (variable and method names, for example), and thus had an
insufficient model of the program’s runtime behavior, did far worse in a corrective
maintenance task than those who focused on the program’s runtime behavior [24].
In knowledge-based activities, Reason’s last type of cognitive activity, the focus of

attention is on forming plans and making high-level decisions based on one’s
knowledge of the problem space. In programming, knowledge-based activities
include forming a hypothesis about what caused a runtime failure, or comprehend-
ing the runtime behavior of an algorithm. Because knowledge-based activities rely
heavily on the interpretation and evaluation of models of the world (in
programming, models of a program’s semantics), they are considerably taxing on
the limited resources of working memory. This results in the use of a number of
cognitive ‘‘shortcuts’’ or biases, which can lead to cognitive breakdowns.
Table 5 describes these biases, and how they cause breakdowns in the strategies

and plans that programmers form. One important bias is bounded rationality [25]: the
idea that the problem spaces of complex problems are often too large to permit an
exhaustive exploration, and thus problem solvers ‘‘satisfice’’ or explore ‘‘enough’’ of
the problem space. Human cognition uses a number of heuristics to choose which
information to consider [20]: (1) evaluate information that is easy to evaluate
(selectivity); (2) only evaluate as much as is necessary to form a plan of action (biased

reviewing); (3) evaluate information that is easily accessible in the world or in the
head (availability).
Because of the complexity of programming activity, bounded rationality shows up

in many programming tasks. For example, Vessey argues that debugging is difficult
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Table 5

Types of knowledge breakdowns, adapted from Reason [20]

Bounded rationality Type Events resulting in breakdown

Problem space is too large to

explore because working

memory is limited and costly.

Selectivity Psychologically salient, rather than

logically important task information is

attended to - biased knowledge

Biased reviewing Tendency to believe that all possible

courses of action have been considered,

when in fact very few have been considered

- suboptimal strategy

Availability Undue weight is given to facts that come

readily to mind- facts that are not present

are easily ignored - biased knowledge

Faulty models of problem

space

Type Events resulting in breakdown

Formation and evaluation of

knowledge leads to incomplete

or inaccurate models of

problem space.

Simplified

causality

Judged by perceived similarity between

cause and effect - knowledge of outcome

increases perceived likelihood - invalid

knowledge of causation

Illusory

correlation

Tendency to assume events are correlated

and develop rationalizations to support the

belief - invalid model of causality

Overconfidence False belief in correctness and completeness

of knowledge, especially after completion

of elaborate, difficult tasks - invalid,

inadequate knowledge

Confirmation bias Preliminary hypotheses based on

impoverished data interfere with later

interpretation of more abundant data -
invalid, inadequate hypotheses
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because the range of possible software errors causing a runtime failure is highly
unconstrained and further complicated by that fact that multiple independent or
interacting software errors may be to blame [26]. Gilmore points out that, because of
their limited cognitive resources, programmers generally only consider a few
hypotheses of what software errors caused the failure, and usually choose an
incorrect hypothesis. This not only leads to difficulty in debugging, but often the
introduction of further software errors due to incorrect hypotheses [27]. For
example, in response to a program displaying an unsorted list because the sort
procedure was not called, a programmer might instead decide the software error was
an incorrect swap algorithm, and attempt to modify the already correct swap code.
The second type of knowledge breakdown is the use of a faulty model of the

problem space. For example, human cognition tends to see illusory correlations

between events, and even develops rationalizations to defend such beliefs in the face
of more accurate observations (confirmation bias). These biases lead to oversimplified
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or incorrect models of the problem space. Individuals also display overconfidence,
giving undue faith to the correctness and completeness of their knowledge. This
results in strategies that are based on incomplete analyses. For example, spreadsheet
users exhibit so much overconfidence in their spreadsheets’ formulas that a single test
case is often enough to convince them of their spreadsheet’s correctness [28].
Corritore and Wiedenbeck have shown that programmers’ overconfidence in the
correctness of their mental models of a program’s semantics was often the cause of
software errors in programmers’ modifications [29].
3. A framework for studying the causes of software errors

As we have seen, the causes of software errors are rarely due to a programmer’s
cognitive failures alone: a myriad of environmental factors, such as hidden or
ambiguous signs in a programming environment, unfortunately timed interruptions,
or poorly conceived language constructs may also be involved. Thus, to truly
support design, the programmer and the programming system should be considered
together.
To this end, we propose a framework that combines aspects of both programming

systems and human cognition:
1.
 Programmers perform three types of programming activities: specification
activities (involving design and requirements specification), implementation
activities (involving the manipulation of code), and runtime activities (involving
testing and debugging) (Section 2.2).
2.
 Programmers perform six types of actions while interacting with a programming
system’s interfaces: design, creation, reuse, modification, understanding, and
exploration (Section 2.2).
3.
 Skill breakdowns, rule breakdowns, and knowledge breakdowns occur as a result of
the interaction between programmers’ cognitive limitations and properties of the
programming system and external environment (Section 2.3.2).

We combine these aspects into two central ideas:
1.
 A cognitive breakdown consists of four components: the type of breakdown, the
action being performed when the breakdown occurs, the interface on which the
action is performed, and the information that is being acted upon.
2.
 Chains of cognitive breakdowns are formed over the course of programming
activity, often leading to the introduction of software errors.

These ideas map directly to elements in our framework, which we portray in
Fig. 4. The three grey regions, stacked vertically, denote specification, implementa-
tion, and runtime activities. The four columns contain various types of the four
components of a breakdown. Breakdowns are read from left to right in the figure,
with ‘[ ]’ meaning ‘‘choose one within the brackets.’’ For example, in specification
activities, a single breakdown consists of one of three types of breakdowns, one of



ARTICLE IN PRESS

Fig. 4. A framework for describing the causes of software errors based on chains of cognitive breakdowns.

Breakdowns occur in specification, implementation, and runtime activities. A single breakdown is read

from left to right and consists of one component from each column within an activity. The cause of a single

software error can be thought of as a trace through these various types of breakdowns, by following the

‘‘can cause’’ arrows between and within the activities.
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three types of actions, one of three types of interfaces, and one of two types of
information (therefore, the framework can describe 3� 3� 3� 2=54 types of
breakdowns in specification activities). Thus, one possible breakdown described by
the framework would be ‘‘a knowledge breakdown in understanding a diagram of a
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design specification.’’ The actions, interfaces, and information for a particular
activity are determined by the nature of the activity. For example, in runtime
activity, programmers explore and understand machine and program behavior, but
they do not create or design it.
Chains of breakdowns are represented by following the arrows in Fig. 4, which

denote ‘‘can cause’’ relationships. For example, by following the arrow from
specification activities to implementation activities, we can say, ‘‘a knowledge
breakdown in understanding a diagram of a design specification can cause a
knowledge breakdown in modifying code.’’ The framework allows all ‘‘can cause’’
relationships within each activity; for example, during specification, ‘‘a software
architect’s breakdowns in creating design specification diagrams can cause
programmers to have knowledge breakdowns in understanding them.’’ The
framework also supports relationships between activities, as in ‘‘breakdowns in
modifying design specification documents can cause breakdowns in modifying
code,’’ or, ‘‘breakdowns in understanding code in an editor can cause breakdowns in
understanding design specification documents.’’
In addition to describing ‘‘can cause’’ relationships within and between activities,

the framework also describes relationships between software errors, runtime faults,
runtime failures, and other breakdowns. For example, software errors can cause
breakdowns in modifying code before ever causing a runtime fault: when a
programmer makes a variable of Boolean instead of integer type, any further code
that assumes the variable is of integer type is erroneous. A runtime fault or failure
can cause various types of debugging breakdowns if noticed.
While our framework suggests many links between breakdowns, it makes no

assumptions about their ordering. High-level software engineering processes, such as
the waterfall or extreme programming models, assume a particular sequence of
specification, implementation, and debugging activities; models of programming,
program comprehension, testing, and debugging assume a particular sequence of
programming actions. Our framework describes the causes of software errors in any
of these models and processes.
To illustrate how these chains of breakdowns occur, consider the scenario

illustrated in Fig. 5. A programmer had little sleep the night before, which causes an
repetition breakdown in implementing the swap algorithm for a recursive sorting
algorithm; this causes a repeated variable reference. At the same time, a faulty model

knowledge breakdown in understanding the algorithm’s specifications causes an
overconfidence breakdown in implementing a statement in the recursive call; this
causes another erroneous variable reference. When he tests his algorithm, the two
software errors cause two runtime faults, causing the sort to fail. When observing the
failure, the programmer has a problematic signs breakdown in observing the
program’s output because it is displayed amongst other irrelevant debugging output,
and he perceives a ‘‘10’’ instead of the ‘‘100’’ that is on-screen. This causes the
programmer to have a biased reviewing breakdown in understanding the runtime
failure: he forms an incorrect hypothesis about the cause of the failure, and neglects
to consider other hypotheses. This invalid hypothesis causes a selectivity breakdown
in modifying the recursive call, ultimately causing infinite recursion.
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Fig. 5. An example of a chain of cognitive breakdowns, where a programmer has several breakdowns

while implementing a recursive sorting algorithm.
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4. An empirical methodology for studying the causes of software errors in

programming systems

One use of our framework is as a vocabulary for the causes of software errors in a
programming system. It enables statements such as ‘‘This window in the code editor
might make programmers prone to problematic sign breakdowns in cutting and
pasting code, since it obscures part of the pasted text.’’ In this sense, it can
complement other ‘‘broad-brush’’ frameworks such as the Cognitive Dimensions of
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Notations [30]. However, we believe the real strength of the framework is in using it
to guide the empirical analysis of programming systems, with the goal of collecting
design insights and inspirations that would have otherwise not been obvious.
In this section, we describe a methodology for performing such analyses. It has

four major steps:
1.
 Design an appropriate programming task.

2.
 Observe and record suitably experienced programmers working on the task, using

think-aloud methodology [31] to capture their decisions and reasoning.

3.
 Use the recordings to reconstruct chains of cognitive breakdowns by working
backwards from programmers’ software errors to their causes.
4.
 Analyze the resulting set of chains of breakdowns for patterns and
relationships.

We have used this methodology to study a variety of programming systems
in varying contexts, and in Section 5 we discuss study of the Alice programming
system [10] as an example. Before doing so, however, we discuss each step
of the methodology in detail, highlighting several methodological issues that arise in
their execution as well as many recommendations that have come from our
experiences.

4.1. Task design

The first and most critical step in our methodology is designing a suitable
programming task. Because the task largely determines what is observed, there are
several important considerations:
1.
 Task complexity: If the intention of the study is to test the influence of a particular
feature of a programming system, will programmers be able to get far enough in
the task to reach the interesting observations? For example, if the key focus of the
study is on debugging, is the task complex enough to involve debugging, but
simple enough that programmers have time to debug?
2.
 Uninteresting observations: Are there any observations that would not be
interesting? If so, how can one ensure that the task involves as few of these
uninteresting interactions as possible?
3.
 Strategic variability: How much will programmers’ strategies for the task vary,
and is variability desired? Variability helps assess the range of a programming
system’s error-proneness (and is thus important in exploratory studies), but not
the prevalence of any particular breakdowns.
4.
 Level of detail in task specifications: At what granularity should specifications for
the programming task be provided? If the specifications are fairly detailed,
defining correctness, and thus identifying runtime failures, will be relatively
straightforward. If requirements are provided, but the specifications left
unconstrained, then the programmer is ultimately responsible for defining the
appropriate behavior of the program. In this case, the programmer is the only one
who can deem their program’s behavior or code incorrect.
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Rather than assuming the answers to any of these questions, we recommend

piloting several potential tasks with programmers until any issues are resolved. We
describe how we dealt with these issues in our study of Alice [10] in Section 5.

4.2. Observing programmers at work

How should programmers be observed and what should be recorded? Because the
underlying assumption of our methodology is that a programming system is prone to
a subset of all possible chains of breakdowns described by the framework, recordings
should capture all four aspects of a cognitive breakdown. As we described in Section
3, a breakdown consists of four components: the type of breakdown, the action

performed by the programmer, the interface used to perform the action, and the
information acted upon. The latter three components are directly observable. For
example, by watching a programmer use a UNIX environment to code a C program,
one can observe the programming interfaces she uses (emacs, vi, man pages, etc.), the
actions she performs using these interfaces (editing, shell commands, searching, etc.),
and the information that she is acting upon (code, makefiles, text console output,
etc.).
The only unobservable component of a breakdown is its type—one of the many

types discussed in Section 2.3.2. Merely analyzing a programmer’s actions will not
reliably suggest a programmer’s goals and decisions, since a single action may have
many possible motives. Instead, we suggest using think-aloud methodology [31] to
elicit the causes of programmers’ actions. In think-aloud studies, the experimenter
asks participants to provide self-reports of the decision-making and rationale behind
their actions.
What constitutes a valid think-aloud study has historically been quite

controversial. Ericsson and Simon originally proposed in Protocol Analysis: Verbal

Reports as Data [31] that verbal data is only reliable if it does not require additional
attentional resources to verbalize; if it did, data collection would interfere with the
task performance. Ericsson and Simon, and others, have since demonstrated that
problem-solving tasks that are (1) describable in terms of verbalizable rules and (2)
generally without external, time-critical factors, satisfy this condition. Most
programming situations seem to satisfy these constraints, although we are unaware
of any research verifying this.
There are a number of important guidelines to follow when collecting think-aloud

data from programmers. We base our guidelines on Boren and Ramey’s recent
assessment of think-alouds for usability testing [32]:
�
 The experimenter should set the stage. Participants should understand that they

are not under study, but rather, the programming system is. Furthermore,
participants should understand that they are the domain experts because they can
approach tasks in ways the experimenter cannot. Therefore, while thinking aloud,
they are the primary speaker, while the experimenter plays the role of an
‘‘interested learner.’’ These roles should be defined explicitly prior to observations
and maintained throughout observations.
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�
 The experimenter should take a proactive role in keeping participants verbal
reports undirected, undisturbed, and constant. Boren and Ramey recommend using
the phrases ‘‘Mm hmm’’ to acknowledge the participant’s reports, and ‘‘Please
continue’’ or ‘‘And now?’’ as reminders to continue thinking aloud. The
experimenter should not ask programmers why they have done something, to
avoid biasing participants’ explanations, or eliciting fabricated explanations.

Nielson provides a more instructive introduction to think-aloud studies in
Usability Engineering [5], as well as evidence that the method can be successfully
applied by computer scientists with minimal training. For a longer introduction,
consult Ericsson and Simon [31].
To actually record breakdowns, we recommend either videotaping programmers

at work or recording the contents of their screen using video capture software with
an accompanying audio recording. While this may seem like an unnecessarily large
amount of data to gather and analyze, anything less than a full recording of a
programmer’s interaction with a programming system can severely hinder the
validity of assessments of the causes of a software error. In our experience,
observations such as the pauses between clicks, the code scrolled to, what code is
being focused on and even the speed of scrolling can all be reliable indicators of a
programmer’s goals and decisions when combined with verbal utterances. For
example, many environments show tool tips when the mouse cursor is hovered over
particular code fragments; by only instrumenting a programming system to record
high-level actions such as ‘‘tool tip shown,’’ ‘‘button pressed,’’ and ‘‘text deleted,’’
there would be no indication of whether the programmer actually meant to inspect
the tool tip, or whether he just happened to leave the mouse cursor at that position
while he consulted some printouts on his desk.

4.3. Reconstructing chains of cognitive breakdowns

To reconstruct chains of cognitive breakdowns from a recording, we use a
deductive approach in which one asks questions about a software error, runtime
fault, runtime failure, or cognitive breakdown in order to determine its cause. This
backwards reasoning proceeds until no further causes can be determined from the
evidence. We illustrate this process in Fig. 6, which reconstructs the chain presented
in Fig. 5.
We begin the reconstruction from the program’s runtime failure, a stack overflow

exception, by asking the deductive question, ‘‘What caused the stack overflow?’’
Deducing the chain of causality from this failure, to the runtime fault, from the fault
to the software error is essentially debugging—to analyze the situation, one must
understand the programmer’s code well enough to be able to determine all of the
software errors that contributed to the program’s failure. This deduction can be done
objectively, given enough knowledge of the program’s code and runtime behavior.
We have found that performing this analysis from the videotape often requires
repeated rewinding and fast-forwarding, and thus having the video in digital format
is quite helpful.
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Fig. 6. Deductively reconstructing the causal chain of breakdowns represented in Fig. 5, using a

programmer’s actions and verbal utterances.
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Once the software errors leading to the runtime failure have been deduced, one
must determine what types of cognitive breakdowns led to the software error. For
example, in Fig. 6 we ask, ‘‘What caused the invalid recursive call?’’ Had the
programmer said nothing about his actions, there would have been several
explanations, but none with supporting evidence. However, because the programmer
said, ‘‘Oh, I bet it’s because that recursive call was supposed to go first’’ and then
proceeded to move the recursive call in his code, we can be relatively confident that it
was an availability breakdown: the programmer assumed that his most recent
changes to the code were responsible, rather than the swap code. We then proceed to
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ask deductive questions about each breakdown, until no further causes can be
deduced from the evidence.
In some circumstances, there can be multiple events responsible for a single

breakdown, at which point the chain is split in two. For example, in Fig. 6, there are
multiple reasons why the sort failed (two runtime faults, two corresponding software
errors, and thus at least two cognitive breakdowns). In general, chains can branch at
runtime failures (due to multiple runtime faults), at software errors (due to multiple
cognitive breakdowns), and at breakdowns (due to multiple external events, such as
interface problems or interruptions).

4.3.1. Determining a breakdown’s type

How should a breakdown’s type be determined? In our analyses, we have been
using programmers’ verbal utterances and other contextual information to answer
deductive questions about some action. For example, if a programmer types
the wrong variable name in a method call, our deductive question would be,
‘‘Why did the programmer use variable X instead of variable Y?’’ We answer this
question by considering the programmer’s past actions and verbal utterances. For
example, if the programmer said, ‘‘What do we have to send to this method? Um, I
think X.’’ we might deduce that he had a biased reviewing knowledge breakdown
because he was in knowledge-based cognitive activity and only considered one
course of action.
To help make these judgments about a breakdown’s type, we summarize the

various types of skill, rule, and knowledge breakdowns from Section 2.3.2 in Table 6.
This table can be used to find an appropriate answer for each deductive question. We
have found this table to be an indispensable aid in considering the possible
explanations for a programmer’s behaviors. In our experience, when considering the
context of some action, either a single type of breakdown stands out, or none do. If it
is unclear which type of breakdown was to blame, the observations are probably
insufficient for objectively deducing the cause of the cognitive breakdown. However,
even in this case it is useful to record all of the possible breakdowns, since
programmers’ actions or decisions that have yet to be analyzed may disambiguate a
breakdown’s type.
Although programmers’ verbal utterances can be a valuable and reliable indicator

of a breakdown’s type, this is only true if the verbal data is analyzed in a reliable
way. We recommend testing the reliability of interpretations by having multiple
individuals reconstruct a subset of the software errors independently, and then
checking for agreement in the types of breakdowns and structure of chains of
breakdowns. To check for agreement in types simply involves comparing the
categories chosen from Table 6; a more coarse comparison would ensure that
analyzers agreed on whether individual breakdowns were skill, rule, or knowledge

breakdowns, whereas a finer grained comparison would check for agreement on
subtypes of these breakdowns. Checking for agreement on chains of breakdowns
involves comparing the causal links between breakdowns; in other words, the
answers from the analyzers to each deductive question should be comparable, and
each answer should lead to a comparable deductive question.
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Table 6

A summary of common types of skill, rule, and knowledge breakdowns, which can be used to answer

deductive questions from observations

Detecting skill breakdowns
Skill-based activity is wheny The programmery

� Is actively executing routine, practiced actions in a familiar context

� Is focused internally on problem solving, rather than executing the

routine actions

Skill breakdowns happen

wheny

The programmery

� Is interrupted by an external event (interruption)

� Has a delay between an intention and a corresponding routine action

(delayed action)

� Is performing routine actions in exceptional circumstances (strong

habit intrusion)

� Is performing multiple, similar plans of routine action (interleaving)

� Misses an important change in the environment while performing

routine actions (exceptional stimuli)

� Attends to routine actions and makes a false assumption about their

progress (omission, repetition)

Detecting rule breakdowns
Rule-based activity is wheny The programmery

� Detects a deviation from the planned-for conditions

� Is seeking signs in the environment to determine what to do next

Rule breakdowns happen

wheny

The programmery

� Takes the wrong action

� Misses an important sign (favored signs)

� Is inundated with signs (information overload)

� Is acting in an exceptional circumstance (favored rules, rigidity)

� Misses ambiguous or hidden signs in the environment (problematic

signs)

� Acts on incomplete knowledge (incomplete knowledge)

� Acts on inaccurate knowledge (inaccurate knowledge)

� Uses an exceptional, albeit successful rule from past experience as the

rule (exception proves rule)

Detecting knowledge breakdowns
Knowledge-based activity is
wheny

The programmery

Is executing unpracticed or novel actions

� Is comprehending, hypothesizing or otherwise reasoning about a

problem using knowledge of the problem space

Knowledge breakdowns

happen wheny

The programmery

� Makes a decision without considering all courses of action or all

hypotheses (biased reviewing)

� Has a false hypothesis about something (confirmation bias)

� Sees a non-existent relationship between events (simplified causality)

� Notices illusory correlation, or does not notice real correlation between

events (illusory correlation)

� Does not attend to logically important information when making

decision (selectivity)

� Does not consider logically important information that is unavailable,

or difficult to recall (availability)

� Is overconfident about the correctness and completeness of their

knowledge (overconfidence)
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4.4. Analyzing chains of cognitive breakdowns

Once a set of reliable chains of cognitive breakdowns has been reconstructed from
observations, there are a wide variety of questions that can be asked:
�
 What activities are most prone to cognitive breakdowns?

�
 What aspects of the language and environment are involved in breakdowns?

�
 What types of actions are most prone to breakdowns?

�
 How do novice and expert programmers’ types of breakdowns compare?

�
 What breakdowns tend to cause further breakdowns?
It is also important to consider how individual breakdowns are related to the
software errors they cause:
�
 Which types of breakdowns are most prone to cause software errors?

�
 Which breakdowns due to problems in the programming system are responsible
for the most software errors?
�
 Which kinds of software errors tend to cause further software errors?

We also recommend a higher-level analysis of recurring chains of breakdowns. For
example, are there certain patterns of breakdown that almost always lead to software
errors? Are there common trends in the contextual factors of these chains that
suggest a particular intervention? This type of analysis can be performed by
analyzing the set of causal links between breakdowns. For example, for a given data
set, how many availability breakdowns in understanding runtime failures led to
wrong rule breakdowns in modifying code? By calculating the frequency of each
particular type of causal link between breakdowns, one can get an empirical measure
of the relative influence of various usability problems and cognitive failures on the
introduction of software errors. We give an example of this type of analysis in the
next section.
5. Causes of software errors in Alice

In this section, we present an exploratory study of the causes of software errors in
the Alice programming system in order to illustrate the use of our framework and
methodology.

5.1. The Alice programming system

The Alice programming system [10] (www.alice.org) is an event- and object-based,
concurrent, 3D programming system. Alice is designed to support the development
of interactive worlds of 3D objects, and provides many primitive animations such as
‘‘move’’, ‘‘rotate’’ and ‘‘move away from.’’ Alice does not support typical object-
oriented features such as inheritance and polymorphism. Because it is event-based,
Alice provides explicit support for handling keyboard and mouse events, in addition

http://www.alice.org
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to conditional events such as ‘‘when the world starts’’ and ‘‘while this condition
is true.’’
The Alice 2.0 programming environment, seen in Fig. 7, consists of 5 main views.

In the upper left (1) is a list of all of the objects that are in the Alice world, and in the
upper middle (2) is a 3D worldview based on a movable camera. The upper right (3)
shows a list of global events that the programmer wants to respond to, and the lower
left (4) shows the currently selected object’s properties, methods, and questions
(functions). Lastly, the bottom right (5) is the code view, which shows the method
currently being edited. Alice provides a drag-and-drop, structured editing environ-
ment in which object’s properties and methods are created, modified, and reused by
dragging and dropping objects on-screen. This interaction style prevents all syntax
and type errors.
When an Alice program is run, the output is displayed in a modal output

window, preventing the programmer from interacting with it until the program
stops executing. Alice provides no debugger, but properties’ values are visible
in the property list behind the output window at runtime, and are updated as the
program executes. However, because the output window is modal, programmers are
restricted to watching the properties that were visible when the program was
executed.
Fig. 7. Alice 2.0, showing: (1) objects in the world, (2) the 3D worldview, (3) events, (4) properties,

methods, and questions (functions) for the selected object, and (5) the method being edited.
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5.2. The studies

The overall purpose of our studies of Alice was exploratory, and thus we had no
explicit hypotheses in mind. We did have two particular goals:
1.
 Identify common breakdowns in programmers’ cognition and consider new types
of interfaces that might prevent these breakdowns.
2.
 Identify common breakdowns due to the Alice environment, and how Alice might
be redesigned to prevent these breakdowns.

In designing the studies, we faced the task design issues discussed in Section 4.1:
�
 Task complexity: Because our goals were exploratory, we wanted to observe tasks
of varying complexity. Therefore, we decided to observe both experienced Alice
programmers working on their own tasks and novice Alice programmers working
on a task that we would provide.
�
 Uninteresting observations: Since Alice is a 3D programming system, a large part
of writing an Alice program is creating the 3D objects that are manipulated at
runtime. We were only interested in Alice as a programming tool, and decided to
avoid tasks that required a considerable number of complex 3D objects.
�
 Strategic variability: Because our goals were exploratory, we did not want to
assume any particular training with Alice. Therefore, we chose to study both
expert Alice programmers who had learned Alice on their own, as well novice
Alice programmers, with no particular strategic biases.
�
 Level of detail in task specifications: Again, because our studies were exploratory,
we wanted to observe situations where programmers were given specifications, as
well as situations where programmers were free to define them as they saw fit.

After iterating on possible tasks and considering various populations in our
community, we decided on two studies: one highly unstructured and contextual, and
another fairly planned and experimental.

5.2.1. The ‘‘Building Virtual Worlds’’ study

The ‘‘Building Virtual Worlds’’ study (the BVW study) involved 3 Alice
programmers (all male engineering undergraduate students) who had been using
Alice for six weeks in the ‘‘Building Virtual Worlds’’ course offered at Carnegie
Mellon. In this course, programmers were each part of a small team, which typically
included a 3D modeler, a sound engineer, and a graphic artist in addition to the
programmer. The teams worked together in a computer lab and typically
communicated face to face or via e-mail. Each team’s class assignment during the
time of observations was to use Alice to prototype a complex, interactive, 3D world
over the course of two weeks. Since the projects were collaborative and unspecified,
the requirements for each programmer’s Alice program were in constant flux, and
none of the 3 programmer’s Alice programs were anything alike.
The experimenter recruited programmers by sending e-mail to each BVW teams’

class mailing list and soliciting participation. Three teams expressed interest and the
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Table 7

For the BVW study, programmers’ self-rated programming language expertise, their total work time, and

the tasks that they worked on during observations

ID Language expertise Work time (min) Programming tasks

B1 Average C++, Visual

Basic, Java

245 � Parameterize a rabbit’s hop animation

with speed and height variables

� Write code to make tractor beam catch

rabbit when in line of sight

� Programmatically animate camera

moving down stairs

� Prevent goat from penetrating ground

after falling

� Play sound in parallel with character

swinging bat.

B2 Above average C++,

Java, Perl

110 � Randomly resize and move 20 handle-

bars in a subway train

B3 Above average C, Java 50 � Import, arrange, and programmatically

animate objects involved in camera

animation.
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experimenter scheduled separate times to observe each at work. When first meeting
each team, the experimenter explained that the intentions of the observations were to
‘‘learn about how the programmer used Alice.’’ The experimenter described his role
as an ‘‘interested learner’’ and described the programmer’s role as the primary
speaker, making clear that the programmer was the domain expert. The
experimenter then requested that the programmer think aloud while working,
explaining his decisions and rationale as he worked. Following this briefing, the
experimenter began videotaping the computer monitor over the programmer’s
shoulder using a Digital 8 camcorder while the programmer worked on their own
self-initiated tasks using Alice. During observations, the experimenter used the
phrases ‘‘And now?’’ and ‘‘Please continue’’ thirty seconds after silence, to remind
the programmers to think aloud. If a programmer left the computer to talk to a team
member, the experimenter followed the programmer and recorded the discussion.
Observations ended when a programmer had to stop working. Programmers were
paid $10 per hour for their participation. Table 7 lists programmers’ self-rated
programming language expertise, their total work time, and the programming tasks
that each worked on during observations.

5.2.2. The ‘‘Pac-Man’’ study

The ‘‘Pac-Man’’ study involved 4 novice Alice programmers (all HCI masters
students) and was performed individually at a desk with a standard PC and 17’’
CRT. Programmers were recruited via an e-mail mailing list. In contrast to the BVW
study, all 4 programmers were asked to complete the same task, which was to create
a simple Pac-Man game with one ghost, four small dots, and one big dot (as seen in
Fig. 7). After a 15-min tutorial on how to create code, methods and events,
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Table 8

For the Pac-Man study, programmers’ self-rated programming language expertise, their total work time,

and the requirements for the Pac-Man program that they implemented in Alice

ID Language expertise Work time (min) Programming tasks

P1 Above average

Java, C

95 � Pac must always move. His direction should

change in response to arrow keys.

� Ghost must move in randomly half of the

time and towards Pac the other half.

� If Ghost is chasing and touches Pac, Pac

must flatten and stop moving forever.

� If Pac eats big dot, ghost must run away for

5 seconds, then return to chasing.

� If Pac touches running ghost, Ghost must

flatten and stop for 5 seconds, then chase

again.

P2 Below average

C++, Java

90

P3 Above average

Java, C++

215

P4 Above average

Visual Basic

90
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programmers were given the same briefing as in BVW study, and were then given the
requirements for the Pac-Man game, which are listed in Table 8. Programmers
remained at the desk throughout observations, and were videotaped over the
shoulder with a Digital 8 camcorder. As with the BVW study, the experimenter used
the phrases ‘‘And now?’’ and ‘‘Please continue’’ as reminders to think aloud.
Programmers worked for 90minutes or longer if they wished to work more on the
game. Programmers were paid $15 for their participation as long as they completed
at least 90minutes of work. Table 8 lists programmers’ self-rated programming
language expertise, their total work time, and the requirements for the Pac-Man
game that each programmer implemented in Alice. All participants were male except
for P2.

5.3. Analyses

Because the programmers in each of the studies were responsible for their own
design specifications (the actual implementation of their requirements), we only
reconstructed chains based on software errors that caused runtime failures. We did
not analyze software errors that did not cause runtime failures, because we could not
identify them: as discussed in Section 4.1, when design specifications exist only in a
programmer’s head, the programmer is the only person who can deem that program
behavior violates a specification.
The observations resulted in 895minutes of recordings, all of which was analyzed.

In total, it took about 40 h to analyze the 15 hours of recordings. The first phase of
analysis was to search each recording for runtime failures by finding incidents where
a programmer explicitly labeled some program behavior as incorrect (as in, ‘‘What?
Pac’s not supposed to be bouncing!’’). Once these failures were found and
timestamps were recorded for each, the next phase was to informally scan the
programmers’ actions before and after the failure in order to get a sense for what
software errors were responsible for the runtime failure; in many cases, the software
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errors were obvious because the programmer later found the errors after debugging.
Once the software errors were determined, deductive questions were asked about
each, and programmers’ verbal utterances in close temporal proximity were used to
determine the answers. Timestamps were recorded for each of the breakdowns in the
chain, along with other contextual details such as the interface and information
involved in the breakdown.
One of P2’s resulting chains is depicted in Fig. 8. In the figure, the instigating

breakdown in creating the specifications for the Boolean logic led to a wrong action

breakdown in implementing the logic, which led to incorrect logic in the code. At the
same time, the P2 had a problematic sign breakdown, assuming that a reference to
‘‘BigDot’’ was already included, but off-screen, when in fact it was not. This led to a
missing reference error. Both of these software errors caused the conditional to
become true after a single dot was eaten, causing Pac-Man to bounce before he had
eaten all of the dots. When P2 observed the failure, she had a biased reviewing

breakdown, only forming one incorrect hypothesis about its cause. This false
hypothesis led to a wrong action breakdown in modifying the expression, which
caused Pac-Man to bounce immediately, before eating any dots. However, because
P2 had moved the camera position to look down on Pac-Man, the failure was no
longer visible (a problematic signs breakdown). This caused P2 to have an illusory

correlation breakdown, where she believed the earlier failure had been repaired
because Pac-Man did not seem to be bouncing. Twenty minutes later, after
repositioning the camera, she noticed that Pac-Man was actually still bouncing at
runtime, but experienced an availability breakdown, assuming that her recently
modified code was to blame, rather than the still incorrect Boolean expression.
One analyzer reconstructed breakdown chains from all of the 7 programmers’

runtime failures, and a second analyzer reconstructed chains for a random 10% of
the runtime failures, to test for inter-rater reliability. There was approximately 93%
agreement on whether breakdowns were knowledge, rule, or skill breakdowns, but
less agreement on the sub-types of breakdowns. The causal links between
breakdowns in the reconstructed chains were largely the same, although each of
the analyzers noticed some breakdowns that the other had not.
Although the time to construct the chains was not recorded, the authors recall that

analysis time was largely dependent on how much time the chain of breakdowns
covered in the recording: for example, a chain spanned 10min of video took twice as
long to reconstruct than one that spanned 5min of video. Overall, the analyses
spanned approximately a 40 hour week.

5.4. Results

5.4.1. Overall statistics

Over 895minutes of observations, there were 69 root breakdowns (breakdowns
with no identifiable cause) and 159 total breakdowns. These caused 102 software
errors, 33 of which led to one or more new software errors. The average chain had
2.3 breakdowns (standard deviation 2.3) and caused 1.5 software errors (standard
deviation 1.1). Table 9 shows the proportions of time programmers spent
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Fig. 8. A segment of one of P2’s cognitive breakdown chains. The last breakdown shown here did not

cause further breakdowns until 20minutes later, after the camera position made it apparent that Pac was

still jumping.
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programming and debugging. On average, 46% of programmers’ time was spent
debugging (and thus a little more than half was spent implementing code). The BVW
programmers, whose code was more complex, had longer chains of breakdowns than
the Pac-Man programmers’, suggesting that the causes of their software errors were
more complex.
As seen in Table 10, about 77% of all breakdowns occurred during implementa-

tion activity; these tended to be skill and rule breakdowns in implementing and
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Table 9

Programming and debugging time, and the number of software errors, breakdowns, and chains, as well as

chain length, by programmer

ID Programming

time (min)

Debugging

time (min)

# of software

errors

# of

breakdowns

# of chains Average

chain length

Minutes % of time Mean (SD)

B1 245 142 58.0% 23 41 10 4.1 (3.5)

B2 110 35 32.8% 16 32 7 4.6 (3.3)

B3 50 11 22.0% 3 5 4 1.2 (0.5)

P1 95 23 36.8% 14 23 11 2.1 (1.7)

P2 90 30 33.3% 7 7 7 1.0 (0.0)

P3 215 165 76.7% 34 44 25 1.8 (1.2)

P4 90 27 30.0% 5 7 5 1.4 (0.5)

Total 895 554 46.4% 102 159 69 2.3 (2.2)

Table 10

Breakdowns split by activity and type

Activity Type of breakdown % of all breakdowns

Specification Skill 0.0%

Rule 3.1%

Knowledge 1.2%

Total 4.4%

Implementation Skill 22.0%

Rule 28.3%

Knowledge 27.0%

Total 77.4%

Runtime Skill 8.1%

Rule 0.0%

Knowledge 10.1%

Total 18.2%
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modifying artifacts and knowledge breakdowns in understanding and implementing
artifacts. About 18% of all breakdowns occurred in runtime activity; these
tended to be knowledge or skill problems in understanding runtime failures and
faults. The proportion of skill, rule, and knowledge breakdowns were about equal.
The root breakdowns of most chains were knowledge breakdowns understanding
runtime failures and runtime faults and skill and rule breakdowns implementing
code.
Table 11 shows which aspects of Alice were most often involved in cognitive

breakdowns. Most breakdowns involved the construction of algorithms and the use
of language constructs and animations. This is to be expected, since the majority of
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Table 11

Frequency and percent of breakdowns and software errors by type of information and the average

debugging time for software errors in each type of information

Type of

information

Breakdowns Software errors Debugging

time

Frequency % of all

breakdowns

Frequency % of all errors Mean (SD) in

minutes

Algorithms 37 23.3% 34 33.3% 4.8 (6.2)

Language

constructs

35 22.0% 31 30.4% 4.6 (5.5)

Animations 21 13.2% 19 18.6% 7.1 (6.9)

Runtime

failures

20 12.6% — — —

Events 18 11.3% 10 9.8% 3.6 (4.2)

Runtime faults 9 5.7% — — —

Data structures 8 5.0% 7 6.9% 3.3 (4.1)

Run-time

specification

5 3.1% — — —

Environment 4 2.5% 1 1.0% 1.0 (—)

Requirements 2 1.3% — — —

Software

failures

0 0% — — —
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the observations were of programmers completely new to the Alice programming
system.
Table 12 shows the number of software errors and time spent debugging by

problem and action. Most software errors were caused by rule breakdowns in
implementing, modifying, and reusing program elements (rather than understanding
or observing program elements). The variance in debugging times was high, and the
longest debugging times were on rule breakdowns in reusing code and knowledge
breakdowns understanding code.

5.4.2. Significant causes of software errors in Alice

There were four major causes of software errors in the studies. In each case, the
Alice design shared a considerable portion of the blame.
The most common cognitive breakdowns that led to software errors were

breakdowns in implementing Alice numerical and Boolean expressions (33% of all
breakdowns). Most were bad rule breakdowns in implementing complex Boolean
expressions. For example, when programmers in the Pac-Man study wanted to test if
all of the dots were eaten, their expressions were ‘‘if not (dot1.isEaten and

dot2.isEateny)’’ which evaluates to true if any dots are eaten. This confirms earlier
studies by Pane showing that creating Boolean expressions is of considerable
difficulty and highly error-prone [33]. In other cases, whether or not they had created
a correct expression, programmers suffered from problematic signs breakdowns in
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Table 12

Software errors and debugging time by cognitive breakdown type and action. Only actions causing

software errors are shown

Breakdown Action Software errors Debugging time

Frequency % of errors Mean (SD) in

minutes

Skill Implementing 15 14.7% 5.2 (4.3)

Modifying 14 13.7% 4.6 (7.1)

Reusing 4 3.9% 1.2 (1.2)

Total 23 22.5% 4.0 (5.1)

Knowledge Implementing 15 14.7% 4.2 (4.8)

Modifying 5 4.9% 5.4 (4.0)

Reusing 1 1.0% 5.0 (—)

Understand 6 5.9% 6.8 (5.7)

Total 27 26.5% 5.3 (4.2)

Rule Implementing 23 22.5% 4.2 (3.4)

Modifying 16 15.7% 4.7 (5.1)

Reusing 3 2.9% 6.6 (9.3)

Total 52 51% 5.1 (5.4)
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modifying the expressions: for example, after placing operators for and and or into
the code, it was not always obvious which part of the expression they had affected
because the change was off-screen or obscured.
With so many software errors introduced because of the implementation

breakdowns, the breakdowns in debugging (18% of the total) only complicated
matters. These debugging breakdowns were due to knowledge breakdowns in
understanding runtime faults and failures. In particular, programmers often
generated only a single, incorrect hypothesis about the cause of a failure they
observed (biased reviewing), and then because of their limited knowledge of causality
in the Alice runtime system (simplified causality), generated an incorrect hypothesis
about the code that caused the runtime fault. Because Alice provides virtually no
access to runtime data, there were few ways for programmers to test their
hypotheses, except through further modification of their code.
The 18% of knowledge breakdowns in debugging, in turn, were ultimately

responsible for nearly all of the 24% of rule and skill breakdowns in modifying
code, leading directly to software errors. This was because their hypotheses
about the cause of the runtime failure had led them to the wrong code, or led
them to make the wrong modification. However, these modification breakdowns
were also due to interactive difficulties in modifying expressions. When
programmers tried to remove intermediate Boolean operators, they often removed
other code unintentionally, and because the structure of the code was not clearly
visualized, did not realize they had introduced new software errors during
modification.
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A final source of software errors, largely independent of the cycles of breakdowns
described above, were the reuse breakdowns (7% of the total). These were rule
breakdowns in reusing code via copy and paste, caused by problematic signs in the
copied code. In particular, after pasting copied code into a similar context,
programmers began the task of coercing references from the old context to the new
context. Oftentimes, several uncoerced properties were off-screen, causing the
programmer to overlook the references. These software errors were very difficult to
debug, because of overconfidence breakdowns in understanding their copied code’s
correctness. Thus, when programmers attempted to determine the cause of their
program’s failure, their hypotheses were instead focused on recent changes
(availability breakdowns). Furthermore, because these software errors caused
complex, unpredictable runtime interactions, programmers rarely found them.
We summarize these trends in the model shown in Fig. 9, which portrays the most

common causal links between breakdowns in our set of chains. The percentages on
each line represent the proportion of each particular type of causal link between
breakdowns among all links in our data set; together, they account for
approximately 74% of all of the links in our chains (the remaining 26% were each
below 2% of our data set, and thus are not shown in the figure).

5.5. Discussion of the studies

Our model of the software errors in Alice is of significant value in understanding
the software errors that programmers made in their tasks. We learned that most
of the root causes of software errors were from inexperience in creating Boolean
expressions and forgetting to fully adapt copied code to a new context, but
that the impact of these early software errors was compounded by difficulties with
debugging and modifying the erroneous code. In particular, only 18% of the
breakdowns that occurred (while forming hypotheses about the causes of runtime
faults and failures) were the cause of nearly all of the software errors introduced.
Therefore, even in our simple tasks, there were complex relationships between the
programming system’s interfaces, the programmers’ cognition, and the resulting
software errors.
In addition to providing this high-level view of the common breakdowns in using

Alice, the process of reconstructing the chains of breakdowns directly inspired
several design ideas for error-preventing programming tools. For example, the
dozens of biased reviewing breakdowns in understanding runtime failures provided a
rich source of inspiration for the design of the Whyline, a new question-based
debugging interface [34]. In our observations, immediately after programmers saw
their program fail, they asked a question of one of two forms: why did questions,
which assumed the occurrence of an unexpected runtime action, and why didn’t
questions, which assumed the absence of an expected runtime action. It was
immediately obvious from looking at these chains that the programmers’ implicit
assumptions about what did or did not happen at runtime had gone unchecked,
which led to a lengthy and error-prone debugging session to determine if their false
hypothesis was correct. The fundamental idea behind the Whyline—that debugging
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Fig. 9. A model of the major causes of software errors in Alice during programmers’ tasks. Each line

represents a particular type of causal link between one type of breakdown and another, where the number

on the line represents the proportion of the particular type of link out of all links in all chains. Note that

we do not include numbers for the links between software errors, runtime faults, and runtime failures,

since we only recorded software errors that led to runtime failures.
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tools should directly help programmers explore valid hypotheses about the causes of
a runtime failure before they consider a false hypothesis—comes directly from the
use of our methodology.
Not only did the data from our studies provide the key inspiration for the

Whyline, but it also provided a valuable source of information for specific design
decisions. For example, since we observed that programmers could easily verbalize
their why questions during the think-aloud, why not directly support an interface for
asking these questions? Therefore, the Whyline allows programmers to ask questions
explicitly about their program’s failure by click a ‘‘Why’’ button, which reveals a
hierarchical menu of questions to ask about the program’s execution. By allowing
programmers to choose from a set of why did and why didn’t questions rather than



ARTICLE IN PRESS

A.J. Ko, B.A. Myers / Journal of Visual Languages and Computing ] (]]]]) ]]]–]]]38
generate the question themselves, programmers are prevented from forming
incorrect hypotheses about their program’s runtime behavior altogether.
We also used our observations to determine the space of possible answers to

programmers’ questions, finding three types:
1.
 False propositions: The programmer’s assumption is false. The answer to ‘‘Why
didn’t this button’s action happen?’’ may be that it did, but had no visible effect.
2.
 Invariants: The runtime action always happens (why did), or can never happen
(why didn’t). The answer to our button question may be that an event handler was
not attached to an event, so it could never happen.
3.
 Data and control flow: A chain of runtime actions led to the program’s output. For
example, a conditional expression, which was supposed to fire the button’s action,
evaluated to false instead of true.

For example, had the Whyline been available when the programmer in Fig. 8
noticed that Pac was jumping, she could have pressed the ‘‘Why’’ button and asked,
‘‘Why did Pac move up?’’ The Whyline would have shown the runtime actions
directly relevant to her question: the execution of the Boolean expression, the
animation moving Pac-Man up, and so on. This way, any implicit assumptions
about what did or did not happen at runtime could have been explicitly addressed in
the answer.
We have since performed evaluations of the Whyline’s effectiveness [34] by

comparing identical debugging scenarios done with and without the Whyline, and
found that the Whyline reduced debugging time by nearly a factor of 8, enabling
programmers to complete 40% more tasks than without the Whyline. These
dramatic improvements are the direct result of using our framework and
methodology to uncover non-obvious causes of software errors in Alice.
6. Discussion

Based on our experiences in using our framework and methodology, we believe
they support many important aspects of programming system design, including
reasoning about and studying software errors, as well as inspiring the design of new
error-preventing programming tools.

6.1. Using the framework to reason about software errors

As we have seen, prior research on software errors is somewhat fragmented and
inconsistent. Classifications have not clearly separated software errors from their
causes or their manifestations in program behavior. Our framework provides a
consistent and well-defined vocabulary for talking about software errors and their
causes. In this way, it can be used as a companion to similar frameworks, such as
Green’s Cognitive Dimensions of Notations [6]. Cognitive Dimensions have been
used to analyze the usability of many visual and professional programming
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languages [7,8,35], but none have addressed the causes of software errors. Future
studies could identify relationships between dimensions of notations and the causes
of software errors. For example, consider viscosity, the resistance to local changes.
What types of cognitive breakdowns is a viscous interface prone to? Another
dimension is premature commitment, or the requirement that a user makes some
decision before important information is available. In design activities, what types of
breakdowns is an interface requiring premature commitment properties prone to?
Answering such questions may create a valuable link between salient interactive
dimensions of programming systems and their error-proneness.
Our framework also clearly identifies approaches to preventing software errors.

For example, software engineering can focus on preventing breakdowns when
understanding, creating and modifying specifications. Computer science education
can focus on helping programmers prevent knowledge and rule breakdowns, by
exposing students to many types of programming, testing, and debugging activities.
Programming systems can focus on preventing the rest of the breakdowns that
software engineering and education cannot prevent, through less error-prone
languages, better support for testing and debugging, and with improved program
comprehension and visualization tools.

6.2. Using the methodology to study software errors

In addition to helping reason about software errors, our framework has a number
of implications for the empirical study of software errors and programming activity
in general. For example, while von Mayrhauser and Vans’ Integrated Comprehen-
sion Model [24] provides a sophisticated understanding of programmer’s various
types of mental models, it lacks any mention of problems in forming mental models
of specifications or program’s static or dynamic semantics. Identifying areas where
specification breakdowns can occur may help future studies of program comprehen-
sion explicitly link aspects of the comprehension process to specific types of
breakdowns. Our model also informs models of debugging, such as Gilmore’s [27].
He argues that programmers compare mental representations of the problem and
program, but does not account for breakdowns in knowledge formation or mismatch
correction, which likely affects debugging in predictable ways.
Because the framework is descriptive, it also supports the objective comparison of

software errors within and between programming environments, programs,
languages, tasks, expertise, and other factors. Future studies can perform summative
comparisons of different programming systems’ abilities to prevent breakdowns,
which would allow statements such as ‘‘language A is more prone to knowledge
breakdowns in reusing standard libraries than language B.’’ This is in contrast to
existing methodologies, such as Cognitive Dimensions, Cognitive Walkthroughs,
and Heuristic Evaluation, which all produce fairly subjective results which cannot be
used for comparisons.
Although we have no experience using the framework and methodology for

studying ‘‘programming in the large,’’ we suspect that our techniques could be easily
applied in less-controlled settings. In fact, our study of students in ‘‘Building Virtual
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Worlds’’ was very similar to industry settings, just at a smaller scale: programmers
were constantly interrupted, specifications were constantly changing, and each
programmer’s attention was continuously divided among programming and numerous
non-programming tasks. Despite these circumstances, there was little difficulty in
collecting the necessary data with a video camera, nor was there difficulty analyzing
the data. This is in stark contrast to controlled experiments, which require considerable
changes to the way people normally work in order to obtain reliable results.
Despite the several potential contributions our methodology may have for the

empirical study of software errors, the methodology itself does have several potential
limitations. First, although other researchers have already expressed interest in using
the methodology, we have no evidence that it is easily learnable by programming
system designers. Because it involves human subjects, it necessarily requires more
experience with empirical studies than less formal techniques such as Cognitive
Walkthroughs [4] and Cognitive Dimensions [30]. Similarly, another limitation may be
the methodology’s practicality. As we stated in Section 5.3, it took about 40hours to
analyze about 15hours of observations across 7 programmers. While this is
considerably more time than so-called ‘‘discount’’ usability methods take, in our
experience, our methodology has resulted in far more concrete and actionable insights.
Another potential limitation is our methodology’s replicability. Although we have

successfully used the methodology on a wide variety of systems, including Alice,
Eclipse, and Visual Studio.NET, we only have a small amount of evidence that other
researchers would generate the same data under similar study conditions. To
complicate matters, we have found that even the smallest interactive details of a
programming system can cause cognitive breakdowns, and thus with programming
systems in constant flux, replicability might be unproductive. To some extent, these
are only limitations if the data needs to be replicable. For example, if the goal of the
study is to verify some hypothesis about software errors, then replicability is the chief
interest: a general hypothesis requires generalizable data. On the other hand, if the
goal of the study is simply to inspire new tools and language designs,
representativeness is far more important.
One final limitation is the issue of ‘‘fluid requirements’’—requirements that are

constantly being redefined either because they are unstated and up to the
programmer or because they are defined by some other party. Because we define
software errors relative to design specifications, it is only feasible to reconstruct
chains of breakdowns when there is some indication of a program’s requirements.
Otherwise, it is difficult to know what constitutes a software error. In the studies
described in this paper, we dealt with this issue by limiting our analyses to program
behaviors that the programmers themselves said were runtime failures. It is unclear
how this limitation has influenced the representativeness of our data.

6.3. Using the framework and methodology for design

Design is never straightforward, and the design of complex error-preventing
programming tools is no exception. Nevertheless, we believe our framework and
methodology can support the design of such tools in several ways.
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6.3.1. Design guidance

One use of our framework is as guidance; for example, by expressing it in terms of
heuristics, we can help focus programming system designers on the important issues.
We list ten heuristics in Table 13, which we derive from the summary of cognitive
breakdowns in Table 6. While most of these heuristics are not specific to
programming, few of them have been taken into account in the design of
programming systems. For example, heuristic 2 is important to keep in mind in
several programming-related fields. When designing documentation standards,
software architects should highlight exceptions in software’s behavior to prevent
programmers from making assumptions about other aspects of the system’s
behavior. Language designers should weigh the convenience of operator overloading
against its cost: programmers unfamiliar with the particular semantics of an
overloaded operator may make erroneous assumptions about the program’s runtime
semantics. Heuristic 2 also suggests that designers of future versions of UML
notation should consider notations for identifying exceptional behaviors that
software engineers would otherwise assume they understood. Designers of testing
and debugging tools might consider identifying uncommon runtime circumstances to
programmer’s attention.
6.3.2. Design evaluation

Our framework and methodology can also support formative design by acting as
an early evaluative tool. For example, there is no requirement that chains of
breakdowns must be reconstructed from interactions with a functional prototype. We
have successfully used our methodology on Wizard of Oz and paper prototypes of
the Whyline, in order to determine if it would help programmers to only make
correct assumptions. The only requirement is that the system behavior is specified,
and that the experimenter reliably follows these specifications. These types of
formative studies can be quite valuable in making design decisions before fully
implementing a system.
Table 13

Ten heuristics for designing error-preventing programming systems

Heuristics for preventing cognitive breakdowns in programming

1. Help programmers recover from interruptions or delays by reminding them of their previous actions

2. Highlight exceptional circumstances to help programmers adapt their routine strategies

3. Help programmers manage multiple tasks and detect interleaved actions

4. Design task-relevant information to be visible and unambiguous

5. Avoid inundating programmers with information

6. Help programmers consider all relevant hypotheses, to avoid the formation of invalid hypotheses

7. Help programmers identify and understand causal relationships, to avoid invalid knowledge

8. Help programmers identify correlation and recognize illusory correlation

9. Highlight logically important information to combat availability and selectivity heuristics

10. Prevent programmer’s overconfidence in their knowledge by testing their assumptions
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6.3.3. Design inspiration

Another way our framework and methodology can support design is by inspiring
new design ideas. We gave a specific example of this in Section 5.5, in discussing the
inspiration for the design of the Whyline. In general, we believe our framework and
methodology have several important advantages compared to more traditional
methods of finding design inspiration such as brainstorming and interviews:
�
 Traditional design methods are often heavily biased by designers’ experience and
intuition, and focus less on observing actual work. Our framework and
methodology provide a way of performing structured observations of actual

programmers using actual programming systems.

�
 Our methodology results in data that can be reanalyzed. We have frequently gone
back to video recordings to answer questions that came up in prototyping and
changed our design as a result. This is often impossible with interviews and
brainstorming, since they do not record actual interactions.
�
 Because our methodology captures the actual context of programmers’ break-
downs, it is much easier to imagine how a new kind of tool might be used and how
it might prevent software errors. Traditional design methods often require the
programmer, the task, and all other context to be fabricated.
7. Conclusions

Experiences using our framework and methodology to study Alice have been quite
positive. Our observations led directly to design inspirations for highly successful
debugging tool, as well as several other ideas for preventing software errors in
programming systems, which are currently in development. The methodology is
practical and relatively low cost, given the number of design ideas our data have
given rise to. We encourage other researchers to apply our framework and
methodology to further programming systems and share their experiences.
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