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1 Introduction to Maxima scripting

Maxima (you can click on the link to find the Wikipedia article on Maxima), is a computer algebra
system (CAS) with powerful symbolic manipulation capabilities; these are similar to the capabilities
of Mathematica or Maple. Brooklyn College has a site license of these latter two (that is, you can
use them for free on a Brooklyn College computer), while Maxima is free software, licensed under
GNU General Public License.1.1 You can install Maxima on your computer by going to the Maxima
Official Website.If you go to this site and click on Documentation at the top of the page, you will
also find a Maxima Manual, the description of Xmaxima, a version of Maxima with GUI (graphical
user interface), and other writings about Maxima. There are other sites as well, for exampla the site
of Edwin L. (Ted) Woollett, especially the file mbelintro.pdf. In these notes, we will explain how
to use Maxima in Linux, but Maxima is available also for Windows and the Macintosh operating
system.1.2. The site lists the software installed on computers at the Library and the Library Cafe at
Brooklyn College. Maxima is currently not listed; I requested that it be installed on some computers
in early December, 2017, so it will perhaps soon be installed, or else it has already been installed
but the website just mentioned listing software has not yet been installed. I have followed up on this
issue, and I expect that it will be resolved soon. In any case, please feel free to ask for the software;
if they realize that there is a demand for the software, they will hurry more with the installation.

1.1 The logistic difference equation

We illustrate Maxima scripting by the logistic difference equation:

(1.1) xn+1 = r(1− xn)xn,

where r is a parameter. We will discuss the logistic equation in more detail later. Given the value of r
and value of x0 (called an initial value), the value of xn is determined for all n ≥ 0. The dependence
of xn on the initial value and on the value of r is somewhat complicated, and numerical experiments
are helpful to understand this behavior. Maxima can be used to carry out such exploration, but the
purpose of the following scripts is mainly to explain Maxima programming.

1.1See the links to the explanations in the Introduction of the Wikipedia article, linked above.
1.2If you are running Maxima in Linux, usually the simpler option is to install Maxima from the repository of your

Linux distribution
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The first script we discuss calculates the first ten values of xn determined by equation (1.1) and
graphs the result:

1 kill(all);

2 linel : 60;

3 x(n) := if n=0 then initval else r*(1-x(n -1))*x(n-1)$

4 r : .6;

5 initval : 0.7;

6 mylist : makelist ([n,float(x(n))],n,0 ,10);

7 plot2d ([discrete ,mylist],

8 [style , points],

9 [gnuplot_term ,ps],

10 [gnuplot_ps_term_command ,

11 "set term postscript eps \

12 solid lw 2 size 4 in , 3 in font \" ,18\""] ,

13 [gnuplot_out_file , "logistic.eps "]);

14 /*

15 I need to rewrite this without recursion , since it cannot

16 handle 20 points with recursion.

17 */

We called this file logistic.max; any Unix/Linux text editor can be used to create the file; our
preference is vi, a text editor especially friendly to touch-typing. Note that a text editor is different
from a word processor; for example, Microsoft Word is not a text editor. The number at the
beginning of each line is not part of the file; it is the line number, making the discussion of the above
script easier We run this script by the following command

$ maxima -b logistic.max > logistic.out

To execute this command, one simply needs to type it on the command line; note that the dollar
symbol $ at the beginning of the line is not to be typed; the sign is printed on the line by the
computer to invite a command; this sign is called the prompt of the Linux command-line interface.

In actual life, the Linux prompt is usually not the symbol $, but this is the symbol most used in discussing

the user prompt in the Unix/Linux literature. Linux is endlessly customizable, and the prompt is usually

defined in the file .bashrc in the user’s home directory. The purpose of the period at the beginning of the

name of the file is to make the file invisible in normal directory listing. Here bash, is the Bourne Again

Shell. A shell is a program that interprets the command typed by the user. The name Bourne Again Shell

is a play of word on the Bourne Shell, an early Unix shell created by Stephen Bourne.

In the above command, maxima is the name of the command, -b specifies an option, that is, it gives
a closer description as to how the command should behave, in the present case interpret the name
following it as a batch file (i.e., a script). The symbol “> logistic.out” redirects the output of the
command to the file logistic.out.1.3 The listing of the file logistic.out is given next:

1
2 Maxima 5.27.0 http :// maxima.sourceforge.net

1.3Without writing this, that is without redirection, the output would be directed to the standard output, i.e.,
it would be printed on the screen. Unix/Linux has two different types of output: standard output, i.e., what is
normally printed on the screen, and the standard error output, listing errors, also printed on the screen, and normally
indistiguishable from the standard output, except perhaps in its content. However, the standard output and the
standard error output can be redirected to different destination. Whatever one types on the keyboard is normally the
standard input (but the standard input is a more general concept).
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3 using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

4 Distributed under the GNU Public License. See the file

5 COPYING.

6 Dedicated to the memory of William Schelter.

7 The function bug_report () provides bug reporting

8 information.

9 (%i1) batch(logistic.max)

10
11 read and interpret file:

12 #p/home/mate/courses/modeling/maxima.ms/logistic.max

13 (%i2) kill(all)

14 (%o0) done

15 (%i1) linel : 60

16 (%o1) 60

17 (%i2) x(n) := if n = 0 then initval

18 else r (1 - x(n - 1)) x(n -

19 1)

20 (%i3) r : 0.6

21 (%o3) 0.6

22 (%i4) initval : 0.7

23 (%o4) 0.7

24 (%i5) mylist : makelist ([n, float(x(n))], n, 0, 10)

25 (%o5) [[0, 0.7], [1, 0.126] , [2, 0.0660744] ,

26 [3, 0.037025144198784] , [4, 0.021392569737506] ,

27 [5, 0.012560956618519] , [6, 0.0074419073924081] ,

28 [7, 0.0044319152440625] , [8, 0.0026473640227992] ,

29 [9, 0.001584213291918] , [10, 9.4902213609822047E-4]]

30 (%i6) plot2d ([discrete , mylist], [style , points],

31 [gnuplot_term , ps], [gnuplot_ps_term_command , set term post\

32 script eps solid lw 2 size 4 in , 3 in font ",18"],

33 [gnuplot_out_file , logistic.eps])

34 (%o6)

35 (%o7) logistic.max

Again, the number at the beginning of each line is not part of the filei; it is the line number, allowing
us to discuss the file more easily. We are going to discuss the above script and its output line-by-line.
Line 1 of the output is blank, lines 2–8 describe Maxima itself, and line 9 echoes (i.e., repeats) the
command “batch(logistic.max)”.1.4 What this refers to the fact that insted of running the the
script logistic.max from the Linux command line as described above, we could have first started up
maxima from the Linux command line as

$ maxima

and then entered the command batch(logistic.max), or preferably, the command

batch("logistic.max")

after the Maxima input prompt. As seen from the output file above, the Maxima input lines start
with the symbols (%i1), (%i2), (%i3), . . . , and the output lines are start with the symbols (%o1),

1.4We used logical as opposed to grammatical placement of quotes, because in the kind of text we are writing it is
important what exactly is being quoted. American (but not British) style rules require that a comma or a period
should be placed before the closing quotation mark even if it is not part of the quoted text.
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(%o2), (%o3), . . . , (as one can see, a single maxima line may take up more than one line on the
computer terminal) – one can call the symbol at the start of the input lines an input prompt ; when
running Maxima interactively, i.e., with the command

$ maxima

without any options, the input and outlines start similarly with the symbols described, but then
nothing is printed on the input lines, and the user is invited to type a Maxima command. To quit
a running a manually started instance of maxima, one needs to type

$ quit();

on the last input line. When running a file as a Maxima script, the input lines it echo (i.e., repeat)
the input lines given in the input file (with certain changes, as we will describe below).

Line 1 if the script clears out all the earlier commands and values entered into Maxima. This
plays no role if the script is run from the Linux command line, but it is important if it is run by
the batch command in a running instance of Maxima. Line 2 sets the the variable linel to 60.
Here the colon : is the assignment operator of Maxima; the variable on the left is given the value
of the expression on the right. The variable linel is an interval Maxima variable specifying the
lenght of (number of characters in) the output lines; the default value is 79. The only importance
of setting it to 60 is to make the output lines short enough for the present manuscript, where 79
characters would not fit in one line of these writings. As for practical work, 79 characters per line
are just fine. The commad is echoed on line 15 of the output, and 17 repeats the current value of
the variable linel. The output on line 16 can be supressed by ending line 2 of the script with a
dollar symbol $a instead of a semicolon ;. Each Maxima command must be terminated with either
a semicolon (inviting output) or a dollar sign (suppressing ouput); line breaks (instead of spaces) in
Maxima commands make no difference. Going back to lines 11 and 12 of the output, these lines are
self explanatory, except that line 12 gives the full path of the interpreted file in the Linux filesystem:

/home/mate/courses/modeling/maxima.ms/logistic.max

Note that the initial characters #/p in the line are not parts of this path; they added by Maxima to
indicate that a path follows. Line 3 of the script gives the recursive formula given in equation (1.1).
On the left-hand side we have x(n), a function with function name x and argument n. The symbol
:= is the function assignment symbol, and on the right-hand side of the symbol, the expression
describes the vlaue to be assigned; the variables initval (initial value) and r will be given values
later; the asterisk * is the multiplication symbol; the line ends with the dollar sign in order to
suppress output. It is important to note that formula (1.1) had to be modified to express xn rather
than xn+1, since we cannot assign to x(n+1) with the function assignent symbol :=. Observe that
when this command is echoed on lines 17–19 of the output, the asterisk is replaced by a space. On
lines 4 and 5 of the script we specify the values of the parameters r and initval. On line 6 we build
a list of pairs (n, xn). A pair is a list of length to, and the members of the list are separated by
commasi; the list is enclosed in in square brackets. The command float indicates that one needs to
take the numerical value (a floating point number) The command is terminated by a semicolon, so
on lines 25–29 of the output you can see the list so generated. The second member of the last entry is
the number 9.4902E-4 (we are omitting some digits), which indicates 9.4902 · 10−4 in usual floating
point notation. While Maxima is case sensitive, that is, it distinguishes lower and upper case letters,
this floating number can equally well be written as 9.4902e-4. Lines 7–13 give the command to
dispay these pairs of numbers in the coordinate system; this is shown in Figure 1.1. The command
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plot2d is the printing command; most of which are self-explanatory. The word discrete in the
first argument indicates that what is to be displayed is a set of discrete1.5 points. The program
gnuplot is used in assisting the printing; On line 9, the file type displaying the plot is specified as
PostScript: other file formats such as PDF or PNG can also be specified; PostScript is preferable
in the preparation of the present manuscript; otherwise, one may prefer other formats for viewing
or exchange. Lines 10–12 sets the window size for the plot at 4 × 3 inches, which is quite small,
but fits well into the manuscript page. the important point here is that gnuplot does not allow the
breaking up of the quoted text on lines 11 and 12 (even though Maxima itself allows line breaks
instead of spaces). This is the reason that the end of line 11 is “quoted”; the backslash \ is a Linux
quote character; here it precedes the new line character in the file (invisible when displaying the
file), neutralizing the effect of the line break.1.6 In normal circumstances it may not be necessary to
break up this line, except help the appearance of this manuscript. Line 13 specifies the name of the
plot file as logistic.eps, where eps stands for embedded (or encapsulated) PostScript.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

y

x

Figure 1.1: Logistic sequence

In the above program, xn is evaluated recursively. It is not clear, however, when, for example
x4 is evaluated, the previously evaluated x3 is used in the calculation, or whether full recursion is
performed to get the value of x4. or whether the full recursive calculation is started again with x0. A
further issue that might cause problems is that Maxima is used to perform floating point operations,
so when float(x(4)) is requested, it is likely that first the symbolic expression describing x(4) is
calculated, and then the floating-point value of the expression is evaluated. Perhaps an optimizing
compiler can go around some of these difficulties, but such an optimizing compiler is difficult to
write, and it can cause unintended problems, so it is unlikely that the Maxima compiler would do

1.5It is important to note the difference between discrete and discreet. If you are uncertain, you can use several
online dictionaries, such as Wiktionary.
1.6In Unix/Linux, lines are broken up by the newline character, denoted as \n, with hexadecimal ASCII code 0A.

Windows works differently, since the backslash is not a quote character in Windows, and Windows ends lines with
different characters. See the site for details.
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such an optimization.1.7 In any case, the program can be written more efficiently with loops, given
as the file logistic_loop.max. In the program we calculate xn for n = 0, 1, 2, . . ., 20. The loop
version is much faster than the version using recursion; the recursive version is barely capable of
calculating the first 20 or 30 values of xn; the loop version does not flinch even when we calculate
the first 100 members of the list. Here is the script:

1 kill(all);

2 linel : 60;

3 r : 1.6;

4 x : 0.7;

5 mylist : [];

6 loopto : 19;

7 for n : 0 step 1 thru loopto do (x_new : float(r*(1-x)*x),

8 mylist : append(mylist ,[[n,x]]), x : x_new );

9 n;

10 mylist : append(mylist ,[[ loopto+1,x_new ]]);

11 plot2d ([discrete ,mylist],

12 [style , points],

13 [gnuplot_term ,ps],

14 [gnuplot_ps_term_command ,

15 "set term postscript eps \

16 size 5 in , 3 in font \" ,24\""] ,

17 [gnuplot_out_file , "logistic_loop.eps "]);

The output of this program is as follows. The program also creates a plot given in Figure 1.2

1
2 Maxima 5.27.0 http :// maxima.sourceforge.net

3 using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

4 Distributed under the GNU Public License. See the file

5 COPYING.

6 Dedicated to the memory of William Schelter.

7 The function bug_report () provides bug reporting

8 information.

9 (%i1) batch(logistic_loop.max)

10
11 read and interpret file:

12 #p/home/mate/courses/modeling/maxima.ms/logistic_loop.max

13 (%i2) kill(all)

14 (%o0) done

15 (%i1) linel : 60

16 (%o1) 60

17 (%i2) r : 1.6

18 (%o2) 1.6

19 (%i3) x : 0.7

20 (%o3) 0.7

21 (%i4) mylist : []

22 (%o4) []

23 (%i5) loopto : 19

24 (%o5) 19

25 (%i6) for n from 0 thru loopto

1.7The Kahan summation algorithm is a an interesting example of an algorithm that can be ruined by compiler
optimization.
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26 do (x_new : float(r (1 - x) x),

27 mylist : append(mylist , [[n, x]]), x : x_new)

28 (%o6) done

29 (%i7) n

30 (%o7) n

31 (%i8) mylist : append(mylist , [[1 + loopto , x_new ]])

32 (%o8) [[0, 0.7], [1, 0.336] , [2, 0.3569664] ,

33 [3, 0.36726622283366] , [4, 0.37181079103865] ,

34 [5, 0.37370804272938] , [6, 0.37448054644601] ,

35 [7, 0.37479178684721] , [8, 0.37491664537454] ,

36 [9, 0.37496664703303] , [10, 0.37498665703334] ,

37 [11, 0.37499466252848] , [12, 0.37499786496581] ,

38 [13, 0.37499914597903] , [14, 0.37499965839045] ,

39 [15, 0.37499986335599] , [16, 0.37499994534237] ,

40 [17, 0.37499997813694] , [18, 0.37499999125478] ,

41 [19, 0.37499999650191] , [20, 0.37499999860076]]

42 (%i9) plot2d ([discrete , mylist], [style , points],

43 [gnuplot_term , ps], [gnuplot_ps_term_command ,

44 set term postscript eps size 5 in , 3 in font ",24"],

45 [gnuplot_out_file , logistic_loop.eps])

46 (%o9)

47 (%o10) logistic_loop.max

We will discuss the new features of the above program. In the present organization of the
program, the value of r and the initial value of the sequence are specified on lines 4 and 5 of the
script, because they need be given before the loop on lines 7 and 8 of the program (we kept the
initial value of x, but we chose a different value for r). The elements of the sequence are given as
x and x_new. On line 5 the initial value of the list mylist of the pairs of coordinates of the point
to be plotted is given as the empty list [ ]. The exit value of the loop is given as the variable
loopto on line 6; we need this value for later use. In the loop on lines 7 and 8, the body of the
loop needs to be enclosed in parentheses since several commands constitue the body of the loop,
and the individual commands are separated by commas. The command append in the body of the
loop on line 8 concatenates (merges) the lists given in the arguments (more than two arguments
can be given. On line 9 of the script, we wrote n by itself to show that n has no numerical value at
this point (in some other programming languages, one would expect that n had the exit value of the
loop, probably 20). If n had a numerical value, its value would be printed on line 30 of the output.
On line 10 of the script, we add the last pair to mylist. The line ends with a semicolon, and so the
list is printed out on lines 32–41 of the output. If we wanted to suppress printing the list, we could
have ended line 10 of the program with the dollar symbol $ instead of a semicolon.

2 Fixed-point iteration

The equation x = f(x) can often be solved by starting with a value x = x0, and using the simple
iteration xn+1 = f(xn) for n ≥ 0. This method is called fixed-point iteration, and it is important
for theoretical reasons. This is partly because other methods can often be reformulated in terms of
fixed-point iteration. for example, when using Newton’s method

xn+1 = xn − g(xn)

g′(xn)

9
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Figure 1.2: Logistic sequence, using loops

to solve the equation g(x) = 0, this can be considered as using fixed-point iteration to solve the
equation

x = x− g(x)

g′(x)
.

Furthermore, variants of fixed-point iteration are useful for solving certain systems of linear equations
arising in practice (e.g., on account of cubic splines). A simple result describing the solvability of
equations by fixed-point iteration is the following:

Theorem 2.1. Assume x = c is a solution of the equation x = f(x). Assume further that there are
numbers r > 0 and q with 0 ≤ q < 1 such that

|f ′(x)| ≤ q for all x with c− r < x < c+ r.

Then, starting with any value x0 ∈ (c− r, c + r) and putting xn+1 = f(xn) for n ≥ 1, the sequence
{xn}∞n=1 converges to c.

When one tries to use this result in practice, the interval (c− r, c+ r) of course cannot be known
exactly. However, the fact that |f ′(x)| < q in an interval for some q with 0 ≤ q < 1 makes it
reasonable to try to use fixed-point iteration to find a solution of the equation x = f(x) in this
interval.

Proof. Let n ≥ 0, and assume that xn ∈ (c−r, c+r). By the Mean-Value Theorem of differentiation
we have

f(xn)− c = f(xn)− f(c) = f ′(ξn)(xn − c),

where the first equality used the assumption that c is a root of x = f(x), i.e., that c = f(c); here
ξn is some number between xn and c. Clearly, we have ξn ∈ (c − r, c + r), so we have |f ′(ξn)| ≤ q.
Therefore, noting that xn+1 = f(xn), we have

(2.1) |xn+1 − c| ≤ q |xn − c|.

10



Hence xn+1 ∈ (c− r, c+ r). Thus, given that x1 ∈ (c− r, c+ r) by assumption, we can conclude that
xn ∈ (c− r, c+ r) for all positive integers n. Hence inequality (2.1) is valid for all positive integers
n; thus we can conclude by induction that

|xn − c| ≤ qn|x0 − c|

for all integers n ≥ 0. As qn converges to 0 when n tends to zero, it follows that xn converges to
c.

In addition to being used to solve equations numerically, fixed point iteration is also important
in the study of mathematical models described by difference equations.

Definition 2.1. Given the equation

(2.2) xn+1 = f(xn) (n ≥ 0),

the number c is called a fixed point of the equation if f(c) = c. The fixed point c is called attractive
if there an open interval I containing c such that for all t ∈ I, for equation (2.2 with x0 = t we have
limn→∞ xn = c. The fixed point c is called repulsive if there is an open interval I containing t, for
all t ∈ I with t 6= c, for equation (2.2 with x0 = t, the limit limn→∞ xn either does not exists, or if
it exists and limn→∞ xn = c then xn = c for some n > 0.

The above theorem has the following simple corollary:

Corollary 2.1. Given a real-valued function f and a real number c such that f(c) = c, and assume
that |f ′(c)| < 1 and that f ′ is continuous at c. Then c is an attractive fixed point of f .

Proof. Let q =
(
1 + |f ′(c)|

)
/2; then q < 1. The assumption that f ′ is continuous at c requires

that c has a neighborhood in which f ′ exists. It also follows from the same assumption that there
is a neighborhood of c in which |f ′(x)| < 1. Hence the result follows from Therem fixed: conv
theorem.

A partial converse to this is the following

Theorem 2.2. Assume x = c is a solution of the equation x = f(x). Assume further that there are
numbers a, b with a < c < b such that

|f ′(x)| ≥ 1 for all x with a < x < b.

Then starting with any value x0 and putting xn+1 = f(xn) for n ≥ 0, the sequence {xn}∞n=0 does
not converge to c unless xk = c for some positive integer k.

Of course, if xk = c for some positive integer k, then xn = c for all n ≥ k. However, it is very
unlikely that we accidentally end up with xk = c in practice, and so, if |f ′(x)| > 1 near the solution of
the equation x = f(x), using fixed-point iteration to find the solution should be considered hopeless.

Proof. Assuming xn converges to c, we must have a positive integer N such that xn ∈ (a, b) for
every n ≥ N . So, for any n ≥ N we have, by the Mean-Value Theorem that

f(xn)− c = f(xn)− f(c) = f ′(ξn)(xn − c),

for some ξn ∈ (a, b), and so, noting that xn+1 = f(xn) and that |f ′(ξn)| ≥ 1, we obtain that

|xn+1 − c| ≥ |xn − c|

11



for all n ≥ N . Thus we have
|xn − c| ≥ |xN − c|

for all n ≥ N . Hence xn cannot converge to c unless xN = c.

Corollary 2.2. Given a real-valued function f and a real number c such that f(c) = c, and assume
that |f ′(c)| > 1 and that f ′ is continuous at c. Then c is a repulsive fixed point of f .

Proof. The assumptions imply that c has a neighborhood in which |f ′(c)| > 1. Hence the conclusion
follows from Theorem 2.2.

Fixed point iteration can be visually illustrated by the cobweb diagram. For more pictures, see
here or the result of a Google search with key words “fixed point cobweb diagram” (without the
quotes) here.

3 Some results on the stability of difference equations

We will further study the fixed point difference equation (2.2). In particular, we will assume that f
is a real-valued continuous function statisfying the following conditions stated in [7, §5.F, p. 365]:

Definition 3.1 (Meyer conditions). Let f be a continuous functionfunction R → R. We say that f
satisfies the Meyer conditions if the following hold

(a) We have f(0) = 0 and there is a w > 0 such that f(x) > 0 for x with 0 < x < w and f(w) = 0.

(b) f has maximum M in the interval [0, w] at a single point xmax. For x ∈ R with x < xmax, f
is increasing, and for x ∈ R with x > xmax, f is decreasing.

(c) For x > 0, there is exactly one value of x for which f(x) = x; call this value R. We have
R < w.

(d) For x with 0 < x < R we have f(x) > x.

The discussion of the consequences of the Meyer conditions follows [7, §5.F, p. 365ff.]:3.1

Theorem 3.1. Let f be a continuous function satisfying the Meyer conditions in Definition 3.1, and
assume R ≤ xmax Then, with x0 ∈ (0, w) and xn defined by equation (2.2), we have limn→∞ xn = R.

Proof. According to Meyer conditions (a), and (b), f maps the interval (0, w) into (0,M ], since
M is the maximum of f on the interval (0, w). As R ≤ xmax, we have M = f(xmax) ≤ xmax.
Indeed, we have f(x) < x for all x > R; this is because f(w) = 0, f is continuous, and f(x) = x
holds for x ∈ (0, w) only if x = R. Thus (0,M ] ⊂ (0, xmax], and so xn ∈ (0, xmax] for all n ≥ 1.
Since f(x) is increasing on the interval [0, xmax], if xn ≤ xn+1 for some n ≥ 1, we also have
xn+1 = f(xn) ≤ f(xn+1) = xn+2, and so the, by induction, sequence {xk}∞k=n is nondecreasing.
Similarly, if xn ≥ xn+1 for some n ≥ 1, we also have xn+1 = f(xn) ≥ f(xn+1) = xn+2, and
so the, by induction, sequence {xk}∞k=n is nonincreasing. Since this sequence is bounded, it has
a limit; for the limit c, we must have f(c) = c. We cannot have c = 0, since if xn ∈ (0, R),
then xn+1 = f(xn) > xn, so the limit cannot be 0. The only other fixed point is c = R. Hence
limn→∞ xn = R.

3.1The abbreviation “ff”, usually followed by a perion, means “and the following pages.”
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3.1 Stability of the logistic equation

The logistic difference equation was already introduced in Subsection 1.1. It is the

(3.1) xn+1 = r(1− xn)xn for all n ≥ 0,

where r is some parameter. We have

Corollary 3.1. Assume 1 < r < 2, 0 < x0 < 1, and xn for n ≥ 0 satisfies equation (3.1). Then

lim
n→∞

xn =
r − 1

r
.

Proof. Writing f(x) = r(1−x)x, we f ′(x) = r(1−2x). It is easy to check that the Meyer conditions
of Definition 3.1 are satisfied with w = 1, xmax = 1/2, and R = (r − 1)/r. Indeed,

0 < R =
r − 1

r
<

1

2
= xmax,

since 1 < r < 2. Hence the result follows from Theorem 3.1.

4 Fixed points of linear matrix difference equations

4.1 Reducing the inhomogeneous equation to a homogeneous equation

Consider the equation

(4.1) xn+1 = Axn + b, (n ≥ 0)

where A is a ν × ν matrix, and xn and b are vectors of size ν (i.e., 1 × ν matrices). The question
we are going to consider is whether there is a vector v such that

lim
n→∞

xn = v.

Here the limit may be defined componentwise, or with the aid of a vector norm. For the considera-
tions in this sections, we will allow A and xn to have complex entries.

If such a v exits, we must have v = Av + b. Hence equation (4.1) can be written as

xn+1 − v = A(xn − v).

Thus, the case of the inhomomogeneous equation (4.1) can be reduced to the case of the homogeneous
equation with the substitution yn = xn − v.

4.2 Fixed points of the homogeneous equation

The homogeneous equation is given by the case b = 0 of equation (4.1):

(4.2) xn+1 = Axn, (n ≥ 0)

A vector v is called a fixed point of this equation if the equation is satisfied with xn = v for all
n ≥ 0. Such a vector will be called a stable fixed point if for all initial valued xn, the solution of
equation (4.2) converges to v.4.1

4.1One might want to require this only for vectors x0 that are in some sense close to v; however, as we will see such
a definition does not make good sense.
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The vector 0 is always a fixed point of equation (4.2). For a vector v 6= 0 to be a fixed point is
equivalent to saying that Av = v, i.e., that v is an eigenvector of A associated with the eigenvalue
1. If this is the case, the vector v is not is not a stable fixed point, since for any complex number α
we have A(αv) = αv. To discuss the condition for the vector 0 to be a stable fixed point we need
the following

Definition 4.1. The spectral radius of the square matrix A is the maximum of the absolute values
of its eigenvalues.

The condition for 0 to be a stable fixed point of equation equation (4.2) is given by the following

Theorem 4.1. The vector 0 is a stable fixed point of equation (4.2) if and only if the spectral radius
of A is less than 1.

This is a consequence of the following

Theorem 4.2 (Gelfand’s formula). If ‖ · ‖ is a matrix norm compatible with a vector norm, 4.2 for
any square matrix A, radius, we have

ρ(A) = lim
n→∞

‖An‖1/n,

where ρ(A) denotes the spectral radius of A.

The proof of this can be carried out using the Jordan normal form, 4.3 but a more elegant proof,
generalizable way beyond the scope of matrices, uses complex analysis. This proof, for matrices, is
given in [2, Section 43, pp. 222–223];

Theorem 4.1 is an immediate consequence of Theorem 4.2, since ρ(A) < 1 implies that ‖An‖ → 0
and so ‖Anx‖ → 0 for all x as n → ∞. On the other hand, if ρ(A) ≥ 1 then there is an eigenvector
x of A with an eigenvalue λ with |λ| ≥ 1, and so for which

‖Anx‖ = ‖λnx‖ = |λ|n‖x‖ ≥ ‖x‖ > 0

for all n ≥ 0.

Corollary 4.1. Equation (4.1) has a stable fixed point if and only if the spectral radius of A is less
than 1.

This corollary applies both to the inhomogeneous and to the homogeneous equation; the latter
is represented by the case b = 0.

4.3 The case of multiple fixed points

Assume u and v are fixed points of equation (4.1), that is, Au = u + b and Av = v + b, where
u 6= v. Then Aw = w with w = u − v 6= 0; that is, 1 is an eigenvalue of A. Then the spectral
radius of A is ≥ 1, and so 0 is not a stable fixed point of equation (4.2), and so equation (4.1) has
no stable fixed point.4.4

4.2A matrix norm ‖ · ‖ is called compatible, or consistent, with a vector norm, also denoted as ‖ · ‖, if for any matrix
A and any column vector x we have

‖Ax‖ ≤ ‖A‖‖x‖.

In the discussion that follows, ‖ · ‖ will denote a fixed vector norm or a fixed matrix norm compatible with this vector
norm.
4.3For the Jordan normal form of matrices, see [3, Subsection 8.7, on p. 20].
4.4The assertion that 1 is an eigenvalue of A means the same thing as A is singular. If A is singular, then the

equatinon x = Ax+ b either has no solutions or it has infinite many solutions, depending on the choice of b.
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4.4 An example

The book [1, Section 1.4, Example 4, p. 47] gives the system of equations

Sn+1 = 0.75Sn + 0.20Un + 0.40An,

Un+1 = 0.05Sn + 0.60Un + 0.20An,

An+1 = 0.20Sn + 0.20Un + 0.40An,

(4.3)

where n ≥ 0. The fixed points of this equation are analyzed for stability numerically under the
condition that that S0 + U0 +A0 = 4000. It then follows that

(4.4) Sn + Un +An = 4000 for all n ≥ 0;

indeed, if we add the equations in (4.3), we obtain

(4.5) Sn+1 + Un+1 +An+1 = Sn + Un +An for all n ≥ 0.

We will incorporate equation (4.4) into the system (4.3) by subtracting an appropriate multiple
of the equation

(4.6) 0 = Sn + Un +An − 4000

from each equation of the system so as to eliminate An from the right-hand side (for the first
equation, we need to multiply the this equation by 0.40, for the second, by 0.20, for the third, by
0.40). We obtain the system

(4.7) xn+1 = A1xn + b1,

where 4.5

A1 =





0.35 −0.2 0.0
−0.15 0.4 0.0
−0.2 −0.2 0.0



 and b1 =





1600
800
1600



 ,

and xn = (Sn, Un, An)
T .4.6 The fixed point of this equation is

x = (−2222.22 . . . ,−777.77 . . . , 1000)T .

The eigenvalues of the matrix A1 are .55, .2, and 0; so the spectral radius of A1 is .55. According
to Corollary 4.1, the fixed point of equation (4.7) is stable.

4.4.1 A note on hand calculations

As we will explain in the next section, we used Maxima to assist in the calculations, even though
hand calculations would also have been quite easy. Indeed, the matrix A1 and the column vector b1

in equation (4.7) can be calculated quite easily. by hand. We can get away with less, since we do
not need the column vector b1 in order to see that the fixed point of the system (4.3) is stable; the

4.5The symbol An in equation (4.3) and name of the matrix A1 used in equation (4.7) conflict; however, the context
clarifies which is meant. It would be more troublesome for us to change the notation in equation (4.7) so as to avoid
this conflict than whatever misunderstanding may result from not doing so.
4.6CT denotes the transpose of the matrix C. To save place, one often writes a column vector as the transpose of a

row vector.
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only thing we need are the eigenvalues of the matrix A1, and we will see, we only need the first two
rows of the matrix A1 for this.

For a square matrix M , its eigenvalues are the zeros of the polynomial det(M − λI) of λ, called
the characteristic polynomial of M ; here I is the identity matrix of the same size as M , and det(C)
stands for the determinant of the matrix C. That is, we need the zeros of the polynomial

det(A1 − λI) =

∣
∣
∣
∣
∣
∣

0.35− λ −0.2 0.0
−0.15 0.4− λ 0.0
−0.2 −0.2 −λ

∣
∣
∣
∣
∣
∣

= −λ

∣
∣
∣
∣

0.35− λ −0.2
−0.15 0.4− λ

∣
∣
∣
∣
,

where the second equation follows by expanding the determinant in the middle member of these
equations with respect to its last column. The polynomial on the right-hand side is zero if λ = 0 or
if the 2× 2 determinant on the right-hand side is zero. This determinant is a quadratic polynomial
of λ, and to find out when this quadratic polynomials is zero is not too hard. Indeed, this quadratic
polynomial is

λ2 − .75λ+ .11 =
1

100
(100λ2 − 75λ+ 11).

The discriminant of the polynomial in parentheses is

752 − 4 · 100 · 11 = 1225 = 352,

showing that the zeros of this polynomial are quite easy to find by hand. They are

75 + 35

200
=

110

200
=

11

20
and

75− 35

200
=

40

200
=

1

5

according to the quadratic formula.

4.5 The Maxima program supporting the above example

We will next discuss the Maxima program used to support the calculations described in Subsec-
tion 4.4. Here is the script matrix_fix.max that we used:

1 kill(all);

2 linel : 60;

3 load(eigen );

4 ratprint : false$

5 a : matrix(

6 [0.75 , 0.20, 0.40] ,

7 [0.05 , 0.60, 0.20] ,

8 [0.20 , 0.20, 0.40]

9 )$

10 determinant(a);

11 id : identfor(a)$

12 d : matrix ([1 ,1 ,1]);

13 acol3 : transpose(transpose(a)[3]);

14 tosubtract : acol3 . d;

15 a1 : a - tosubtract;

16 b1 : 4000* acol3;

17 fixpt : -(a1 -id)^^( -1).b1;

18 float(eigenvalues(a1));

The output of this script is as follows:
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1
2 Maxima 5.27.0 http :// maxima.sourceforge.net

3 using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

4 Distributed under the GNU Public License. See the file

5 COPYING.

6 Dedicated to the memory of William Schelter.

7 The function bug_report () provides bug reporting

8 information.

9 (%i1) batch(matrix_fix.max)

10
11 read and interpret file:

12 #p/home/mate/courses/modeling/maxima.ms/matrix_fix.max

13 (%i2) kill(all)

14 (%o0) done

15 (%i1) linel : 60

16 (%o1) 60

17 (%i2) load(eigen)

18 (%o2) /usr/share/maxima /5.27.0/ share/matrix/eigen.mac

19 (%i3) ratprint : false

20 [ 0.75 0.2 0.4 ]

21 [ ]

22 (%i4) a : [ 0.05 0.6 0.2 ]

23 [ ]

24 [ 0.2 0.2 0.4 ]

25 (%i5) determinant(a)

26 (%o5) 0.11

27 (%i6) id : identfor(a)

28 (%i7) d : [ 1 1 1 ]

29 (%o7) [ 1 1 1 ]

30 (%i8) acol3 : transpose(transpose(a) )

31 3

32 [ 0.4 ]

33 [ ]

34 (%o8) [ 0.2 ]

35 [ ]

36 [ 0.4 ]

37 (%i9) tosubtract : acol3 . d

38 [ 0.4 0.4 0.4 ]

39 [ ]

40 (%o9) [ 0.2 0.2 0.2 ]

41 [ ]

42 [ 0.4 0.4 0.4 ]

43 (%i10) a1 : a - tosubtract

44 [ 0.35 - 0.2 0.0 ]

45 [ ]

46 (%o10) [ - 0.15 0.4 0.0 ]

47 [ ]

48 [ - 0.2 - 0.2 0.0 ]

49 (%i11) b1 : 4000 acol3

50 [ 1600.0 ]

51 [ ]

52 (%o11) [ 800.0 ]
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53 [ ]

54 [ 1600.0 ]

55 <- 1>

56 (%i12) fixpt : (- (a1 - id) ) . b1

57 [ 2222.222222222223 ]

58 [ ]

59 (%o12) [ 777.7777777777778 ]

60 [ ]

61 [ 1000.0 ]

62 (%i13) float(eigenvalues(a1))

63 (%o13) [[0.55 , 0.2, 0.0], [1.0, 1.0, 1.0]]

64 (%o13) matrix_fix.max

We will give a line-by-line description of above the script. Occasianally, we may also comment on the
output as well, though most of it is self-explanatory. Line 1 of the script specifies the maximum length
of the output lines, and line 3 loads the Maxima package eigen needed in eivenvalue calculations.
Line 4 makes the logical variable (i.e., a variable that can assume the values true or false) ratprint
false, thereby suppressing messages informing about the conversion of floating point numbers to
rational numbers (i.e., common fractions); there are many such messages that would make the
output excessively long. At the end of the line, the dollar sign $ suppresses an output message that
the variable ratprint was indeed given the truth value false. Lines 5–9 specify the matrix a, the
coefficient matrix in equation (4.3). The way the matrix was entered, with line breaks at the end of
the rows may be visually pleasing, but it is irrelevant as far as Maxima is concerned. On line 10, the
determinant of the matrix a is checked to see that the rows of the matrix are linearly independent
– even though this is not of any importance in our discussions: they indeed are, since line 26 of the
output shows that this determinant is 0.11, that is, it is different from 0. Line 11 creates the identity
matrix id of the same size as the matrix a. On line 12, d is defined as the row vector (1, 1, 1), the
coefficient vector in equation (4.6).

On line acol3 is defined and the third column of the matrix a; this vector contains the appropriate
multiples of equation (4.6) that need to be subtracted form the equations of system (4.1). The way
a matrix is entered (cf. lines 5–9 of the input), the arguments of a matrix are its rows, so there is
an easy way to get a specific column of the matrix. For this reason, we take the transpose of the
matrix a, take the third row of it, and then to get a column vector, we take the transpose of this
row vector.4.7 As indicated, the matrix tosubtract described on line 14 of the script is the matrix
product of the column vector acol3 and the row vector d; the dot . on the line is the symbol for
matrix product. The resulting matrix is shown on lines 37-42 of the output. We obtain the matrix
a1, corresponding to the coefficient matrix A1 in equation (4.7) by subtracting this matrix from
the matrix a, corresponding to the coefficient matrix in equation (4.2). The column vector b1 in
equation (4.7) is defined on line 16 of the script; the asterisk * on the line is used to multiply a
matrix by a scalar.4.8 The fixed point of equation (4.7) is calculated on line 17; here the symbol
^^(-1) indicates matrix inversion (that is, a matrix raised to the power −1; other integer powers are
also allowed). On line 18, the eigenvalues of the matrix a1 are calculated; line 63 of the output shows
the result. The first triple indicates the eigenvalues, and the second triple gives the corresponding
multiplicities. One would expect these multiplicities [1.0, 1.0, 1.0] to be integers, which they
were before converting the output to floating point on line 18 of the script.

4.7If we wanted to get the entry in the second row and the first column of the matrix, we would need to enter
a[2][1].
4.8The use of the asterisk * for matrices is more general, but this is not of immediate interest to us – see the manual

for details; it definitely not used to indicate matrix multiplication, for which the dot . is used, as mentioned.
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5 Random numbers and Monte Carlo methods

Calculations using random numbers occur frequently in computations. The problems where they
are used may involve simulation of truly random processes, or they may involve computational
methods involving randomness even though the problem to be solved are deterministic in nature.
The broad class of mathematical algorithms using random numbers are called Monte Carlo methods.
Random numbers are also used in many algorithms involving computer security and cryptographic
key exchange.

The numbers used in these algorithms are not truly random, they just appear random; such
numbers are called pseudorandom numbers. The reason for not using truly random numbers are
several. First, it is difficult to find truly random processes that are capable of generating such
numbers is a really balanced way, that is, without bias, and with a speed required in computer
calculations. Further, during program testing, it is often important to carry out the same calculation
repeatedly, but this would be impossible if actual random numbers were used.

Random numbers used in cryptography have additional requirements often not needed in usual
calculations, since such numbers need to withstand methods of discovery by a sophisticated adver-
sary. Random numbers suitable for this purpose are called cryptographically secure pseudorandom
numbers. Pseudorandom numbers used in mathematical modeling or in scientific calculations are
unlikely to be cryptographically secure. The next program illustrates random numbers in Maxima.

1 kill(all);

2 linel : 60;

3 load(distrib );

4 st : make_random_state (56088371546)$

5 set_random_state (st);

6 random_normal (2 ,3 ,10);

7 set_random_state (st);

8 random_normal (2 ,3);

9 random_normal (2 ,3);

10 set_random_state (st);

11 random_normal (2 ,3);

12 random_normal (2 ,3);

The output of this program appears next.

1
2 Maxima 5.27.0 http :// maxima.sourceforge.net

3 using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

4 Distributed under the GNU Public License. See the file

5 COPYING.

6 Dedicated to the memory of William Schelter.

7 The function bug_report () provides bug reporting

8 information.

9 (%i1) batch(random.max)

10
11 read and interpret file:

12 #p/home/mate/courses/modeling/maxima.ms/random.max

13 (%i2) kill(all)

14 (%o0) done

15 (%i1) linel : 60

16 (%o1) 60

17 (%i2) load(distrib)
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18 (%o2) /usr/share/maxima /5.27.0/ share/distrib/distrib.mac

19 (%i3) st : make_random_state (56088371546)

20 (%i4) set_random_state (st)

21 (%o4) done

22 (%i5) random_normal (2, 3, 10)

23 (%o5) [6.165594866462493 , 0.13110245802358 ,

24 - 1.519759347422934 , 3.718967001669206 , 4.887487921863613 ,

25 1.638569730008628 , 3.706855370154149 , 2.785092006771531 ,

26 5.363605674459343 , 1.145985458146]

27 (%i6) set_random_state (st)

28 (%o6) done

29 (%i7) random_normal (2, 3)

30 (%o7) 1.145985458146

31 (%i8) random_normal (2, 3)

32 (%o8) 5.363605674459343

33 (%i9) set_random_state (st)

34 (%o9) done

35 (%i10) random_normal (2, 3)

36 (%o10) 1.145985458146

37 (%i11) random_normal (2, 3)

38 (%o11) 5.363605674459343

39 (%o11) random.max

We will comment on the above script and the resulting output line by line. On line 3 of the script,
the maxima package distrib is loaded; this package makes it possible to generate random numbers
following a large number of of distributions occurring in mathematics and statistics. On line 4 a
state of the random number generator is created; this state is generated from a seed, the integer
argument entered on this line of the function make_random_state. This state is saved in the variable
st, and it is reused a number of times in the script. In fact, on lines 5, 7, and 10 of the script,
the random number generator is assigned the state st. The effect of this is that exactly the same
random numbers are generated in the output as we will explain.

The command on line 6 of the script generates a sequence of 10 random floating point numbers
distributed according to a normal dstribution of mean 2 and standard deviation 3. on lines 8, 9, 11,
and 12 each, a single random number following the same normal distribution is generated. It is to
be noticed that the two random numbers on line 26 are exactly the same as the numbers on lines 30
and 32, and then again on lines 36 and 38 of the output. This is because we reset the state of the
random number generator to the same state.

5.1 A Monte Carlo calculation of the area of the circle

The next script uses a Monte Carlo method to approximate the area of the part lying in the first
quadrant of the unit circle with center at the origin. The method is randomly select points following
uniform distribution in the unit square with vertices (0, 0), (0, 1), (1, 0), and (1, 1), and counting the
proportion that falls in the part of the circle.

1 kill(all);

2 linel : 60;

3 st : make_random_state (56088371546)$

4 set_random_state (st);

5 count : 0;

6 tries : 10000;

7 for n : 1 step 1 thru tries do ( x : random (1e5)/1e5 ,
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8 y : random (1e5)/1e5 , count : if x^2+y^2<1 then count +1 else

9 count )$

10 mtc_area : float(count/tries );

11 true_area: float (%pi/4);

12 abserr : mtc_area -true_area;

13 relerr : abserr/true_area;

The output of this script as follows.

1
2 Maxima 5.27.0 http :// maxima.sourceforge.net

3 using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)

4 Distributed under the GNU Public License. See the file

5 COPYING.

6 Dedicated to the memory of William Schelter.

7 The function bug_report () provides bug reporting

8 information.

9 (%i1) batch(area_circle.max)

10
11 read and interpret file:

12 #p/home/mate/courses/modeling/maxima.ms/area_circle.max

13 (%i2) kill(all)

14 (%o0) done

15 (%i1) linel : 60

16 (%o1) 60

17 (%i2) st : make_random_state (56088371546)

18 (%i3) set_random_state (st)

19 (%o3) done

20 (%i4) count : 0

21 (%o4) 0

22 (%i5) tries : 10000

23 (%o5) 10000

24 random (100000.0)

25 (%i6) for n thru tries do (x : ----------------,

26 100000.0

27 random (100000.0)

28 y : ----------------, count :

29 100000.0

30 2 2

31 if y + x < 1 then 1 + count else count)

32 count

33 (%i7) mtc_area : float(-----)

34 tries

35 (%o7) 0.7943

36 %pi

37 (%i8) true_area : float(---)

38 4

39 (%o8) 0.78539816339745

40 (%i9) abserr : mtc_area - true_area

41 (%o9) 0.0089018366025517

42 abserr

43 (%i10) relerr : ---------

44 true_area
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45 (%o10) 0.01133417038314

46 (%o10) area_circle.max

We give a line-by-line description of the script, occasionally commenting also on the output. On
lines 3–4, the state of the random number generator is set. On line 6, the number of tries is set
to be 100, 000. The loop on lines 7–9 counts the number of those falling into the unit circle. On
line 8 in the loop, a random integer in the range 0 to 1e5, the latter being the computer notation for
the floating point number 1× 105 = 100, 000 is created, and this is immediately divided by 1e5, to
get a random number uniformly distributed in the interval [0, 1]. On line 10, the variable mtcarea,
abbreviating Monte-Carlo area, is assigned the ration of successful tries divided by the total number
of tries. On line 11, the true area is evaluated as π/4. Lines 12 and 13 calculate the absolute and
relative errors are are calculated.

6 The middle square random number generator

6.1 The classic middle-quare method

Th classic middle square method was invented by John von Neumann in 1946 to generate preuso-
random numbers by taking an 4-digit integer as a starting value. Squaring this number produces
an 8-digit number (occasionally, there are fewer digits that should be supplemented to 8 by adding
leading zeros); taking the middle 4 digits gives the first random number; squaring this and taking
the 4 middle digits gives the second one. This can be repeated to get a series of random numbers.
The method was fast but it had the problem of often producing short cycles, and it also had issues
with the accumulation of zero digits in the random numbers, which will not disappear in subsequent
iterations. Von Neumann well understood the weaknesses of his method, but he justified its use by
its speed and by noting that it will be noticed immediately when the method went awry.6.1 The
method was important in early calculations concerning nuclear processes, such as simulating the
absorption of neutrons by shielding materials. At the time, the only electronic computer available
to do these calculations was the ENIAC, and the simplicity of the method was also an advantage.6.2

6.2 The updated middle square method: a C++ implementation

The problems with the middle square methods can be corrected, as shown in [11].6.3, and the
resulting method is one of the fastest method of producing random numbers to date. The method
starts with a large integer, squares it, takes the middle digits of the square;6.4 It then adds successive
terms of a sequence known to be equidistributed modulo a large integer.6.5 These steps are repeated
to produce a succession of random numbers. Adding the successive terms of the equidistributed
sequence eliminates the defects of von Neumann’s original method.

6.1See the History section of the Wikipedia article on the Monte Carlo method.
6.2The linked Wikipedia article about the ENIAC is well worth reading for those interested in the history of com-

puting.
6.3The title of the article is “Middle square Weyl sequence RNG.” Here “RNG” referes to Random Number Generator,

but the reference to “Weyl sequence” is a somewhat obscure reference to the famous mathematician Hermann Weyl.
Where there is a Weyl sequence in the theory of Hilbert space operators, this is unlikely to be referred to. The
reference is probably to Weyl’s equidistribution article [10], though the connetion to this article is remote.
6.4In fact, it takes only the lower half of the middle digits. The reason for this is the way compters are constructed,

and not some theoretical reason, as we will see.
6.5This is where the reference to Weyl’s equidistribution article quoted above, make sense. However, Weyl’s article

contains a deep method involving the estimation of trigonometric sums (also called complex exponential sums) that
is still very important in number theory, whereas the reasons for the equidistribution of the sequence used in the
method are quite simple.
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A C++ impementation of a subroutine carrying out the key steps of this method is as follows:

1 #include <stdio.h>

2 #include <stdint.h>

3
4 uint32_t middle(uint64_t &x,uint64_t &w, uint64_t &z)

5 {

6 x *= x;

7 w += z;

8 x += w;

9 return x = (x>>32) | (x< <32);

10 }

We will later include a description of a calling program for this subroutine, a way to compile this
program, and the output produced. The way this subroutine works can be explained independently,
however, and a line-by-line explanation explanation follows. As before, the numbers at the beginning
of the lines are line numbers, and they are not part of the file. For later reference, we will call this
file middle.cc.6.6 Line 1 is present in virtually all C or C++ programs, and the file stdio.h

mentioned in this line contain the standard C input/output library. The file stdint.h in the second
line contains the integer types mentioned on line 4. The types uint32_t and uint64_t unsigned
integer types of the indicated size in bits. The operations on these numbers are done in modular
arithmetic; that is, any digits of the result that cannot be stored are simply lost, without any error
message. Thus, the square of a 64 bit integer would need 128 bits to store, and when a location of
type uint64_t is used to store the result, the 64 bits on the left are lost. The subroutine is called
by reference, that is, any of change in the variables x, w, and z will result in the same change of
the calling variables; the best way to think about this is that the command calling the subroutine
simply transfers the memory location of the calling variables to the subroutine, and the subroutine
uses the same locations to do the calculation. Line 4 could also have been written as

uint32_t middle(uint64_t& x,uint64_t& w, uint64_t& z)

which indicates more clearly that, for example, x is a variable of type uint64_t& rather than the
address &x is of type uint64_t. On the other hand, &x indicates a reference to x.

In the body of the subroutine, line 6 squares x; in C and C++ the assignment operator is simply
the equation sign =. The equation x *= x is an abbreviation of x = x * x, where the asterisk tt *
is the multiplication sign. This abbreviation is helpful for the compiler in that it tells the compiler
to store the argument at the location of the first argument; the compiler would probably figure this
out on its own, still abbreviations like this speed up compilation. Here x being a 64 bit unsigned
integer, its square is 128 bits, but the 64 bits on the left are discarded. On line 8, the operation w

= w + z is performed, again abbreviated in the same style as the abbreviation used on line 7. The
content of z will stay the same throughout, while w will contain the terms of the equidistributed
sequence. The starting values of x, w, and z are the seeds of the random number generation. There
are no special requirements on the first two of these; it is important, however, that z be odd and
that the upper 32 bits of z represent a nonzero number.

On line 8 w is added to x. On line 9, the expression x>>32 indicates shifting the digits of x
to the right; during the shift, 32 zeros from the right will enter the location, so the result of this
shift contains 32 zeros on the left, and the lower 32 digits of the middle 64 digits of the square of

6.6The compiler gcc that we will use for compiling this program originally used the *.cc file extension for C++
programs. Nowadays it also recognizes other file extensions, such as *.cpp. The name gcc used to stand for GNU C
compiler, but it has been renamed GNU Compiler Collection, since it can compile a number of languages other than
C.
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the original value of x, as modified by the addition of w. These lower 32 digits are returned by the
subroutine on line 9. On this line, x<<32 indicates shifting the value (calculated on line 8 of x by
32 digits to the left. On the right, 32 zeros will enter as a result of the shift, and the lower 32 digits
of the value of x will now occupy the upper 32 digits. The symbol | on this line indicates inclusive
or (0 | 0 = 0, 1 | 0 = 0, 0 | 1 = 0, and 1 | 1 = 1), so the result of this operation is that the
upper and the lower 32 digits of x change places. This new value of x will be the new value of the
corresponding calling parameter, but the subroutine will only return the lower 32 bits, since the
subroutine was declared uint32_t type.

The program doing the calculations consists of three files placed in the same directory. The
subroutine middle.cc already mentioned, the header file middle.h and the calling program main.cc.
The header file middle.h consists of a single line

1 uint32_t middle(uint64_t &x,uint64_t &w, uint64_t &z);

The number at the beginning of the line is not part of the file – it is a line number. Admittedly, it
is not important to indicate it here, but we included it for uniform treatment of file listings. This
line declares the subroutine used in the program, which needs to be done before the main program;
notice that the declaration here is followed by a semicolon, while it is not followed by one in the file
middle.cc given above. There was no compelling reason to place it in a separate file, we mainly did
this to indicate how this can be done, and to point out some differences between C and C++ below.
The listing of the calling program main.cc is as follows (it is not required to call this file main.cc):

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "middle.h"

4
5 main()

6 {

7 FILE *inp , *outp;

8 uint64_t y, u, s;

9 uint32_t rand;

10 double randf;

11 int i;

12 inp = fopen (" seeds", "r");

13 outp = fopen (" randoms", "w");

14 fscanf(inp , "%llx\n%llx\n%llx\n", &y, &u, &s);

15 for (i=0; i < 6; i++) {

16 rand = middle(y,u,s);

17 fprintf(outp ," hexadedimal: y=%016 llx\n", y);

18 fprintf(outp ," hexadecimal: rand= %08x\n", rand);

19 fprintf(outp ,"rand =%ld\n", rand);

20 randf = rand;

21 fprintf(outp ," randf =%f\n", randf );

22 }

23 fclose(inp);

24 fclose(outp);

25 }

The first to #include lines are the same as in the file middle.cc on page 23 above. Line 3 includes
the header file middle.h here; equivalently, the content of the file could be included here (but there
are some subtle differences in how the program is compiled – see below). Note the differences in
syntax: On lines 1 and 2, the less than and greater than signs < and > indicate that the mentioned
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files are stored at the standard location for all include files, whereas on line 3, between the quotes
the full path to the file needs to be given (at present, this is just the name of the file, since the
program main.cc is in the same directory as the header file middle.h.

On line 5, the name main is the required name of the main program. On line 7 the file pointers
*inp and *outp are declared. On line 8, the 64 bit unsigned integers are declared; initially these will
be given the seed values. On line 9 the 32 bit unsigned integer rand declared On line 10, the double
precision floating number randf is declared. This is because the calculated random numbers are
most likely used as floating point numbers. On line 11, the integer i is declared; it will be used as a
loop variable to produce a sequence of random numbers. On line the file seeds with file pointer inp
is opened for reading, and on line 13, the file randoms with file pointer outp is opened for writing;
this is what the quoted letters r and w indicate. Line 14 reads the variables y, u, and s, are read from
the input file seeds (the file is indicated by the file pointer inp identifies the file. The variables need
to be stated as references in the function fscanf (meaning read from file); the second argument of
this function is the format string, which identifies the numbers as long hexadecimal integers (%llx in
the format string), and the numbers are separated by newline charachters \n in the input line (i.e.,
they are placed on separate lines). This means that the inputs are required to be long long (meaning
64 bit) hexadecimal numbers; 4 bits correspond to a hexadecimal digit, so the numbers need to be
16 digit hexadecimal numbers. There are no special requirements on the seeds except that s must
be an odd number (so its rightmost bit must be 1), and its upper 32 bits should represent a nonzero
numbers. There are conversion issues in making sure that these conditions are satisfied in case s is
read as a decimal integer; these could be overcome by some additional complications in the program,
but we did not want to deal with this issue. Here is the input file seeds:

1 c305f794a1b2c904

2 b3c9125ef907b352

3 a3569b02c4d3b9a5

The numbers are line numbers.
On line 16 the subroutine middle is called. It returns the random number and updaes the values

of y, u, and s. Line 17 prints y to the output file randoms as a hexadecimal 16 digit hexadecimal
number with leading zeros included (this is what is indicated by 016 in the format string %016llx

in the format string; x indicates that the output is hexadecimal, and ll indicates that a long long
integer is to be printed to the same file. On line 19 the integer rand is printed as an 8 digit
hexadecimal integer. On line 20, the integer rand is converted to the double floating point number
randf, and on line 21 this number is printed to the output file. The file pointers inp and outp close
the files seeds and randoms corresponding to these file pointers on lines 23 and 24. Here is the
output file randoms:

1 hexadedimal: y=ed42b507a6082fb4

2 hexadecimal: rand= a6082fb4

3 rand =2785554356

4 randf =2785554356.000000

5 hexadedimal: y=f6d2bd2ceedc0a5c

6 hexadecimal: rand= eedc0a5c

7 rand =4007397980

8 randf =4007397980.000000

9 hexadedimal: y=260 e31514e8a2b6c

10 hexadecimal: rand= 4e8a2b6c

11 rand =1317677932

12 randf =1317677932.000000

13 hexadedimal: y=b4240f76c11acdca
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14 hexadecimal: rand= c11acdca

15 rand =3239759306

16 randf =3239759306.000000

17 hexadedimal: y=d79f76ef8fc6e8bd

18 hexadecimal: rand= 8fc6e8bd

19 rand =2412177597

20 randf =2412177597.000000

21 hexadedimal: y=93 f128b93d4b53e5

22 hexadecimal: rand= 3d4b53e5

23 rand =1028346853

24 randf =1028346853.000000

These show that the integer rand is just the last eight hexadecimal digits (i.e., 32 bits of the integer
y on the preceding line; why this is so is explained in the discussion of the subroutine. The printout
also show that the integer value of rand and the double floating point value of randf agree. This is
important, especially as far as the printouts on lines 7 and 8 are concerned, since the integer printed
on line 7 is greater than 231; in fact, 231 = 2147483648 and 232 = 4294967296. Since calculation
with integers of uint32_t are performed modulo 232, it is conceivable that integers between 231 and
232 would be converted to negative numbers.

To compile these programs, it is convenient to use what is called a makefile, which should be a
file with the name makefile or Makefile. We used the following file called makefile:

1 all : middle

2 middle : middle.o main.o

3 gcc -o middle -s -O4 middle.o main.o -lm

4 middle.o : middle.cc

5 gcc -c -O4 middle.cc

6 main.o : main.cc middle.h

7 gcc -c -O4 main.cc

A very important point not visible in the listing of this file is that on lines 3, 5, and 7 the initial
white space must be a single tab character (and not a number of space characters). On the left-and
side of the colon : are the targets; there are often names of files to be created, but more generally,
they are goals to be accomplished; for example, there will be no file named all mentioned on line 1.
On the right-hand side of the colon are the files necessary to accomplish this task, and in the next
line the commands used to accomplish the task; we will give an explanation of the meanings of these
commands somewhat later. This helps one in performing two functions. First, one does not need to
remember each time how to compile the program; second, only those task will be carried out where
the target has an earlier date than the dates of the files on the right-hand side of the colon. To run
a makefile, one needs to type

$ make all

(here the dollar sign $ is a prompt, and must not be typed). More generally, to perform a specific
task, all should be replaced with the name of the task. One can often type make instead of make
all. Only those tasks will be performed where the target is out of date, that is the files on the
left-hand side are newer than the files on the right-hand side; that is, if the file middle is not out of
date then typing make all will do nothing. As seen from the make file, the name of the compiled
program is middle; to run the program, we need to type its name on the command line. That is,
we need to type

$ middle
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Line 6 of the makefile requires a special command. The compilation would work even if the name
of the header file middle.h does not appear on line 6, yet there is a problem. If we successfully
compiled middle and then change the file middle.h, the only reason the compilation is performed
again is that middle.h appears on line 6.

As far as the commands on lines 5, and 7 of the makefile, the compiler command gcc is used with
the -c option to produce the *.o files containing the compilation. The option -04 specifies the level
of compiler optimization to be used. On line 3 the command gcc links the *.o files containing the
compilations listed after the option -s; the optimization level -04 is also specified; the mathematics
library, indicated by -lm at the end of the line. The option -o specifies the name middle of the
linked program. There are many options that can be used with the gcc compiler; these are described
in the document Using the GNU Compiler Collection.

6.3 The updated middle square method: a C implementation

We will describe how to implement the same method using C instead of C++. The subroutine was
put in the file middle.c, which is as follows:

1 #include <stdio.h>

2 #include <stdint.h>

3
4 uint32_t middle(uint64_t *x, uint64_t *w, uint64_t *z)

5 {

6 *x *= *x;

7 *x += (*w += *z);

8 return *x = (*x>>32) | (*x< <32);

9 }

Comparing this to the C++ version of the program middle.cc on p. 23, the first difference is in
the naming of the file, to indicate that the present one is a C program. Aside from this, the main
difference is that here we use pointers and the quantities manipulated are the targets of the pointers,
indicated by a preceding asterisk *, whereas in the C++ version, only the function declaration (line 4
in the C++ version) mentions references, the body mentions the variables themselves. The function
declaration in the C version could have also been written as

uint32_t middle(uint64_t* x, uint64_t* w, uint64_t* z)

This form indicates more clearly that, for example, the variable x is declared as a pointer. The idea
here is the same as in the C++ version, where we were also able to rewrite the function declaration.
The difference between line 7 here and lines 7 and 8 in the C++ version is inessential, because even
there lines 7 and 8 could have been combined into a single line as

x += (w += z);

but when we explained the C++ version, we did not want to complicate our explanation with an
unimportant contraction of two lines into a single line. The effect of this contracted line is exactly
the same as the two lines mentioned in the C++ version of the program.

The next file is the header file middle.h is as follows.

1 uint32_t middle(uint64_t *x, uint64_t *w, uint64_t *z);

Comparing this to the C++ version of the file on p. 24, the name of the file middle.h is the same
as above; the difference is only that the declaration of the subroutine is different in C from that is
C++.
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The next file called main.c contains the calling program (it is not requied to call this file main.c:

1 #include <stdio.h>

2 #include <stdint.h>

3 #include "middle.h"

4
5 main()

6 {

7 FILE *inp , *outp;

8 uint64_t y, u, s;

9 uint32_t rand;

10 double randf;

11 int i;

12 inp = fopen (" seeds", "r");

13 outp = fopen (" randoms", "w");

14 fscanf(inp , "%llx\n%llx\n%llx\n", &y, &u, &s);

15 for (i=0; i < 6; i++) {

16 rand = middle (&y,&u,&s);

17 fprintf(outp ,"rand =%ld\n", rand);

18 randf = rand;

19 fprintf(outp ," randf =%f\n", randf );

20 }

21 fclose(inp);

22 fclose(outp);

23 }

The only difference here is the way the subroutine is called on line 16, since here the addresses of the
variables are listed as arguments. Other than this, we did not print out the hexadecimal versions of
the variables y and rand, since earlier we printed them out only to explain how the program worked.
The printout of the program is put in the file randoms, which is as follows:

1 rand =2785554356

2 randf =2785554356.000000

3 rand =4007397980

4 randf =4007397980.000000

5 rand =1317677932

6 randf =1317677932.000000

7 rand =3239759306

8 randf =3239759306.000000

9 rand =2412177597

10 randf =2412177597.000000

11 rand =1028346853

12 randf =1028346853.000000

The difference here is that the the hexadecimal numbers are missing, but the decimal numbers
themselves are exactly the same as before.

We will discuss the file makefile next:

1 all : middle

2 middle : middle.o main.o

3 gcc -o middle -s -O4 middle.o main.o -lm

4 middle.o : middle.c

5 gcc -c -O4 middle.c

6 main.o : main.c middle.h

7 gcc -c -O4 main.c
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The only difference here is that the file name extensions are .c for the C programs and .cc for the
C++ programs.

7 Gasoline inventory model

We will discuss a maxima implementation of a gasoline intentory model described in [1, Section
5.4, pp 203–210]. In our implementation, every five days a fixed amount of gasoline is delivered to
a gasoline station. The amount of daily purchases is random, but the distribution of the random
variable describing these purchases is experimentally known. In the model, we use cubic splines,
described next, to represent the inverse of the distrubution of this random variable. Then we consider
the cost incurred by the deliveries, and the daily amount of gasoline remaining. The issue is to set
the amount of gasoline deliveries to a level that so that the station is unlikely to run out of gasoline.
At the same time the cost of running the gas station needs to be as small as feasible. There are
several variables that can be changed in the model, such as the frequency of deliveries and the
amount delivered.

7.1 Cubic splines

Let [a, b] be an interval, and assume we are given points x0, x1, . . ., xn with a = x0 < x1 < . . . <
xn = b for some positive integer n. and corresponding values y0, y1, . . ., yn, we would like to
determine cubic polynomials

Si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di

for i with 0 ≤ i < n satisfying the following conditions:

Si(xi) = yi for i with 0 ≤ i ≤ n− 1,

Sn−1(xn) = yn,

S
(k)
i (xi+1) = S

(k)
i+1(xi+1) for i with 0 ≤ i ≤ n− 2 and 0 ≤ k ≤ 2.

These represent (n+1)+3(n−1) = 4n−2 equations. The two remaining equations can be obtained
by setting conditions on S0 at x0 and Sn−1 at xn. For example, if one wants to approximate a
function f with f(xi) = yi, then one can require that

S′
0(x0) = f ′(x0) and S′

n−1(xn) = f ′(xn);

these are called correct boundary conditions. The drawback of these conditions is that f ′(x0) and
f ′(xn) may not be known. Alternatively, one may require that

S′′
0 (x0) = 0 and S′′

n−1(xn) = 0;

these are called free or natural boundary conditions. The function S(x) defined as

S(x) = Si(x) whenever x ∈ [xi, i+ 1] (1 ≤ i < n)

is called a cubic spline. The name spline is that of a flexible ruler forced to match a certain shape
by clamping it at certain points, and used to draw curves. These equations are not hard to solve on
computers. See [2, Section 37, p. 167–174] for details.
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7.2 The maxima model

We will explain the details of the model as we describe the maxima script implementing the model.
Here is the script:

1 kill(all);

2 linel : 60;

3 load(interpol)$

4 pairs : [[0 ,1000] , [0.015 ,1050] , [.03, 1150] , [0.07 , 1250],

5 [.2, 1350] , [.4 ,1450] , [.68, 1550] ,

6 [.83, 1750] , [.93, 1860] , [1.0, 1950]]$

7 inv_distr_spline : cspline(pairs)$

8 inv_distr(x) := ’’inv_distr_spline$

9 st : make_random_state (37098341348)$

10 set_random_state (st);

11 time : 5;

12 deliv : 7200;

13 inventory : 0;

14 days : 40;

15 cost : 0;

16 delivcost : 2000;

17 remaining_days : days;

18 storage_cost : .5;

19 flag : 0;

20 daily_amts : [];

21 for k : 0 step 0 while flag = 0 do(

22 inventory : inventory + deliv ,

23 cost : cost + delivcost ,

24 if time >= remaining_days then (time : remaining_days ,

25 flag : 1),

26 for i : 1 step 1 thru time do(

27 consump : float(inv_distr(random (1e8)/1e8)),

28 inventory : inventory - consump ,

29 if inventory < 0 then inventory : 0

30 else cost : cost + inventory * storage_cost ,

31 remaining_days : remaining_days - 1,

32 dayno : days - remaining_days ,

33 daily_amts : append(daily_amts ,[[dayno ,inventory ]])

34 )

35 );

36 delete_file(mkp(" gasoline.output "));

37 writefile (" gasoline.output ");

38 daily_amts;

39 avgcost : float(cost/days);

40 closefile ();

We will explain what this script does line by line. We will not discuss the output, since the output
contains a lot of unimportant information; in fact, it contains 128 line, much of it is no interest except
while debugging the script. Instead, we print a part of the output to a file, and we will discuss that
file. On line 3 we load the maxima package interpol discussing interpolation. On lines 4–6, the
ordered pairs listed describe the experimental distribution of the random variable representing the
daily gasoline purchases. Calling this random variable X, the fourth pair on this list is [.2, 1350];
this means that P (X ≤ 1350) = .2, where the amount of gasoline 1350 is in gallons. The other pairs
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are interpreted similarly. The function f(x) that for the first member of the pair gives as value the
second member of the pair in the inverse of the distribution function of X. We are only given this
function at specific points; the function is extended to all points in the interval [0, 1] using cubic
splines. On line 7 this spline is defined as inv_distr_spline; this object is a maxima noun; on
line 8, the operator ’’ (two single quotes) converts this maxima noun to a maxima it verb; maxima
functions must be verbs. On line 8, x is the default variable of the expression ’’inv_distr_spline

(it is possible to choose a different variable name). Thus the function inv_distr on the left is
assigned its values by using the variable x. Line 9 create a random state, and on line 10 this state
is assigned to the random number generator. On lines 11 through 18 the variables of the model are
initialized; time is the number of days between deliveries, deliv is the amount of gasoline deliveredd
in gallons, inventory is the amount of gasoline held, days is the number of days the model runs
for, cost is the cost so far incurred, and delivcost is the cost of each delivery, remaining_days
will hold the number of days left for the model to run, and storage_cost is the cost of holding
gasoline on inventory in dollars per gallonr. The variable flag will be set to 1 when the model has
run the number of days it supposed to run for. The object daily_amts will hold the ordered pairs
consisting of the day number and the amount of of gasoline on inventory at the end of the day. On
line 21 a while loop is started; it is written as a for loop, but the loop variable k plays no role. In
the loop the cmmands are separated by commas.

The loop starts with a delivery of gasoline on line 22; on line 23 the cost of delivery is added to
the cost. On lines 24–25, if time (the time between deliveries) is greater than the remaining days
in the model, flag is set to 1. On line 26, the loop describing the days to the delivery is started.
On line 27, the consumption is evaluated as the value of the inverse distrubution value at a random
number between 0 and 1. On line 28, the inventory decreased by the amount of consuption. In
lines 29–30, if the inventory were to become negative if the consumption amount is subtracted, then
the inventory is set to zero. This means that all gasoline was sold out; the inventory of course will
not become negative. If the inventory is positive, the storage cost for the day is added to the cost
on linw 30. The number of remaining days is decremented on line 31; the day number is determined
on line 32. On line 33m the pair consisting of the day number and the inventory is added to the list
of daily amounts.

On lines 36–40, the list of the daily amounts is written to a file called gasoline.output. On
line 36, this file is deleted; this is important, because if the script was run earlier, the file would
contain the earlier output; if one does not want to preserve this output, the file first needs to be
deleted (the function mkp on this line stands for “make path” – what this means is unimportant for
our purposed at present. On line 37, the command tells maxima to write the output of the lines
following also to the file gasoline.output. On line 37 the daily amounts are written out (this is
the list of pairs created in the loop). On line, the average daily cost is calculated. On line 40, the
file gasoline.output is closed (the file does not need to be named here, since Maxima remembers
which file it opened).

The content of the file gasoline.output follows. This is mostly self-expanatory. The file was
modified in that some lines were too long for this manuscript, and they were broken up.

1 Starts dribbling to gasoline.output (2018/4/21 , 18:21:25).

2 NIL

3 (%o20) done

4 (%i21) daily_amts

5 (%o21) [[1, 5835.075835622294] , [2, 4615.108362796575] ,

6 [3, 2827.917683564751] , [4, 1367.206106675059] , [5, 0],

7 [6, 5734.867178081771] , [7, 4402.764396916923] ,

8 [8, 2941.238886947169] , [9, 1689.35860564159] ,
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9 [10, 194.9088484215324] , [11, 5569.681852841805] ,

10 [12, 4146.742630750356] , [13, 2738.477853429898] ,

11 [14, 1715.617354278904] , [15, 53.54455238216633] ,

12 [16, 5930.062047276927] , [17, 4595.26267538915] ,

13 [18, 3312.704960077897] , [19, 1550.610891136599] ,

14 [20, 140.6295407520802] , [21, 6097.536562303907] ,

15 [22, 4659.742001560235] , [23, 3290.925973632516] ,

16 [24, 1490.945197194474] , [25, 0], [26, 5742.492665305812] ,

17 [27, 4072.7906042983] , [28, 2929.058232127631] ,

18 [29, 1485.686624854492] , [30, 28.2759371630591] ,

19 [31, 5985.605430196491] , [32, 4249.946879513068] ,

20 [33, 2622.787234154956] , [34, 1370.380496369743] , [35, 0],

21 [36, 5393.9207154952] , [37, 3934.923195257497] ,

22 [38, 2553.880712494067] , [39, 940.9412032508558] , [40, 0]]

23 cost

24 (%i22) avgcost : float(----)

25 days

26 (%o22) 1852.645249101947

27 (%i23) closefile ()

8 Queueing models

8.1 The subject of queueing theory

In queueing theory,8.1 one studies waiting on lines mathematically. Clients arrive randomly, to be
served by a number of servers. Until a server is available, the clients may wait on a number of
lines, or abandon being served altogether. The length to serve a client may also be random, and it
may depend on the kind of service to be performed. The order in which the clients are served may
also vary according to various schemes: first come, first served (FIFO, for First In, First Out), last
come, first served (LIFO, for Last In, First Out). There are many real world situations that can be
described this way, from supermarket checkout lines to telephone exchanges, and computer CPUs
(Central Processing Units) in a multiprocessing operating system.

In fact, multiprocessing operating systems in computers represent an interesting example. Here the

servers are the CPUs (a computer may have several CPUs), the clients are the programs (processes) to be

executed. One CPU often serves several clients; before finishing a program, the CPU may turn to do a part

of another program. Serving some clients is never finished (some programs or processes always run when

the computer is on).

While some queueing situations can be handled theoretically, in other cases modeling is a better
approach.

8.2 A model of ships unloading in a harbor

In this subsection we will implement the queueing model of ships waiting in a harbor for unloading,
using Maxima. The model is described in [1, Section 5.5, pp. 213–219].In a harbor, ships arrive
randomly. Only one ship can be unloaded at a time, the other ships have to wait. We changed the
parameters of the model somewhat to what was given in the quoted book. The Maxima script called

8.1The spelling “queueing” is used in the literature on queueing theory. In ordinary usage, the spelling “queuing” is
more common. In fact, the book [1, Section 5.5, p. 213] uses the latter spelling.
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harbor.max implementing the model is given next. Below the script, we will outline how this script
works, along with a closer description of the model.

1 kill(all);

2 linel : 60;

3 ships : 100;

4 betwmin : 15;

5 betwmax : 140;

6 unlmin : 45;

7 unlmax : 95;

8 invdist_betw(x) := betwmin +(betwmax -betwmin )*x;

9 invdist_unld(x) := unlmin +(unlmax -unlmin )*x;

10 arrive [0] : 0;

11 finish [0] : 0;

12 unload [0] : 0;

13 hartime : 0;

14 maxhar : 0;

15 maxwait : 0;

16 waittime : 0;

17 st : make_random_state (17253062308)$

18 set_random_state (st);

19 for i : 1 step 1 thru ships do(

20 between[i] : invdist_betw(random (1e8)/1e8),

21 unload[i] : invdist_unld(random (1e8)/1e8),

22 arrive[i] : arrive[i-1] + between[i],

23 timediff : arrive[i]-finish[i-1],

24 if timediff >= 0 then (idle[i] : timediff , wait[i] : 0)

25 else (wait[i] : -timediff , idle[i] : 0),

26 start[i] : arrive[i] + wait[i],

27 finish[i] : start[i] + unload[i],

28 harbor[i] : wait[i] + unload[i],

29 hartime : hartime + harbor[i],

30 if harbor[i] > maxhar then maxhar : harbor[i],

31 waittime : waittime + wait[i],

32 if wait[i] > maxwait then maxwait : wait [i]

33 );

34 avg_hartime : float(hartime/ships );

35 avg_waittime : float(waittime/ships );

36 idletime_fraction : float(idletime/finish[ships ]);

37 delete_file(mkp(" harbor.output "));

38 writefile (" harbor.output ");

39 avg_hartime;

40 maxhar;

41 avg_waittime;

42 maxwait;

43 idletime_fraction;

44 closefile ();

We will not give the output of this program; the part of the output that is of interest to us we printed
to a file. As before, the line numbers are not not part of the file containing the program, but they will
be helpful in a line-by-line description of the program. Line 3 specifies that the service of 100 ships
will be simulated. The time between the arrival of successive ships and the unloading time of each
ship is described by random variables. The inverses of the distribution functions of these random
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variables are given in lines 8 and 9. In the present model, these inverses are linear functions given
in terms of the paramemters given values on lines 4–7: betwmin is the minimum time and betwmax

is the maximum time between the arrivals of successive ships, unlmin is the minimum time and
unlmax is the maximum time taken for the unloading of each ship. In necessary, more complicated
distributions can be taken for modeling the arrivals and the unloading times of the ships. The data
given are somewhat different from those given in the book: the time between successive arrivals of
ships is at least 15 minutes and at most 140 minutes, the the arrival time is uniformly distributed
between these values. The minimum time taken for unloading is 45 minutes, and the maximum time
is 95 minutes, and between these limits the time taken for unloading is uniformly distributed.

There is no ship 0, the variables on lines 10–12 are initiated to be zero, so that the arrival times
and the times for finishing the unloading of each ship can be calculated the same way for ship
number 1 as for all other ships. The variable hartime will be the total time spent in the harbor by
the ships, maxhar, the maximum time spent by a ship in the harbor, maxwait, the maximum time
spent waiting by a ship until the start of her unloading, and waittime, the total time spent waiting
for unloading by the ships. On line 17, a random state st is created, and on line 18, this random
state is assigned to the random number generator.

The arrival and serving of each ship is described in the loop on lines 19–33. it is a for loop up to
ships, which is the number of ships simulated in the model. On line 20 the time between the arrival
of ships i and i-1 is given as a random value of the inverse distribution function invdist_betw.
Similarly, on line 21, the unloading time of ship i is obtained as a random value of the inverse
distribution function invist_unld. On line 22 the arrival time of ship i is calculated. The difference,
calculated on line 23, between the time of the arrival of the ith ship and the time the (i-1)st ship
was unloaded decides whether the unloading of ship i can start immediately or whether the ship
has to wait for a time called wait[i]. The start time of ship i is calculated on line 26, and the time
the unloading of this ship is finished is given on line 27. On line 28 time time spent in the harbor
by this ship is calculated. This time is added to hartime, which will be the sum of the times each
ship spends in the harbor. On line 30, the variable maxhar contains the maximum value each ship
prior to the ith spent in the harbor. If the ith ship spends more time than this, the maxhar will be
given as value the time spent by this ship; otherwise, its value is unchanged. On line 31, the time
spent waiting by ship i is added to the variable waittime, whose value at this point is the total
time spent waiting by the earlier ships. On line 32, the maximum waiting time maxwait is updated,
in a way similar to the updating of maxhar was done on line 30.

Outside the loop, the average time spent in the harbor and the average waiting time by a ship is
calculated on lines 34–35, and on the line 36, the fraction of time spent in the harbor is divided by
the total harbor time used is calculated as idletime_fraction. While the values of these variables
are written to the output (not presented here) along with the formulas calculating them, in the end
we are only interested in the values, and not how the model calculated them; hence we want to print
them to a file. On line 37, the earlier version of the file harbor.output is deleted if it exists (it
would exist if the present script is run several times); without deleting it, the output written to this
file would be appended to its current content. On line 37, this file is opened for writing, and the
values of the variables lsted on lines 39–43 are written to this file. The file is closed on line 44. The
content of the file harbor.output is as follows:

1 Starts dribbling to harbor.output (2018/2/18 , 22:35:2).

2 NIL

3 (%o23) done

4 (%i24) avg_hartime

5 (%o24) 109.1153784722558

6 (%i25) maxhar
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7 (%o25) 247.1048460751318

8 (%i26) avg_waittime

9 (%o26) 40.27000180876873

10 (%i27) maxwait

11 (%o27) 176.8328431409964

12 (%i28) idletime_fraction

13 (%o28) 1.274634864146866E-4 idletime

14 (%i29) closefile ()

9 Stochastic matrices

Definition 9.1. A square matrix is called a stochastic matrix if all its entries are nonnegative, and
all its columns sum up to 1. A probability vector is a column vector with nonnegative entries such
that the sum of its entries is 1.

The intuitive interpretation of an N ×N stochastic matrix A = (aij) is the following. A system
has N states S1, S2, . . ., SN , and the evolution of the system is considered for discrete times n = 0,
1, 2, . . . . If at time step n the system is in state Si, then the probability that the system will be in
state Sj at time step n+1 is aij ; these quantities are called transition probabilities, and the process
described this way is called a Markov process with a constant transition matrix. Generalizations
with a transition matrix changing at each step is possible, but they will not be considered at this
point. If x = (x1, x2, . . . , xN )T is the initial state probability vector, meaning that the system at
time 0 is in state Si with probability xi, then the state probability vector describing the system at
the nth time step is Anx.

Lemma 9.1. Let N > 0 be an integer, and let A and B be N ×N stochastic matrices. Then AB
is also a stochastic matrix.

Proof. Let the entry at in the ith row and j column in A be aij , in B, bij and in C = AB, cij . We
clearly have cij ≥ 0. Furthermore,

N∑

i=1

cik =

N∑

i=1

N∑

j=1

aijbjk =

N∑

j=1

( N∑

i=1

aij

)

bjk =

N∑

j=1

bjk = 1,

where the third equality holds because each column sum of A is 1, and the fourth equality holds
because each column sum of B is 1. This shows that each column sum of C is also 1.

Lemma 9.2. Let N > 0 be an integer, let A be an N×N stochastic matrix, and let x be a probability
vector size N . Then Ax is also a probability vector.

The proof is essentially the same as that of the preceding lemma.

Proof. Let aij be the entries of the matrix A and let xi be the entries of x, and let yi be the entries
of y = Ax. Then

N∑

i=1

yi =

N∑

i=1

N∑

j=1

aijxj =

N∑

j=1

( N∑

i=1

aij

)

xj =

N∑

j=1

xj = 1.

Since we clearly have yi ≥ 0, this shows that y is a probability vector.
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Definition 9.2. Let N > 0 be an integer, and let x = (x1, x2, . . . , xN )T be a size N column vector.
The l1 norm of x is defined as

‖x‖1 =

N∑

i=1

|xi|.

It is easy to see that ‖ · ‖ is indeed a norm; in particular,

(9.1) ‖λx‖1 = |λ| ‖x‖.

Corollary 9.1. Let N > 0 be an integer, let A be an N ×N stochastic matrix and let x be a column
vector. Then ‖Ax‖1 ≤ ‖x‖1.

Proof. For any vector z = (z1, z2, . . . , zN )T write

|z| = (|z1|, |z2|, . . . , |zN |)T .

Let A = (aij), x = (x1, x2, . . . xN ), and let y = (y1, y2, . . . , yN )T = Ax. For i with 1 ≤ i ≤ N we
have

|yi| =
∣
∣
∣

N∑

j=1

aijxj

∣
∣
∣ ≤

N∑

i=1

aij |xj |.

Since aij ≥ 0, there was no need to put it in absolute value. The right-hand side is the ith component
of the vector A|x|. Since we have ‖A|x|‖1 = ‖|x|‖1 = ‖x‖1,9.1 it follows that ‖Ax‖1 ≤ ‖x‖1.

Lemma 9.3. Let N > 0 be an integer, let A be an n×n stochastic matrix, and let λ be an eigenvalue
of A. Then |λ| ≤ 1.

Proof. Assume, on the contrary, that λ > 1 is an eigenvalue of A, and let x be the corresponding
eigenvector. Then we have

‖Ax‖1 = ‖λx‖1 = |λ|‖x‖1 > ‖x1‖1.
This contradicts the conclusion of Corollary 9.1.

Lemma 9.4. Let N > 0 be an integer, and let A be an N × N stochastic matrix. Then 1 is an
eigenvalue of A.

Proof. The eigenvalues of A and AT are the same. This is because, writing I for the N ×N identity
matrix, the eigenvalues of the former are the zeros of the polynomial det(A−λI), and the eigenvalues
of the latter are the zeros of the polynomial det(AT − λI), and these two polynomials are the same.
We will show that 1 is an eigenvalue of AT with the eigenvector v = (1, 1, . . . , 1)T of size N . Indeed,
writing A = (aij), the ith entry of ATv is

N∑

j=1

aji · 1 = 1,

because the column sums of A are 1.

9.1The first equation holds according to Lemma 9.2, since we may assume that |x| is a probability vector in view of
equation (9.1).
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9.1 Limiting distribution of a Markov process

We have the following

Theorem 9.1. Let A be a stochastic matrix, and assume A has no zero entries (i.e., all its entries
are positive). Then there is a probability vector y with all positive entries such that for any probability
vector x be of the appropriate size we have

lim
n→∞

Anx = y.

The result says, in other word, that if in a finite-dimensional Markov process with a constant
transition matrix with positive entries, then there is a single limiting probability distribution to
which the probabilities of the states converge. The theorem is a consequence of a much more general
theorem called the Perron–Frobenius theorem discussed in the next subsection.

10 The Perron–Frobenius theorem

Theorem 10.1. Let A be a square matrix all whose entries are positive.

(a) Then A has a positive eigenvalue r such that r is larger than the absolute values of all other
eigenvalues of A.

(b) There is an eigenvector associated with r with all positive entries.

(c) Disregarding scalar multiples, there is only one eigenvection associated with r.

(d) The Jordan subspace associated with the eigenvalue r is one-dimensional.

(e) A has no other eigenvector with nonnegative entries.

There are more conclusions that can be drawn, and in fact the theorem can be stated even with
more generality, but this suffices for our purposes. Clauses (c) and (d) together mean that the
multiplicity of the eigenvalue r is 1 (i.e., that r is a simple root of the characteristic equation of
A). Later, we will say more about how to prove this theorem, but for now we will outline how this
theorem can be used to prove Theorem 9.1.

Let N > 0 be an integer such that the matrix A in the theorem has size N × N . To simplify
our considerations, assume that we have r = 1 for the largest eigenvalue described in Clause (a)
above.10.1 According to [3, Theorem 8.2, on 20]. the matrix A is similar to a block matrix

(10.1) B =

(
1 01×N−1

0(N−1)×1 C

)

,

where the zeros with the subscripts indicate matrices if the indicated size with all zero entries, where
C has the same eigenvalues as r except for the eigenvalue r;10.2 the matrix C itself is a direct sum
of Jordan block matries. In fact, the entry 1 in the first row and the first column represent a 1× 1
Jordan block matrix.

Instead of using the language of matrices, it is better to use the language of linear transformations,
where the matrix A is the representation of a linear transformation T of the vector space CN,1 (the

10.1If this is not already the case, replace the matrix A with the matrix A/r, whose largest eigenvalue is 1. Hence,
our observations concerning the case r = 1 can easily translated back to the case of arbitrary r.
10.2The concepts used, such as similar matrices are all defined in the quoted notes [3]. Of course, A and B being
similar, they must have the same eigenvalues.
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space of size N column vectors, i.e., N × 1 matrices over the field C of complex numbers into
itself10.3 in the canonical basis of unit column vectors e1 = (1, 0, 0, . . . , 0)T , e2 = (0, 2, 0, . . . , 0)T ,
e3 = (0, 0, 1, . . . , 0)T , . . ., e3 = (0, 0, 0, . . . , 1)T . B represents the same linar tranformation in a
different basis.10.4 Writing U = CN,1 in the language of matrices, the space CN,1 on which T
operates splits into the direct sum of two subspaces V and W , where V is the one-dimensional
subspace spanned by an eigenvector v of A correspondig to the eigenvalue 1. The subspaces V and
W are invariant subspaces of T . The transformation T restricted to V is the identity tranformation
on V (since we assumed that r = 1, and all eigenvalues of T ↾ W , the restriction of T to W
have absolute value less that 1. All eigenvalues of T ↾ W have absolute value < 1; i.e., we have
ρ(T ↾ W ) < 1 (ρ(·) stands for spectral radius). Thus

(10.2) lim
n→∞

Tnw = 0 for all w ∈ W

in view of Gelfand’s Theorem 4.2.
Any vector in u ∈ U can be written in the form u = αv +w, where α ∈ C and w ∈ W . Since

Tv = v (as v is an eigenvector of T corresponding to the eigenvalue 1), we have

(10.3) lim
n→∞

Tnu = αv.

These considerations allow us to prove Theorem 9.1.

The proof of Theorem 9.1. According to Theorem 10.1 Clause (a), there is a probability vector u

that is an eigenvector of A corresponging to its eigenvalue 1. According to equation (10.2), for every
probability vector x, limn→∞ Anx = αu. As Anx is a probability vector for all n ≥ 0, their limit is
also a probability vector; hence α = 1. This establishes the result with y = u.

10.1 The infinity norm

Given a size N column vector x = (x1, x2, . . . , xN )T , its l∞ norm is defined as

‖x‖∞ = max{|xk| : 1 ≤ k ≤ N}.

Given a vector norm ‖·‖, one can associate with it a matrix norm called the the matrix norm induced
by the vector norm ‖ · ‖ as follows. For a square matrix A we have

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1},

where x runs over all column vectors of the appropriate size. For an induced matrix norm, we always
have

(10.4) ‖Ax‖ ≤ ‖A‖‖x‖

and

(10.5) ‖AB‖ ≤ ‖A‖‖B‖;
10.3See [3, Section 8, on p. 16] on representations linear transormations by matrices, similarity tranformations, Jordan
canonical form, etc.
10.4As explained in [3] in the section mentioned, a similarity transformation of a matrix corresponds to a changed
bases.
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a norm satisfying this latter property, whether an induced norm or not, is called submultiplicative.
The matrix norm ‖A‖∞ induced by the vector norm ‖x‖∞ is easy to describe.Given an N × N
matrix A = (aij) (N > 0), we have

(10.6) ‖A‖∞ = max
{ N∑

j=1

|aij | : 1 ≤ i ≤ N
}

,

that is, ‖A‖∞ is the largest row sum of the absolute values of its entries. Indeed, [Ax]i for the ith
entry of Ax, we have

‖Ax‖∞ = max
{∣
∣[Ax]i

∣
∣ : 1 ≤ i ≤ N

}
= max







∣
∣
∣

N∑

j=1

aijxj

∣
∣
∣ : 1 ≤ i ≤ N







≤ max
{ N∑

j=1

|aij | : 1 ≤ i ≤ N
}

max{|xl| : 1 ≤ l ≤ N}

= max
{ N∑

j=1

|aij | : 1 ≤ i ≤ N
}

‖x‖∞.

If the largest absolute row sum is realized for row k (1 ≤ k ≤ n), then equality holds here if
xj = akj/|akj |, where z̄ indicates the complex conjugate of z; we have ‖x‖∞ = 1 for this choice.
Equation (10.6) implies that if A and B are two N ×N matrices size such that |bij | ≤ |aij | for all i
and j between 1 and N , then

(10.7) ‖B‖∞ ≤ ‖A‖∞.

Given a real p with 1 ≤ p < ∞, the lp-norm of a column vector x = (x1, x2, . . . , xN )T is defined as

‖x‖ =
(

n
∑

k=1

x
p
k

)

1/p

.

The l∞ norm is obtained by taking the limit when p → ∞. So far, we used the l1 and the l∞ norms. The

l2 norm is also useful often, since it is the only one among these norms that is induced by an inner product.

To show that these are norms, one needs to prove the Minkowski inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖. This

requires some effort except for the really easy cases of p = 1 and p = ∞. The case 0 < p < 1 is also useful,

but in this case the quantity ‖ · ‖p does not satisfy the Minkowski inequality, so the quantity in this case is

not a norm: it is called a a quasi norm.

10.2 Proof of Clause (a) of the Perron–Frobenius Theorem

Proof of Clause (a) of Theorem 10.1. Since A is not the zero matrix, it has a nonzero eigenvalue,
i.e., its spectral radius ρ(A) is positive. Replacing the matrix A with the matrix A/ρ(A), we may
assume that the larges eigenvalue of A has absolute value 1. Assume that A has an eigenvalue λ with
λ 6= 1 and |λ| = 1. Let k be a positive integer such that λk has a negative real part; the matrix Ak

has all positive entries, and λk is one of its eigenvalues. Let ǫ > 0 be smaller than all the diagonal
elements of Ak. Then λk − ǫ is an eigenvalue lf Ak − ǫI, where I is the identity matrix for A.10.5

10.5I.e., it is the same size as A
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Since |λk − ǫ| > 1, this means that ρ(Ak − ǫ) > 1. On the other hand, all entries of Ak − ǫI are less
than or equal to the corresponding entries of Ak, and they are all positive. Hence it follows that
for every positive integer n, all entries of (Ak − ǫI)n are positive and they are less than or equal of
the corresponding entries of An.10.6 So, for all positive n, ‖(Ak − ǫI)n‖∞ ≤ ‖(Ak)n‖∞ according to
inequality (10.7). Hence ρ(Ak − ǫI) ≤ ρ(Ak) = 1, according to Theorem 4.2 (Gelfand’s formula).
This contradiction establishes the result.

11 The power method for eigenvalues

Lemma 11.1. Let A be a square matrix, and let λ 6= 0 be such that λ is an eigenvalue of A, and for
any other eigenvalues of σ of A we have |σ| < |λ|. Let ǫ > 0 and let x be a vector of an appropriate
size. Then there is a vector y and an eigenvector z of A associated with the eigenvalue λ such that
‖x− y‖∞ < ǫ and there are nonzero numbers αn such that

(11.1) lim
n→∞

αn

αn+1
= λ.

and

(11.2) lim
n→∞

αnA
ny = z 6= 0.

Further, z is an eigenvector of A associated with the eigenvalue λ. If λ > 0, we can choose αn > 0.

Once we prove this lemma, it is obvious that the statement is valid if we choose αn to be the
reciprocal of the entry of Any with the largest absolute value; if there are several of these, we can
choose the reciprocal of the first one among them. This allows one to use the power method in
practical calculations. Making this choice before the proof is complete would complicate the proof,
so in the formulation of the lemma we did not do so. The content of this lemma is the main ingredient
of the power method used to find an eigenvalue and eigenvector of a matrix – see [2, Section 30,
pp. 184–196]; here we are interested in the lemma for theoretical reasons, so we are not going to
discuss the numerical analysis aspect.

Proof for a Jordan block. To begin with, we will assume that A is a single Jordan block. After
establishing the result for Jordan blocks, it will be easy to extend it to arbitrary matrices. A Jordan
block is a K ×K matrix of form

(11.3) J = σI + Z =













σ 1 0 0 . . . 0 0
0 σ 1 0 . . . 0 0
0 0 σ 1 . . . 0 0
0 0 0 σ . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . σ 1
0 0 0 0 . . . 0 σ













,

see [3, equation (8.9)]; here I is the K ×K unit vector. Write ek = (δk1, δk2, . . . , δkn)
T for the kth

unit column vector, and write e0 = 0 Then we have

(11.4) Zek = ek−1 (1 ≤ k ≤ K).

10.6This is easy to prove by induction and by using the following simple observation. If A1, A2, B1, and B2 are N×N
matrices with all positive entries, and all entries of A1 are less than or equal to the corresponding entries of B1, and
similarly for A2 and B2, then all entries of A1A2 are less than or equal to the corresponding entries of B1B2.
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This means that Zn = 0 for n ≥ K.11.1 Hence, by the binomial theorem,

(11.5) Jn = (σI + Z)n =
K−1∑

k=0

σn−k

(
n

k

)

Zk (n ≥ K − 1)

where we take Z0 = I.11.2 The case σ = 0 will be dealt with later; assuming σ 6= 0, we thus have

lim
n→∞

σ−n

(
n

K − 1

)−1

Jn = lim
n→∞

σ−n

(
n

K − 1

)−1

(σI + Z)n

=
K−1∑

k=0

σ−kZk lim
n→∞

(
n

K − 1

)−1(
n

k

)

= σ−K+1ZK−1;

the last equation holds since the limit to the left of this equation is zero unless k = K − 1. Now
ZKek = 0 if 1 ≤ k < K and

ZK−1ek =

{

0 if 1 ≤ k < K,

e1 if k = K.

Hence, for any vector x =
∑K

k=1 γkek we have

(11.6) lim
n→∞

σ−n

(
n

K − 1

)−1

Jnx = σ−K+1γKe1.

Noting that Je1 = σe1, it follows that the vector on the right-hand side of this equation is an
eigenvector of J unless γK = 0 (note that a Jordan block always has only one eigenvector aside from
scalar multiples, and, of course, it has only one eigenvalue). If γK 6= 0, take y = x, and if γK = 0,
take y = x + ηeK for an arbitrary η 6= 0. This establishes equations (11.1) and (11.2) with λ = σ
and

(11.7) αn = αn(J) = σ−n

(
n

K − 1

)−1

(σ 6= 0)

in case A is a single Jordan block of size K ×K and eigenvalue σ = 6= 0.
For a single Jordan block with σ = 0 of size K, Lemma 11.1 does not directly apply, since we

assumed that λ 6= 0. Nevertheless, the matrix A of the lemma may have a Jordan block associated
with the eignevalue 0, so it is important to remark what happens in this case: equation (11.5) implies
that Jn = 0 for n ≥ K.

To extend this proof to the general situation, it is better to talk in the language of linear trans-
formations of a vector space into itself. To simplify our language, we will call a linear transformation
of a vector space into itself a linear operator. To describe the proof for a general matrix, it is better
to use the language of linear operators rather than that of a matrices. In the Jordan decomposition
of a linear operator T on the vector space U , the space is written into a direct sum

(11.8) U =

M⊕

l=1

Ul,

11.1 That is, Z is a nilpotent matrix: a square matrix is called nilpotent if it has a power that is the zero matrix.
11.2For n < K − 1 this formula is not valid, since then we should take n in that case as the upper limit of summation
instead of K − 1.
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of independent subspaces Ul where each subspace is invariant for T , and on each Ul the restriction of
T can be represented by a Jordan matrix as described in equation (11.3). For a detailed description,
see the notes [3]: direct sums are described in [3, Definition 4.3, p. 9]. To describe this state of
affairs is best to use the language of projection operators Pl. If for u ∈ U we have

u =

M∑

l=1

ul (ul ∈ Ul for all l with 1 ≤ l ≤ n),

then we write ul = Plu. It is easy to see that PkPlu = δklPku (1 ≤ k, l ≤ M). The invariance for T
of each Ul means that Tul ∈ Ul for ul ∈ Ul. In the language of projection operators, the invariance
of each Ul can be expressed by saying that TPlu = PlTPlu. Given that Ul is invariant for all l, we
also have PlTu = TPlu for all l and all u ∈ U ; i.e., T and Pl commute.

11.1 Norms on vector spaces and the infinity norm

The problem with arguing with linear transformations rather than the matrices representing them is
that such useful norms as the infinity norms are not available for abstract vector spaces. This turns
out not to be much of the problem; the vector norms in different representations of the same abstract
vector can be compared with the aid of inequality (10.4) and two different matrix representations
of the same same linear tranformation by using the submultiplicative property (10.5). Indeed, if
X = (x1, x2, ..., xN ) is one basis of the abstract vector space V and Y = (y1, y2, ..., yN ) is another
basis, then there is a nonsingular N × N matrix S such that X = YS,11.3 and x and y are the
representations of the same vector in the two different basis, then y = Sx. Further, if A and B are
matrix representations of in these bases of the same linear operator, then A = S−1BS.11.4 So using
any norm on column vectors and the matrix norm induced by it, the norms of x and y are easy to
compare:

(11.9) ‖y‖ = ‖Sx‖ ≤ ‖S‖‖x‖ and ‖x‖ = ‖S−1y‖ ≤ ‖S−1‖‖x‖.

Similarly, for the matrices A and B:

(11.10) ‖A‖ = ‖S−1BS‖ ≤ ‖S−1‖‖B‖‖S‖ and ‖B‖ = ‖SAS−1‖ ≤ ‖S‖‖A‖‖S−1‖.

As a consequence of these inequalities, in many arguments it makes no difference which column
vector or matrix representation of the abstract vectors or the abstract linear operators are used.

Proof of Lemma 11.1 for all matrices. Let U = CN,1 the space of N dimentional column vectors
over the complex numbers C, and let T : U → U be the linear operator represented by the basis
consisting of the standard unit column vectors in this space.11.5 Consider the decomposition of U
to Jordan subspaces Ul (1 ≤ l ≤ M) as in equation (11.8), and the eigenvalue σl be associated with
the subspaces Ul for l with 1 ≤ l ≤ M . Assume that for some L with 1 ≤ L ≤ M we have σl = λ for
l with 1 ≤ l ≤ L and |σl| < λ for l with L < l ≤ M . Further, let Kl be the dimension of the space
Ul, and assume that there is an L′ with 1 ≤ L′ ≤ L and a K such that Kl = K for l with 1 ≤ l ≤ L′

and Kl < K for l with L′ < l ≤ L. Finally, assume that each subspace Ul is spanned by the vectors

11.3The exact description of the matrix S is given in [3, Subsection 8.1 on p. 16]. The details and the meaning of
the notation just used is not important for our present purposes; the only thing that is important that there is such
a matrix S depending only on the two bases involved. The cited place uses P for the matrix denoted by S here.
11.4The matrix S−1BS is called a similarity transformation of the matrix B.
11.5A and T are essentially the same, most authors do not distiguish them. If one wants to distinguish them, A is a
matrix while T is a mapping.
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e
(l)
k with 1 ≤ k ≤ Kl; here the vectors ek used in the same sense as in the proof for Jordan blocks

on p. 40 of Lemma 11.1. For an arbitrary u ∈ U write

u =
M∑

l=1

Kl∑

k=1

γ
(l)
k e

(l)
k ,

where the γ
(l)
k are appropriate complex scalars. According to equation (11.6) we have

lim
n→∞

λ−n

(
n

K − 1

)−1

Tnu =

L′

∑

l=1

λ−K+1γ
(l)
K e

(l)
1 .

The terms of the sum on the right-hand side for l with L′ < l < M were not needed, since

(11.11) lim
n→∞

σn
l

(
n

Kl−1

)

λn
(

n
K−1

) = 0

for l with L′ < l < M .11.6 Noting that the vectors el1 are independent, the right-hand side of (11.11)

is not zero unless γ
(l)
K = 0 for all l with 1 ≤ l < L′. The coefficient γ1

K can be made nonzero by

adding a vector ηe
(1)
K to u. We will take

(11.12) αn = λi−n

(
n

K − 1

)−1

;

with u = x and y = u + ηe
(1)
K for a small η (with η = 0 allowed)11.7 in the notation given in

the lemma. Equation (11.1) follows from this choice of αn, and the existence of a nonzero limit
in equation (11.2) also follows from our arguments. Equations (11.1) and (11.2) then imply that
Az = λz. If λ > 0, then equation (11.12) implies αn > 0, establishing last clause of the lemma,
completing the proof.

If we wanted to carry out the above proof in terms of the Jordan canonical form B = SAS−1 of
the matrix A, then in some calculations we would have to have used the matrix An and in others
the matrix Bn. We have

(11.13) Bn = (SAS−1)(SAS−1) . . . (SAS−1)
︸ ︷︷ ︸

n times

= SAnS−1,

so the transition from An to Bn is simple.

12 The rest of the proof of the Perron–Frobenius theorem

Proof of Clause (b) of Theorem 10.1. We will use the power method described in Lemma 11.1 with
vector x with positive entries; if necessary, we will change x slightly to the vector y so that the
vector y will still have all positive entries. We will also make sure that positive αn > 0 for all

11.6While this formula is valid even in the special case σl = 0, the argument for that case is different: in that case Tn

restricted to the subspace Ul is 0 for n ≥ Kl according to the comment made at the end of the proof of Lemma 11.1
for Jordan blocks.
11.7I.e., if we can take y = x.
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n ≥ 0.12.1 Since A has all positive entries, Any will also have all positive entries, and so will have
αnA

ny, since αn > 0. The limit vector z obtained will have all nonnegative entries. Since all entries
of A are positive, Az must have all positive entries; it cannot have a zero component. As z is an
eigenvector for the eigenvalue r, we have Az = rz; hence z cannot have a zero entry. It is important
to point out specifically that A cannot have a eigenvector with nonnegative entries associated with
a positive eigenvalue that has a zero entry,

Proof of Clause (c) of Theorem 10.1. Assume A has two eigenvectors z and u associated with the
eigenvalue r, where u is not a scalar multiple of z, and all entries of z. Then there is a real α such
that the vector z+ αu 6= 0 has all nonnegative entries but it also has at least one zero entry. Since
this vector is also an eigenvector of A associated with the eigenvalue r, this is a contradiction, since
we pointed out the the end of the of the proof of Clause (c) that a nonnegative eigenvector of A
associated with the eigenvalue r cannot have a zero component.

Proof of Clause (d) of Theorem 10.1. By replacing A with A/r, we may assume that the eigenvalue
of the largest absolute value of A is 1. Let z = (z1, z2, . . . , zN )T be an eigenvector having all positive
associated with the eigenvalue 1 of A; that is, Az = z. Observe that for any N ×N matrix C = (cij)
with positive entries and any vector y = (y1, y2, . . . , yN )T with positive entries we have

‖Cy‖∞ = max
{ N∑

j=1

cijyj : 1 ≤ i ≤ N
}
≥ max

{ N∑

j=1

cij : 1 ≤ i ≤ N
}

·min{yj : 1 ≤ j ≤ N}

= ‖C‖∞ ·min{yj : 1 ≤ j ≤ N},

where the last equality holds according to equation (10.6) saying that for any matrix, the infinity
norm is the maximum of the row sum of the absolute values. Hence, noting that for any n > 0 all
entries of An are positive and that all entries of z are positive, for all n > 0 we have

‖z‖∞ = ‖Anz‖∞ ≥ ‖An‖∞ ·min{zj : 1 ≤ j ≤ N},

and so

(12.1) ‖An‖∞ ≤ ‖z‖∞
min{zj : 1 ≤ j ≤ N} .

This shows that ‖An‖ remains bounded as n → ∞.
On the other hand, if the largest eigenvalue 1 of A has a K-dimensional subspace for K > 1, as

in equation (11.5) with σ = 1, for a Jordan block of K dimensions we have

Jn = (I + Z)n =

K−1∑

k=0

(
n

k

)

Zk.

Here all the entries of Zk for k with 1 ≤ k ≤ K are either 0 or 1, and so

(12.2) ‖Jn‖∞ ≥
(

n

K − 1

)

≥ n (K ≥ 2).

12.1Since we are not thinking in terms of a practical calculation, it is not important how the choice of αn is made.
But, right after Lemma 11.1, we mentioned that αn can be chosen as the first entry of Any among those having the
largest absolute value; this choice will also ensure that αn > 0.
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If J is a Jordan block of the matrix B, then

‖Bn‖∞ ≥ ‖Jn‖∞ ≥ n (K ≥ 2).

Now if B is the Jordan canonical form of A, then we have B = SAS−1 for some invertible matrix
S, and so Bn = SAS−1 according to equation (11.13) and the discussion at the beginning of
Subsection 11.1 Thus, assuming that B has a K-dimensional Jordan block associated with the
eigenvalue r = 1, equations (12.1) and (12.2) contradict each other as n → ∞; cf. (11.10) and (11.13).

Proof of Clause (e) of Theorem 10.1. Applying Clause (b) of Theorem 10.1 to the matrix AT , AT

has an column eigenvector u such that ATu = u with all positive entries; taking the transpose of
this equation, we have uTA = uT . If v is an eigenvector of A associated with an eigenvalue σ 6= 1,
then Av = σv. Hence

uTv = (uA)v = uT (Av) = uT (σv) = σuTv.

Since u and v have all positive entries, uTv is a positive scalar; hence the above equation cannot
hold for σ 6= 1. This shows that a positive eigenvector associated with an eigenvalue σ 6= 1 cannot
exist.

13 Differential versus difference equations

Differential and difference equations often behave very differently. We will illustrate this on the
logistic differential and the logistic difference equations. As we mentioned was discussed above in
the logistic difference equation above as equation (1.1). We modified that equation as

(13.1) ∆xn = r(1− xn)xn (x ≥ 0),

where ∆xn = xn+1 − xn, so we can compare it to a similar differential equation. By replacing xn

with

yn =
r + 1

r
xn

this equation will become
yn = (r + 1)(1− yn)yn,

which is identical to equation (1.1). We illustrate the behavior of equation (13.1) when r = 2.9999
and x0 = .2. We ran the following maxima script; the script is almost identical to the script on
p. 8 above, except for a slight change in the equation and except for some change in the names of
variables and the plotting options:

1 kill(all);

2 linel : 60;

3 r : 2.9999;

4 xstart : .2;

5 x : xstart;

6 mylist : [];

7 loopto : 50;

8 for n : 0 step 1 thru loopto do (x_new : float(x+r*(1-x)*x),

9 mylist : append(mylist ,[[n,x]]), x : x_new );

10 n;

11 mylist : append(mylist ,[[ loopto+1,x_new ]]);
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12 plot2d ([discrete ,mylist],

13 [gnuplot_term ,ps],

14 [style , [lines ,5]],

15 [color , black],

16 [xlabel ," difference eq , r=2.9999 , xstart =.2"] ,

17 [gnuplot_ps_term_command ,

18 "set term eps size 5 in , 3 in"],

19 [gnuplot_out_file , "log_recr.eps "]);

We will not discuss the output of this script, since it is similar to earlier outputs discussed. The
graph printed by the script can be found in Figure 13.1.
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Figure 13.1: Logistic difference equation

The logistic differential equation is the equation

(13.2)
dx

dt
= rx(1− x).

This equation is easily solved by analytical methods. The following script uses the classical Runge–
Kutta method to solve this equation numerically for the same value r = 2.9999 and the same starting
value x = .2 when t = 0, as above for the difference equation. This is accomplished by the following
script:

1 kill(all);

2 linel : 60;

3 r : 3.2;

4 xstart : .2;

5 results : rk(r*x*(r-x),x,xstart ,[t,0 ,10 ,0.1])$

6 plot2d ([discrete ,results],

7 [gnuplot_term ,ps],

8 [style , [lines ,5]],
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9 [color , black],

10 [xlabel ," differential eq , r=3.2, xstart =.2"] ,

11 [gnuplot_ps_term_command ,

12 "set term eps size 5 in , 3 in"],

13 [gnuplot_out_file , "log_diff.eps "]);

The function rk on line 5 of the above script performs the Runge–Kutta method. The first argument
r*x*(r-x) describes the function on the right-hand side of the differential equation (the left-hand
side dx/dt is not needed), the second argument x identifies the dependent variable, the third arrument
xtart gives the initial value, and the fourth argument is a list [t,0,10,0.1] giving the independent
variable, its starting value, its final value, and the step size used in the method. The solution is
displayed in Figure 13.2. While the difference equation displays wildly fluctuating, chaotic behavior,
no such behavior is shown by the differential equation.
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Figure 13.2: Logistic differential equation

14 Systems of autonomous first order linear differential
equations with constant coefficients

A system of differential equation

(14.1) y′k = Fk(y1, y2, . . . , yn) (1 ≤ k ≤ n),

where each yk is a function of a single independent variable x, and the prime ′ indicates differentiation
with respect to x is called autonomous, the term reflecting the fact that x does not directly occur
in the equations. We will consider systems of autonomous first order linear differential equations
with constant coefficients. Using D to denote the differential operator d/dx, in vector form these
equations can be written as

(14.2) Dy = Ay,
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where y = (y1, y2, . . . , yn)
T is a column vector of dependent variables and A is an n×n matrix with

constant entries in C. We are looking for functions fk(x) for k with 1 ≤ k ≤ n such that yk = fk(x)
satisfy this matrix equation. With a traditional abuse of notation, we will occasionally write yk(x)
instead of fk(x), and we will also write y(x) if necessary. This problem can be handled by taking the
Jordan canonical form B of the matrix A. The matrix B can obtained as a similarity transformation
B = SAS−1 of the matrix A, where S is an invertible n×n matrix. Writing z = Sy, equation (14.2)
can be written as Dz = Bz, which is especially easy to solve in view of the form of the matrix B.
Then we can get the solution of the original equation (14.2) by noting that y = S−1z.

The equation z = Sy can be written componentwise as

zk =

n∑

j=1

skjyj ,

where zk are entries of the column vector z, and skj are entries of the matrix S; this means a linear
change of variables. The matrix S needs to be invertible so that, after solving the transformed
equations, we can return to the variables yk. The Jordan canonical form of a matrix was discussion
in Section 11; in particular, see equation (11.3) for the way a single Jordan block looks; see [3,
Subsection 8.7] for details on the Jordan canonical form. J = σI + Z is a single Jordan block of
size K ×K as in equation equation (11.3), then we can use equations (11.4) to write the equation
Du = Ju with u = (u1, u2, . . . , uK) Given that u =

∑n
k=1 ukek, where ek = (δk1, δk2, . . . , δkn)

T is
the kth unit vector, writing uK+1 = 0, we obtain

K∑

k=1

Dukek = D

K∑

k=1

ukek = J

K∑

k=1

ukek

=

K∑

k=1

ukJek =

K∑

k=1

uk(σek + ek−1) =

K∑

k=1

ukσek +

K∑

k=1

ukek−1.

Noting that e0 = 0 and uK+1 = 0, for the second sum on the right-hand side we have

K∑

k=1

ukek−1 =

K∑

k=2

ukek−1 =

K−1∑

j=1

uj+1ej =

K∑

j=1

uj+1ej ,

where the first equation holds because e0 = 0, the second one uses the substitution j = k − 1, and
the third one holds because uK+1 = 0. Thus, the previous equation becomes

K∑

k=1

(Duk)ek =

K∑

k=1

(σuk + uk+1)ek;

the parentheses were added on the left for clarity – otherwise they do not make any difference,
since differentiation does not affect the constant vector ek. The unit vectors ek being linearly
independent, the coefficients on the two sides of the last equation must be equal, resulting in the
system of differential equations

(14.3) u′
k = σuk + uk+1 (1 ≤ k ≤ K),

where uK+1 = 0. This system is easy to solve. Indeed, multiplying the equation by e−σx and noting
that for any function f of x we have

(
f(x)e−σx

)′
= f ′(x)e−σx − σf(x)e−σx,
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according to the product rule of differentiation, the above system of equations can be rewritten as

(
uke

−σx
)′

= uk+1e
−σx (1 ≤ k ≤ K),

where uK+1 = 0. Hence, it is easy to see that the solution of the above system of equations is

(14.4) uk = eσx
dk−1

dxk−1

K−1∑

j=0

cjx
j (1 ≤ k ≤ K),

where the cj for k with 0 ≤ j ≤ K − 1 are arbitrary constants.

14.1 Homogeneous linear differential equations with constant coefficients

Let y be a scalar variable of the independent variable x, and consider the differential equation

(14.5)

n∑

k=0

akD
ky = 0 (an = 1).

Writing y1 = y, this equation can be written as a system containing the dependent variables y1, y2,
. . . , and yn as

Dyk = yk+1 (1 ≤ k < n),

Dyn = −
n∑

k=1

ak−1yk.
(14.6)

Writing y = (y1, y2, . . . , yn)
T , this equation can be written in a matrix form as Dy = Ay, where

A =












0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 1

−a0 −a1 −a2 . . . an−2 −an−1












.

This matrix is called the companion matrix of the polynomial in equation (14.5), that is, of the
polynomial P (t) =

∑n
k=0 akt

k of t, where an = 1; see [3, Subsection 8.4 on p. 18].14.1 This approach
allows one to discuss the solution of the equation (14.5) in terms of the solutions of systems of
differenential equations. There are, however, several difficulties in this approach, which in the
end makes the direct handling of equation (14.5) easier. The first problem is to find the Jordan
canonical form of the matrix A. This problem is easily solved in that one can show that each zero of
the polynomial P (t) gives rise to a single Jordan block of the size the multiplicity of this zero. The
second difficulty is to translate back the solution of the system of equations obtained in terms of
the Jordan canonical form of A back to equation (14.5). Even this can be handled, but the amount
of matrix theory needed for this makes the direct handling of equation (14.5) equation probably
simpler. In any case, we do not need to discuss the solutions of this equation for our purposes.

14.1At the quoted location, the transpose of the matrix A given here is described as the companion matrix. Either
version is common in the literature; in the present context the version listed here is more appropriate.
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14.2 Matrix exponentiation

The system of differential equations with constant coefficients can also be solved by matrix expo-
nentiation. The exponential of a square matrix A is derived as

(14.7) exp(A) = eA
def
=

∞∑

m=0

1

m!
Am.

This is of course inspired by the series for the scalar exponential function

exp(x) = ex =

∞∑

m=0

1

m!
xm.

Since the latter series converges for every value of x, one can show that the for that the former
series converges for every square matrix A (e.g., by using matrix norms). If the matrices A and B
commute, one can show that exp(A+B) = exp(A) exp(B). Indeed,

eA+B =

∞∑

m=0

1

m!
(A+B)m =

∞∑

m=0

1

m!

m∑

k=0

(
n

k

)

AkBm−k =

∞∑

m=0

1

m!

m∑

k=0

m!

k!(m− k)!
AkBm−k

=

∞∑

m=0

m∑

k=0

1

k!
Ak 1

(m− k)!
Bm−k =

∞∑

k=0

1

k!
Ak

∞∑

l=0

1

l!
Bl = eAeB ;

(14.8)

the second equation here uses the binomial theorem, and the binomial theorem is not valid if A and A
do not commute. If A and B do not commute, this equation may not be true; see [3, Subsection 9.6.1
on p. 28]. Similarly the way the scalar equation y′ = ay can be solved as y = c exp(ax), the vector
equation Dy = Ay can be solved as y = exp(Ax)c, where x is the independent variable (a scalar, so
we could have written xA instead of Ax), and c is a column vector. If the initial condition is given
as y = c for x = 0, then y(x) = exp(Ax)c for all x. This can be seen by differentiating both sides
(the derivative of exp(Ax) can be obtained by differentiating the power series (14.7). This shows
that we indeed found a solution of the equation Dy = Ay; that there is no other solution follows by
standard uniqueness results for solutions of differential equations.

If B = SAS−1 is the similarity transformation of the matrix A, then it immediately follows
from equations (14.7) and (11.13) that eB = SeAS−1. In case B is the Jordan canonical form of
the matrix A, then one can get an easy understanding of the matrix exponential eB , and it is easy
to relate this exponential to the solution obtained in equation (14.4). In the special case when
J = σI + Z is a Jordan block as in (11.3), then eJ = eσeZ according to equation (14.8). Since the
matrix Z is nilpotent (see footnote 11.1 on p. 41), the series representing eZ is finite, and it is easy
to match up this series with the solution found in equation (14.4).

15 Equilibrium points of autonomous differential equations

Consider differential equation

(15.1) y′ = F(y),

where y = (y2, y2, . . . , yn)
T is a column vector of dependent variables, with x being the inde-

pendent variable and the prime indicating the differentiation d/dx, and F is a column vector of
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functions: one can think of F as a column vector (f1, f2, . . . , fn)
T where fk is a multivariate func-

tion fk(y1, y2, . . . , yn).
15.1 A column vector s is called an equilibrium point of the above equation is

F(s) = 0. In this case, y(x) = s for all x is a solution of the equation, called an equilibrium solution.
If F is reasonably well behaved,15.2 then this is the oly solution of the equation satisfying the initial
condition y(x0) = s for some x0. What we are interested in is what happens to a solution that
satisfies this initial condition only approximately, but not exactly. The main question in this case is
whether we will have limx→∞ y(x) = s; if so, then the equilibrium point s is called stable.

Many different types of behavior is possible, and it is difficult to obtain a general answer. All we
will do there is to take a first order approximation

(15.2) F(s+ h) ≈ F(s) +Ah

for a small column vector h, where A is an n × n matrix (incidentally, F(s) = 0 in the present
case). More precisely, we seek a matrix A such that

lim
h→0

‖F(s+ h)− F(s)−Ah‖
‖h‖ = 0.

The matrix A is called the Jacobian matrix of the function F; see [6, Subsection 25.2 on p. 101] In
a more general context, it is called the Fréchet derivative; see [6, Subsection 25.1 on p. 100].

We will study the main linear part

(15.3) y′ = Ay

of equation (15.1) near the point 0 to get an insight into the behavior of equation (15.1) near a point
of equilibrium. The question as to how well the solutions of the two equations approximate each
other will be left for a later discussion.

15.1 Two dimensional real valued cases

Assume A is a two-by-two matrix with real entries, and we will consider the behavior of equa-
tion (15.1) near an equilibrium point. We will assume that A is nonsingular; for singular matrices
the approximation in equation(15.2) will not work, because then we will have Ah = 0 for some
choices of h 6= 0, and then higher order terms will dominate in the approximation. This means that
0 is not an eigenvalue of A. The behavior of the solution of equation near the point y = 0 can be
classified into several cases:

(a) Both eigenvalues of A are positive.

(b) Both eigenvalues of A are negative.

(c) A has one positive and one negative eigenvalue.

(d) Both eigenvalues of A are complex.

To simplify the notation, we will change the name of the independent variable to t, and write
y = (x, y)T . The solution of equation (15.3) will be described as x = x(t) and y = y(t), and it
can be visualized as a curve in the (x, y) plane, called the phase plane, as the parametric curve
(
x(t), y(t)

)
for t in a certain range; we will be interested what happens when t → ∞.

15.1Note that this is an abuse of language, since the latter is the value of a function at a certain place, the function
itself being fk.
15.2For example, if it is sufficient if the derivative of F is differentiable everywhere and its derivative is bounded.
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15.1.1 The case of two positive eigenvalues

The Jordan canonical form B of the matrix A has form

(15.4) B =

(
λ1 0
0 λ2

)

unless λ1 = λ2. In case λ1 = λ2, this may be the form of the matrix B, or else B may be a Jordan
block of size 2, when B will have the form

(15.5) B =

(
λ 1
0 λ

)

.

In the former case, the solution of the equation

(15.6) (x′, y′) = B(x, y)T
(
x(0) = x0, y(0) = y0

)

is

x = x0e
λ1t,

y = y0e
λ2t.

(15.7)

To describe the behavior near the equilibrium point (0, 0), we need to choose x0 and y0 to be small
positive or negative numbers. These equations are easy to graph. Assuming t ≥ 0 (since we are
interested what happens when t → ∞), for the trajectory described by these equations we can write
u = eλ1t and writing γ = λ2/λ1, these equations become

(15.8)
x =x0u

y =y0u
γ

}

1 ≤ u < ∞.

Given that γ > 0, these equation describe a point moving away to infinity.
In case B is a Jordan block of size two as given in equation (15.5) the solution of equation (15.6)

is

x = (x0 + y0t)e
λt,

y = y0e
λt.

(15.9)

One can try to use the substitution u = eλt as before to visualize the trajectory described by these
equations, though it is not as helpful here as before. In any case, the equations describe a curve
moving away from the origin that deviates from the straight line only slightly.

15.1.2 The case of two negative eigenvalues

Equations (15.7) and (15.9) still apply in this case, but the eigenvalues being negative, the trajectories
move toward the origin, i.e., the equilibrium point in this case on a curve. Instead of using the
parametric representation in equation (15.8) is is better to write u = e−λ1t and γ = λ2/λ1 in this
case, to obtain the parametric representation

(15.10)
x =x0u

−1

y =y0u
−γ

}

1 ≤ u < ∞

in this case.
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15.1.3 The case of a positive and a negative eigenvalue

Equation (15.7) still applies. The trajectories in this case move away from the origin as t → ∞.
If λ1 > 0 and λ2 < 0, the trajectories asymptotically move toward the x axis while moving away
from the origin; it moves in the positive direction if x0 > 0 and it moves in the negative direction if
x0 < 0. Having a size 2 Jordan block is not possible in this case, since for that the two eigenvalues
must be equal. Equation (15.8) does apply in this case, except that γ = λ2/λ1 < 0 in this case.

15.1.4 The case of complex eigenvalues

Equation (15.7) still applies, but in this case the eigenvalues λ1 and λ2 are complex conjugates. This
is because the matrix A has real entries, and so its characteristic polynomal real coefficients, and
the eigenvalues are the zeros of this polynomial. The trouble in this case that in order to visualize
the results, we need to give them in terms of real functions. The fact that earlier we moved from the
original equation y′ = Ay to a similar equation y′ = By involving the Jordan canonical form B of
the matrix A was not much of a problem, since such a transformation only involves a change of bases.
The same linear transformation T is represented in one basis by the matrix A, in another basis by
a matrix B. Whatever picture represents the solution involving the matrix B, the same picture,
appropriately distorted by making the axes not perpendicular, represents the solution involving the
matrix A. This is not true in case of the similarity transformation from A to B involves a matrix
with complex entries. Therefore, we first need to translate the results obtained for the solution of
the equation involving the matrix B to an equation involving a real matrix C that is similar to B.

Writing λ1 = α + βi with real α and β (where β 6= 0, since λ1 are not real), we must have
λ2 = α− βi, and the Jordan canonical form of the matrix A has the form

B =

(
α+ βi 0

0 α− βi

)

,

and the solution of equation (15.6) can be written as

(15.11) y =

(
x
y

)

=

(
x0e

(α+βi)t

y0e
(α−βi)t

)

according to equation (15.7), where x0 and y0 are the initial values at t = 0. The simplest real
matrix C that has the same eigenvalues of B is

C =

(
α β
−β α

)

.

The matrix C is similar to the matrix B; indeed, we have C = SBS−1, where

S =

(
1 i
i 1

)

and S−1 =
1

2

(
1 −i
−i 1

)

.

Writing u = Sy, it is easy to see that y is a solution of the equation y′ = By if and only if u is a
solution of the equation u′ = Cu. With the solution for y given in equation (15.11), this gives

u =

(
u
v

)

=

(
1 i
i 1

)(
x
y

)

=

(
1 i
i 1

)(
x0e

(α+βi)t

y0e
(α−βi)t

)

=

(
x0e

(α+βi)t + iy0e
(α−βi)t

ix0e
(α+βi)t + y0e

(α−βi)t

)

.

(15.12)
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A necessary and sufficient condition for the vector on the right-hand side be real is that iy0 = x0,
where the bar indicates complex conjugate. Indeed, for the two complex numbers α = x0e

(α+βi)t and
β = iy0e

(α−βi)t, the expressions α+β = x0e
(α+βi)t+iy0e

(α−βi)t and i(α−β) = ix0e
(α+βi)t+y0e

(α−βi)t

are both real if and only if α and β are conjugate to each other. According to Euler’s equation

(15.13) eit = cos t+ i sin t,

the numbers e(α+βi)t and e(α−βi)t are conjugate to each other (for Euler’s equation, see [5, equa-
tion (15) on p. 6]); so, indeed, x0 and iy0 must also be conjugate to each other.

Assuming iy0 = x0, to express the solution given in equation (15.12) in terms of trigonometric
functions, assume x0 = u0e

iη for some real u0 and η, we have y0 = −iu0e
−iη. Noting that for any

complex number z we have z + z̄ = 2ℜz, we obtain

u =

(
u
v

)

=

(
x0e

(α+βi)t + iy0e
(α−βi)t

ix0e
(α+βi)t + y0e

(α−βi)t

)

=

(
2u0e

αt cos(β + η)t
−2u0e

αt sin(β + η)t

)

.

For α = 0, these equations describe a circle in the (u, v)-plane; for increasing t the circle is traversed
clockwise.15.3 For α 6= 0 it is a logarithmic spiral. For increasing t, the point on the curve is moving
away from the origin to infinity if α > 0, and it moves toward the origin if α < 0.

15.2 Comparing the linear equation to the original equation

The Hartman-Grobman theorem asserts that if the matrix A has no eigenvalue whose real part
is 0, then, assuming that 0 is an equilibrium point, the qualitative behavior near the equilibrium
point 0 of the linearized equation y′ = Ay is the same as the qualitative behavior of the equation
y′ = F(y), assuming that F is a smooth function close to the equilibrium point. Here smoothness
means repeated differentiability; we will not formulate this result precisely, and its proof is beyond
the scope of these notes. One note of caution: the sameness of qualitative behavior does not mean
that the solution of the linearized equation is close to the solution of the original equation.

At the website of Alun Loyd of North Carolina State University, there are interesting pictures
illustrating the different behaviors of a system of two differential equations.

15.3 Finding the Jordan canonical form of a matrix

In order to find the Jordan canonical form of a matrix, one first needs to find its minimal polynomial,
defined in [4, Section 4 on p. 7], where a method for finding the minimal polynomial is also described
in Subsection 4.4 on p. 9. A worked out example showing how to find the minimal polynomial is
given in Section 6 on p. 13. This example is continued in Section 7 on p. 14 to find the Jordan
canonical form of the matrix.

15.3The case α = 0 is exceptional, since in this case the qualitative behavior of the linear equation may not reflect
the behavior of the original equation. See Subsection 15.2 next.
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16 Stochastic processes

16.1 Random walk

Let Xn for n > 0 be independent random variables, and assume each Xn is +1 or −1, assuming
each of these values with probability 1/2. Let

Yn =

n∑

k=1

Xk (n ≥ 0)

(for n = 0 this sum is the empty sum, defined to be 0). The sequence {Yn} of random variables
is called a simple one-dimensional random walk. One can interpret this as going for a walk along
the number time, starting at the point 0 at time t = 0, and at each integer time deciding to move
right or left with probability 1/2. A generalization to higher dimensions is straightforward. For
example, for a two-diminsional random walk, one starts with independent pairs of random variables
(Uk, Vk) for all k > 0 such that given k, each of the events (Uk, Vk) = (1, 0), (Uk, Vk) = (−1, 0),
(Uk, Vk) = (0, 1), and (Uk, Vk) = (0,−1) has probability 1/4.16.1

Xn =
n∑

k=1

Uk,

Yn =
n∑

k=1

Vk

for n ≥ 0.

16.2 Wiener process

Definition 16.1. A Wiener process, named after Norbert Wiener, is a sequence of random variables
Wt for t ≥ 0 such that

(a) W0 = 0 almost surely.16.2

(b) The process has independent increments; i.e., for any t1, t2, . . ., tn for n > 2, with tk < t1 < t2
for any k with 2 < k ≤ n the variables Wt2 −Wt1 is independent of the sequence of variables
〈Wk : 2 < k ≤ n〉.

(c) For any t > 0 and δ > 0, the increment Wt+δ −Wt is normally distributed with mean 0 and
variance δ.

(d) Wt is almost surely a continuous function of t.

A Wiener process is also called a one-dimensional Brownian motion; the name is inspired by the
natural motion of particles suspended in a fluid, a phenomenon observed in nature and originally
called Brownian motion. The motion of the particles is due to their collision with the molecules of the
fluid. There are straightforward natural generalizations to higher dimensions of the one-dimensional
Brownian motion.

16.1Of course, Uk and Vk are not independent of each other, according to this description. What independence means
here is that the probability of arbitrarily chosen outcomes of these pairs for m given values of k is 4−m.
16.2I.e., with with probability 1; almost surely is usually abbreviated as a.s.
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If Yn is a random walk, and

Wn(t) =
1√
n
Y⌊nt⌋ for t ∈ [0, 1] and n ≥ 0,

then Wn approaches a Wiener process as n → ∞. This is a special case of Donsker’s theorem.

16.3 Integration

Given two sequences ofH(t) andW (t) of random variables, one can try to define a Riemann–Stieltjes
type integral as follows.16.3 To define such an integral, we first need the definition of a partition:

Definition 16.2 (Partition). A partition of the interval [a, b] is a finite sequence 〈t0, t1, . . . , tn〉 of
points such that

P : a = t0 < t1 < t2 < . . . < tn = b.

The width or norm of a partition is

‖P‖ def
= max{ti − ti−1 : 1 ≤ i ≤ n}.

Assuming 0 < a < b, associated with such a partition P is a Riemann–Stieltjes sum:16.4

(16.1) SP =

n∑

i=1

H(ti−1)
(
W (ti)−W (ti−1)

)
.

One takes the limit of such sums when ‖P‖ → 0; the limit can be taken in probability. This
means that there is a random variable Z such that for every ǫ > 0 there is a δ > 0 such that
P(|SP − Z| < ǫ) > 1 − ǫ if ‖P‖ < δ. If this limit Z exists in the sense described, then the random
variable Z is called the Itô integral of H with respect to W on the interval [a, b], and written as

(16.2)

∫ b

a

H(t) dW (t).

For more on stochastic integration, see e.g. [8].

16.4 The Kolmogorov probability model

In 1933, Kolmogorov introduced the modern foundation of probability theory. According to this, a
probability space is an ordered triple 〈S,B,P〉, where the nonempty set S is the underlying spacem
B is a σ-algebra of subsets of S, and P : B → [0, 1] is a probability measure. No assumptions are
made about S. B has the following properties:

Definition 16.3. . Given a set S, a set B of subsets of S is called a σ-algebra on S if the following
conditions are satisfied.

(a) We have ∅ ∈ B.

(b) If A ∈ B then S \A ∈ B.
16.3The Riemann–Stieltjes integral is a generalization by Stieltjes of an earlier integral concept by Riemann.
16.4Note that in the sum to follow we take the value of H at the left endpoint of the interval [ti−1, ti], whereas in the
Riemann–Stieltjes sum for ordinary functions, the function value is taken at an arbitrarily selected point ξi ∈ [ti−1, ti],
called the tag associated with this interal. There is an important reason for this, to be explained below.

56

https://en.wikipedia.org/wiki/Donsker%27s_theorem
https://en.wikipedia.org/wiki/Kiyosi_It%C3%B4
https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://en.wikipedia.org/wiki/Thomas_Joannes_Stieltjes
https://en.wikipedia.org/wiki/Bernhard_Riemann


(c) If An ∈ B for all integers n > 0, then
⋃∞

n=1 An ∈ B.

The sets in B are called events, i.e., sets for which probability is defined. Note that these axioms
imply that if A,B ∈ B then A ∪ B ∈ B according to Clause (c) by taking A1 = A, A2 = B, and
An = ∅ for n ≥ 3. Further, we also have A ∩B ∈ B under the same assumption. Indeed, we have

A ∩B = S \
(
(S \A) ∪ (S \B)

)
.

As for the probability measure P, we stipulate

Definition 16.4. Given a σ-algebra B on the set S, the function P :→ [0, 1] is called a probability
measure if

(a) We have P(S) = 1.

(b) We have P(∅) = 0.

(c) If An ∈ B for all integers n > 0 and Am ∩An = ∅ whenever 0 < m < n, then

P

(
∞⋃

n=1

An

)

=

∞∑

n=1

P(An).

Note that Clause (b) is unnecessary; for example, it follows from Clause (c) by taking An = ∅
for all n > 0 and noting that P(∅) is a real number.

A (real-valued) random variable on the probability space 〈S,B,P〉 is a function X : S → R such
that for all x ∈ R we have {s ∈ S : X(s) ≤ r} ∈ B (so it is meaningful to talk about the probability
of this set. As a consequence, we also have {s ∈ S : X(s) < r} ∈ B, {s ∈ S : X(s) = r} ∈ B, and
{s ∈ S : X(s) > r} ∈ B. If one develops integration theory, one can define the expectation of the
random variable X as

E(X) =

∫

S

X(s) dP(s);

we will not explain the meaning of this, merely mention that this approach enables a more elegant
discussion of expectation than the the usual approach in undergraduate courses given in order to
avoid the need to develop integration theory.16.5 This latter approach introduces the distribution
function

FX(x) = P({s ∈ S : X(x) ≤ r}),
and then defines the expectation as a Stieltjes integral

E(X) =

∫ ∞

−∞

x dFX(x).

Actually, even this is not done; instead one discusses discrete and continuos random varialbles, and
then expectation can be defined in terms of a usual improper integral of the density function in case
of a continous random variable, and as a sum in case of a discrete random variable.

It is interesting to note that when Lebesgue developed his integration theory, he first defined the
measure16.6 of sets belonging to a certain σ-algebra L of real numbers, and then considered only
functions f , called measurable, for which the set {x : f(x) ≤ λ} is measurable, i.e., belongs to L.
16.5Of course, this integral does not always exist, in which case the random variable X does not have an expectation.
16.6The measure of an interval is its length. The point is to develop a theory that gives the measure of more
complicated sets forming a σ-algebra containg all intervals.
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Given a finite interval, letting m(λ) be the measure of the set {x ∈ [a, b] : f(x) ≤ λ},16.7 he defined
the integral of f on [a, b] as the Stieltjes integral

∫ ∞

−∞

λ dm(λ),

assuming this Stieltjes integral is absolutely convergent. Note that this is exactly the same as the way
used to calculate the expectation of a random variable, given its distribution function.16.8 However,
since them more elegant definitions have been found.

16.5 Filtration

Definition 16.5 (Filtration). Given a probability space 〈S,B,P〉, a filtration is a sequence of σ-
algebras {Bt}t≥0 such that Bt1 ⊂ Bt2 ⊂ B whenever 0 ≤ t1 ≤ t2.

Definition 16.6 (Adapted process). The random process {Xt}t≥0 is adapted to the filtration if
for each t ≥ 0, the random variable Xt is measurable for Bt; that is, for every x ∈ R we have
{s ∈ S : Xt(s) ≤ s} ∈ Bt.

While we are not going into the rather subtle mathematical theory involving filtrations and Itô
integrations, we wanted to mention them since their intuitive meaning can be expained in terms of
financial markets: When one considers the price of a stock as a random variable, it is reasonable
to assume that this price does not depend on information that will only be available in the future.
This property of a stochastic process is expressed by the concept of filtration. The σ-algebra Bt

is meant to describe all the factors (or information) available at the present that can influence the
price of a stock; for example, an unpredictable earthquake in the future cannot influence stock prices
at present. So the random variable Xt modeling the stock price must be measurable in terms of Bt.
On the other hand, if 0 < t1 < t2, then Xt2 , describing price of the stock at time t2 need not be
measurable in terms of Bt1 , i.e., the information available at time t1.

16.9

Definition 16.7 (Natural filtration). Given a stochastic process {Xt}t≥0, the natural filtration
is the sequence {Bt} of σ-algebras, where Bt for t ≥ 0 is the σ-algebra generated by all the sets
{s ∈ S : Xt′(s) ≤ x} for all t′ ≤ t and x ∈ R. This is also called the filtration generatied by the
stochastic process {Xt}t≥0.

The natural filtration of a process in a way characterizes the past behavior of the process.

16.6 Comment on the Ito integral

In discussing the Ito integral described in formula (16.2) one usually assumes that the process H(t)
is adapted to the natural filtration of the process W (t). In the light of this, we can now make sense
of the requirement that in the sum in equation (16.1) one takes the value of H at the beginning of
the interval. This means that one first measures the value of H at time ti−1 when the unpredictable
random change Wti −Wti−1

is still in the future.

16.7We need to take a finite interval to ensure that m(λ) is finite.
16.8Even the requirement of absolute convergence is present also for expectation.
16.9This point is somewhat subtle, since one can make predictions for Xt2 at time t1. Such a prediction can be
expressed in terms of another random variable that is measurable in terms of Bt1 .
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17 Stochastic differential equations

We will consider differential equations of form

(17.1) dXt = f(Xt, t) dt+ g(Xt, t) dWt,

where Xt is a stochastic process, Wt is a Wiener process, and f and g are real-valued functions of
two real variables. This differential equation is interpreted in terms of its integral form:

Xt2 −Xt1 =

∫ t2

t1

f(Xt, t) dt+

∫ t2

t1

g(Xt, t) dWt (t1 < t2),

where the second integral on the right-hand side is taken as an Itô integral.

17.1 Itô’s lemma

Lemma 17.1 (Itô). Assume the stochastic process Xt satisfies equation (17.1), where Wt is a
Wiener process. Let F (x, t) be a real-valued function of two real variables, and assume that F is
twice continuously differentiable.17.1 Then

(17.2) dF (Xt, t) =

(

Ft + Fxf +
g2

2
Fxx

)

dt+ gFx dWt.

On the right-hand side, the arguments of the partial derivatives of F , and of the functions f and g
are Xt and t; we suppressed these arguments for the sake of clarity.

Outline of proof. Using Taylor’s formula of two variables (see e.g. [2, Section 28, p. 107], we have

F (Xt + dXt, t+ dt)− F (Xt, t) = Fx dXt + Ft dt

+
1

2
(Fxx dX

2
t + 2FxFt dXt dt+ Ftt dt

2) + . . .

= Fx dXt + Ft dt+
1

2
Fxx dX

2
t + . . . ,

where the terms on the right that tend to 0 when divided by dt were omitted. Substituting dXt

from equation (17.1) on the right-hand side, we obtain

F (Xt + dXt, t+ dt)− F (Xt) = Fxf dt+ Fxg dWt + Ft dt

+
Fxx

2
(f2 dt2 + 2fg dt dWt + g2 dW 2

t ) + . . .

= Fxf dt+ Fxg dWt + Ft dt+
1

2
Fxxg

2 dW 2
t + . . .

(17.3)

On the right-hand side, we substitute dW 2
t with dt to obtain equation (17.2). The justification

for this substitution is is somewhat subtle, and it is based on Clause (c) in Definition 16.1, the
expectation of dW 2

t is dt. We will outline an explanation. Given T1 and T2 with 0 ≤ a < b,17.2 we
take a partition

P : a = t0 < t1 < t2 < . . . < tn = b,

17.1The function is really F and not F (x, t), but we need to indicate the variables to use a customary notation for
its partial derivatives.
17.2The need for the assumption a ≥ 0 is that we assumed that the process W starts at time 0.
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then
∫ b

a

(dWt)
2 def
= lim

‖P‖→0

n∑

i=1

(
W (ti)−W (ti−1)

)2
=

n∑

i=1

(ti − ti−1) = b− a,

as we will explain. We wrote
def
= after the integral, since the integral on the left was not defined as

an Itô integral. The limit we can mean in the sense of probability, as in the definition of the Itô
integral. The expectation of the ith term in the sum is the variance of W (ti) −W (ti−1), which is
ti − ti−1 according to Clause (c) in Definition 16.1. The terms of this sum are independent random
variables according to Clause (b) of the same definition. Adding them up, the sum will converge to
the sum of expectation, as a kind of law of large numbers.

To explain this in more detail, we have

E
(

n
∑

i=1

(

W (ti)−W (ti−1)
)

2
)

=

n
∑

i=1

E
(

(

W (ti)−W (ti−1)
)

2
)

=

n
∑

i=1

(ti − ti−1) = b− a,

Further, as we mentioned, W (ti) − W (ti−1) is an N (0, ti − ti−1) variable, i.e., if Z is a standard normal
variable, then the distribution of W (ti) − W (ti−1) is that of the distribution of

√
ti − ti−1 Z, and so the

distribution of
(

W (ti)−W (ti−1)
)

2
is that of the distribution (ti)− ti−1)Z

2. The distribution of Z2 is a χ2

1

variable; this has variance 2. Hence
(

W (ti)−W (ti−1)
)2

has variance 2(ti − ti−1)
2. Thus

Var
(

n
∑

i=1

(

W (ti)−W (ti−1)
)

2
)

=

n
∑

i=1

Var
(

(

W (ti)−W (ti−1)
)

2
)

= 2
n
∑

i=1

(ti − ti−1)
2 ≤ 2

n
∑

i=1

‖P‖(ti − ti−1) = 2‖P‖(b− a),

which tends to 0 as ‖P‖ → 0. Here the first equation follows since the variance of a sum of independent
variables equals the sum of the variances. the inequality follows since ti − ti−1 ≤ ‖P‖, and so

(ti − ti−1)
2 = (ti − ti−1)(ti − ti−1) ≤ ‖P‖(ti − ti−1).

Since the variance of the sum
n
∑

i=1

(

W (ti)−W (ti−1)
)

2

tends to 0, the sum itself tends to its expectation in probability.

As a consequence, one can show that

∫ b

a

g(Xt, t)Fx(Xt, t) dW
2
t =

∫ b

a

g(Xt, t)Fx(Xt, t) dt,

where the integral on the left is to be interpreted as an Itô integral, the intergral on the right is
just an ordinary integral (with a random process as the integrand). Given that equation (17.1) is
interpreted as an Itô integral justifiles replacing dW 2

t with dt in equation (17.3).17.3

17.3See [12] for more details.
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17.2 The Stratonovich integral

If we modify the approximating sum (16.1) of the ito integral to

SP =

n∑

i=1

H(ti−1) +H(ti)

2

(
W (ti)−W (ti−1)

)
,

if these sums converge, the random variable that they converge to is called the Stratonovich integral

∫ b

a

H(t) ◦ dW (t).

The stochastic differential equation analogous to equation (17.1) is written as

dXt = f(Xt, t) dt+ g(Xt, t) ◦ dWt;

note the symbol ◦ preceding with dWt is both the integral and the differential equation. This
differential equation is to be interpreted with the Stratonovich integral.

There are important differences between the Itô and the Stratonovich integral; there are formulas
that express one in terms of the other. The Itô integral is preferred in the financial industry and
in numerical approximations, and the Stratonivich integral is often preferred in physics. Normal
calculus rules can be used with the Stratonovich integral; many of the standard integration techniques
also apply. Not so with the Itô integral, as shown by Itô’s Lemma 17.1.

Given that the Stratonovich integral is easier to manipulate since it follows normal calculus rules,
one may ask why one does not always prefer it to the Itô integral, at least in theoretical calcula-
tions. The answer to this questions is that the possibility of translation between the Stratonovich
integral and the Itô integral relies strictly on the assumptions that makes the process W (t) a Wiener
process.17.4 When one discusses the motion of small particles in air bombarded by air molecules,
these conditions are more accurately satisfied than for stock prices moving under various influences;
therefore, the Stratonivich integral is appropriate only for the former, because the random nature
of the process W (t) at the beginning of the time interval [ti−1, ti] is not much different from its
behavior at the end. This assumption cannot be made for stock prices.

18 The Euler–Maruyama method

The form of the approximating sums for the Itô integral in equation (16.1) directly lends itself to the
numerical approximation of the Itô integral by simulating the random proces W , and along with it,
to an approximation of the solution of a stochastic differential equation (17.1) given in the Itô form.
Taking this equation on the interval [0, T ], with initial condition X0 = x0, we divide the interval
[0, T ] into n equal parts with tk = kT/n for k with 0 ≤ k ≤ n, and taking ∆Wk to be a random
number with normal distribution N (0, 1/n), that is, with expectation 0 and variance 1/n, we put

xtk = xtk−1
+ f(xtk−1

, tk−1)
1

n
+ g(xtk−1

, tk−1)∆Wk (1 ≤ k ≤ n).

17.4These integrals are applicable to a wider class of processes than just Wiener processes, but we want to avoid
technicalities. Further, assumptions need also to be made about the integrand H(t) for the integral to exist.
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18.1 Geometric Brownian motion

The solution of the differential equation

(18.1) dXt = µXt dt+ σXt dWt,

where µ and σ > 0 are constants, is called a one-dimensional geometric Brownian motion. 18.1 Here
µ is called the percentage drift, and σ, the ⁀percentage volatility.18.2

18.2 A Maxima implementation of the Euler–Maruyama method

The following program implements the Euler–Maruyama method to solve the equation (18.1) with
µ = 0.1, σ = 0.15, and presents the graphs of two runs of the solution on the interval [0, 10] using
150 steps.

1 kill(all);

2 linel : 60;

3 load(distrib );

4 mu : 0.1;

5 sigma : 0.15;

6 tlim : 10;

7 tstart : 0;

8 xstart : 1;

9 loopto : 150;

10 deltat : tlim/loopto;

11 st : make_random_state (56088371546)$

12 set_random_state (st);

13 for i : 1 step 1 thru 2 do(

14 t : tstart ,

15 x : xstart ,

16 mylist : [],

17 for k : 0 step 1 thru loopto

18 do (dw : random_normal (0,sqrt(deltat)),

19 xnew : float(x+mu*x*deltat+sigma*x*dw),

20 tnew : float(t+deltat),

21 mylist : append(mylist ,[[t,x]]),

22 x : xnew , t : tnew),

23 mylist : append(mylist ,[[t,x]]),

24 mylists[i] : mylist );

25 plot2d(

26 [[discrete ,mylists [1]],

27 [discrete ,mylists [2]]] ,

28 [gnuplot_term ,ps],

29 [style , [lines ,5]],

30 [color , red , blue],

31 [xlabel ,"t"],

32 [ylabel ,"x"],

18.1If we take σ = 0, we are not dealing with a random process. We could allow σ < 0, but that does not give rise to
a qualitatively different stochastic process, since the distribution of dWt is a normal distribution with expectation 0,
and so it is symmetric about the origin.
18.2The word “percentage” here is a nonsense term unless these quantities are given as as percentages. Better terms
would be “drift factor” and “volatility factor,” or “multiplicative drift” and “multiplicative volatility,” or simply
“drift” and “volatility.”
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33 [gnuplot_ps_term_command ,

34 "set term eps size 5 in , 3 in"],

35 [gnuplot_out_file , "euler_mar.eps "]);

The numbers at the beginnings of the lines are line numbers as usual, and they are not part of the
program. Very few new Maxima features are included in the program, so only a short description
will suffice. Line 3 loads the package distrib. On Line 11 a new random state is created and
on line 12 this state is assigned to the random generator. As mentioned before, this is important
when testing the program, so any two runs of the program produces the same result. The outside
loop starting on line 13 and ending on line 24 gives two runs of the solution of the equation for
geometric Brownian motion described in the loop starting on lines 18–22. The command on line 18
creates a random variable with mean 0 and standard deviation sqrt(deltat), corresponding to√
dt; i.e., of variance dt, which is what it should be for a Wiener process, according to Clause (c) in

Definition 16.1. The datapoints of these two runs are stored in the list mylists with two members
mylists[1] and mylists[2]. In lines 25–35, the two graphs are printed out, the first one in red
and the second one in blue; the color specifications are given on line 30. The printed out figure is in
Figure 18.1.
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Figure 18.1: Two instances of geometric random walk

19 Linear programming: the simplex method

In linear programming, one intends to solve the following progblem. Given a vector of variables
x = (x1, x2, . . . , xn)

T , given an m × 1 column vector b, given an n × 1 column vector c, and and
m × n matrix, all with real entries, find x such that x ≥ 0 (meaning that x1 ≥ 0, x2 ≥ 0, . . .,
xn ≥ 0), Ax ≤ b, and cTx is the largest possible. There are various methods of finding such an x;
a frequently used and efficient such method is the simplex method.
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19.1 Tableau representation of the problem

To solve this problem, first all inequalities are replaced by equations, except for the assumption that
x ≥ 0. This assumption will always be made, but it will not mentioned explicitly. One introduces
slack variables z and s = (s1, s2, . . . , sm), and assumes s ≥ 0; z will be allowed to be any real
number. The problem will be reformulated as follows,

z − cTx = 0

Ax+ s = b
(19.1)

One wants to solve these equations in such a way that all variables except z are nonnegative, and z
is the largest possible. Writing I for the m ×m identity matrix, one represents this problem with
the following matrix T , called the tableau representation of the problem:

(19.2) T =

(
1 −cT 01×m 0

0m×1 A I b

)

;

here 0k×l indicates the k×l zero matrix. Note that the rows of the matrix T are linearly independent.
This is because the only nonzero entry of the first column is in the first row, and the identity matrix
occurs in the rest of the rows.

19.2 Allowed manipulations of the tableau

The following manipulations of the tableau are allowed: elementary row operations (interchange of
two rows, multiplying a row by a nonzero real, and adding a multiple of a row to another row), with
the following expections. One is not allowed to interchange the first row with any other row, one
is not allowed to multiply the first row by any number, and one is not allowed to add a multiple of
the first row to another row (but it is allowed to add a multiple of another row to the first row).
These restrictions ensure that in the equations corresponding to the tableau, the variable z to be
maximized will occur only in the first equation, and will occur there with coefficient one. These
manipulations will result in equations equivalent to those described by the original tableau.

Further, one is allowed to interchange any two columns except that the first and the last column
cannot be moved. Column interchanges amount to interchanging variables, still resulting in equiva-
lent equations. While one needs to keep track of column interchanges so as to know which column
corresponds to which variable, one does not need to keep track of row operations. When working out
an example by hand, it is best not to do any column interchanges. The description of the method is
simplified if one performs such column interchanges take place; as for the actual calculations, they
are not helped by column interchages.19.1

19.3 Existence of a basic feasible solution

We are making a detour for some theoretical considerations. We will consider the linear program-
ming problem with equations, without inequalities, as given in formula (19.1), but here we will not

19.1These comments apply to working out numerical examples to help one understand the method. The situation
with working out examples on computer is totally different. There, one has to give special considerations as to how
these matrices are represented, especially because the matrices occurring in practice are very large sparse matrices
(matrices with relatively few nonzero entries); representation of such matrices for efficient calculations is a science
unto itself.
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distingues between the original and the slack variables. That is, we will consider the problem in the
form

(19.3)
maximize: cTx

subject to: Ax = b, x ≥ 0.

Definition 19.1. A basic solution of this problem is a vector x satisfying the equations such that
the columns of A nonzero entries of x are linearly independent. A feasible solution is one which
satisfies the equation and also satisfies the requirement that x ≥ 0. A basic feasible solution is a
basic solution that is also feasible. An optimal solution is a feasible solution x for which cTx is the
largest possible.

Theorem 19.1. If the problem in (19.3) has an optimal solution then it also has an optimal solution
that is also a basic solution.

Proof. Assume the size of A is m× n. Let x∗ = (x∗
1, x

∗
2, . . . , x

∗
n)

T be a solution that is optimal and
is not basic; that is, assume that the columns of A associated with the nonzero entries of x∗ are
linearly dependent. Let d = (d1, d2, . . . , dn)

T 6= 0 be a column vector such that dk = 0 for all k with
1 ≤ k ≤ n for which x∗

k = 0 for which Ad = 0. There is such a d, since the columns associated with
the nonzero entries of x∗ are linearly dependent.

We may assume that cTd ≥ 0; indeed, if cTd < 0, we can replace d by −d. We cannot have
cTd > 0, because then picking a small enough θ ≥ 0, the vector x∗ + θd ≥ 0, so it is a feasible
solution, and yet

cT (x∗ + θd) = cTx∗ + cT θd > cTx∗,

contradicting the optimatily of x∗.
So we must have cTd = 0. There is a small positive or negative θ such that x∗ + θd ≥ 0 and

x∗
k + θdk = 0 for at least one k for which x∗

k > 0. That is, x∗ + θd is an optimal solution that
has at least one fewer nonzero entries than x∗. Repeating this process as long as necessary, we can
arrive at an optimal solution x∗∗ such that the column vectors associated with its nonzero entries
are linearly independent. In other words, x∗∗ is an optimal basic solution.

19.4 Bases and degeneracy

We will consider the linear programming problem as described in (19.3). We may assume that the
rank of A equals the rank of the augmented matrix (A, b) of the given system of equations; indeed,
if this is not the case, then the system of equations is not solvable. Then we may also assume that
the rows of A are linearly independent; indeed, if this is not the case, we can drop some equations
from the system without changing the set of solutions. So assume that A is an m × n matrix with
linearly independent rows. We also assume that m ≥ n.19.2

A basic solution of the linear programming problem given in (19.3) associated to a basis is a basic
is a basic solution x of the problem such that m variables are selected, called basic variables, such
that the columns of A associated with these variables are linearly independent, and all entries of x
among the nonbasic variables are 0. The basis B associated to a basic solution is the list of colums
of A associated with the basic variables. 19.3 Observe that given a basis B of the column space of
A (that is, B consists of m linearly independent column vectors of A), a basic solution associated
with B is uniquely determined. A basis is called feasible if the basic solution associated with it is

19.2This is certainly true in case a linear programming problem in terms of equations that arises from a linear
programming problem given with inequalities by adding slack variables.
19.3The column vectors of B form a basis of the column space of A.
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feasible. A basic solution is called degenerate if some of its basic variables are 0. A basis is called
optimal if it is associated with an optimal basic solution.

Degenerate basic feasible solutions will cause some trouble in some of the theoretical discussion
below. They also cause some trouble with the simplex algtorithm discussed below. After this
discussion we will describe how to change a linear programming problem slightly such that it will
have no degenerate bases and its, if it has an optimal solution, the modified problem will have its
optimal solution at a feasible basis which also gives an optimal solution of the original problem.

19.5 Transforming a basis to the columns of the identity matrix

Given a basis B, let AB be the submatrix of A consisting of the column-vectors of B; clearly, the
matrix AB is invertible. The matrix A−1

B A transforms the columns of A corresponding to B to the
columns of the identity matrix.19.4

Below, we will face the situation that the columns corresponding to a basis to columns of an
identity matrix in the tableau

(19.4) T =

(
1 −cT b0

0m×1 A b

)

;

of a linear programming problem. This tableau corresponds to the form of the linear programming
problem described in formula (linprog: starting tableau) rather than in (linprog: lin prog in equ
form); that is, the slack variables have been added. In the initial form given in formula (linprog:
starting tableau), b0 = 0 in the top right entry of the tableu, but after some manipulation described
below, b0 may change. Let cTB be the row vector containing only the etries of cT that corresponds
to the columns of B. The matrix

TB =

(
1 −cTB

0m×1 AB

)

;

is invertible. In the tableau T−1
B T , the leftmost column and the columns corresponding to B will be

the columns of the (m+ 1)× (m+ 1) identity matrix.

19.6 Feasible solutions, basic and nonbasic variables

A basic feasible solution of equations of the tableau is an assigment of values to the variables satisfying
the equations represented by the tableau such that all variables other than z are nonnegative, and all
but m of them (other than z) are zero. The basic variables must correspond to linearly independent
columns of the tableau T .19.5 The variable z itself can assume any real value.

The solution of the equations represented by the tableau such that all variables other than z
are nonnegative are represented by the points in a convex polytope in the n + m + 1-dimensional
euclidean space.19.6 It follows from the linearity of the problem that the objective function (that is,
the variable z) is maximized at a vertex of the polynope.19.7

19.4Multiplying a matrix by an invertible square matrix on the left corresponds to performing elementary row opera-
tions. These elementary row operations have the same effect on the columns of AB whether or not these columns are
a part of a matrix with more columns.
19.5We pointed out above that the rank of T is m+ 1.
19.6A region in an Euclidean space is a region that along with any two points it contains also contains all points of
the line segment connecting the point. A polytope is the higher dimensional analog of a polygon (in two dimensions)
or the polyhedron (in three dimensions.
19.7In some cases, called degenerate, such a maximum can occur at several vertices, and then it occurs an all convex
linear combination of these vertices. Here a linear combination is called convex if all coefficients are nonnegative and
they add up to 1.
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There are two reasons why an optimal solution may not exist. First, is possible that the equations
have no solution at all (subject to the requirement that all variables except for z are nonnegative);
that is, the region described is empty. Second, it is possible that the region is unbounded, and the
maximum described by the objective function does not exist (one might say that it is infinite). In
this case, a basic feasible solution may still exist.

In describing a basic feasible solution, one may want to rename the variables (other than z) as
x = (x1, x2, . . . xm), called basic or dependent variables, and y = (y1, y2, . . . xn), called nonbasic
or independent variables. The variables in x, may not be the same as those in x in the original
statement of the problem; as we mentioned above, one needs to keep track of these name changes so
that at the end one may express the solution in terms of the original variables. Once a basic feasible
solution is found, one needs to rewrite the tableau T in the form

(19.5) T = (I, C,d),

where I is now an (m+1)× (m+1) identity matrix, d = (d0, d1, . . . dm)T is an (m+1)× 1 column
vector. This is called the canoncical form of the tableau. In the basic feasible solution, we must
have z = d0 and xi = di for i with 1 ≤ i ≤ m, and yj = 0 for j with 1 ≤ j ≤ n.

19.7 Pivoting

A basic feasible solution represents a vertex of the solution polytope, and a pivot operation represents
a move from one vertex of the polytope to a neighboring vertex in such a way that it improves the
value of the objective function (increases the value of z), or at least does not decrease it (cases when
a pivot does not increase the value of the objective function are called degenerate).

Formally, a pivot operation represents moving out one of the basic variables, say xk, and replacing
it with a a nonbasic variable, yl. In this operation, the new value of xk will be 0 and yl will have a
positive value (except in degenerate cases, when we will also have yl = 0).19.8 When selecting yl, we
only want to select a yl that occurs with negative coefficient in the top row in T in equation (19.5).19.9

Namely, the value of yl will be changed from 0 to a positive value, and when doing so, we must
satisfy all equations. If yl occurs with negative coefficient in the top row, increasing yl will result
in an increase of z, that is, in an improvement of the value of the objective function.19.10 If the
coefficient of yl is positive in the top row, such an increase would result in a decrease in the value
of z. If there is no yl for which the coefficient in the top row is negative, the value of the objective
function cannot be improved, meaning that we are already at an optimum.

Since a change in the value of yl will result in changes of the variables in x, the maximum change
that can be made is the amount that makes one of the variables in x zero, while keeps all other
variables nonnegative. The variable xk occurs with nonzero coefficent only in the kth row (i.e., the
kth equation represented by the tableau T in equation(19.5), where we top row is counted as row zero
(similarly the left column is counted is column zero, to recognize the special status of the top row
representing the objective function). The k equation at present can be described as xk + cklyl = dk,
since we will keep all other variables in y 0. Here we must have dk ≥ 0 since we have a solution for
this equation with xk ≥ 0 and yl = 0. If ckl ≤ 0 then this equation is solvable for any positive value
of yl and xk ≥ 0, so the value of yl is not restriced by xk. if ckl > 0 then the largest value that can

19.8The handling of degenerate cases is complicated, and we will not discuss this here.
19.9We want to count the rows and the columns of T with the numbers 0, 1, 2, . . ., to recognize the special status of
the objective function, so we will avoid calling the top row the first row.
19.10A change of the value of y will also force a change of some or all of the variables in x, but since all these variables
occur with coefficient zero in the top row, these changes will not affect the value of the objective function. The values
of all variables in y other than yl will remain 0.
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be given to yk is dk/ckl, which choice results in xk = 0. This means that the largest value that can
be assigned to yl is

min

{
dk
ckl

: 1 ≤ k ≤ m and ckl > 0

}

l is fixed.

In the pivot operaion, this value is assigned to yl, and the values implied by this choice modifies
the value of x; the inequality x ≥ 0 will continue to hold, while we will have xk = 0 for the value
of k for which the minimum is assumed. In the pivot step, then yl will be a new basic variable,
and xk will be a nonbasic variable. As a final step, one makes the columns corresponding to the
variables xk and yl, and performs row operations to bring the tableau to a canonical form described
in equation (19.5).19.11 If this minimum does not exist (since the set involved is empty), then one
may choose yl arbitrarily large. In this case, z can be made arbitrarily large, to the optimum does
not exist (since it is infinity).

19.8 Optimal bases

In the actual inplementation of pivoting, one does not usually do column interchages. Instead,
when one changes to a new basis B of the tableau T , one makes the columns of the new basis into
columns of an identity matrix by changing to the tableau T−1

B T , as described in Subsection 19.5.
One can ascertain the optimality of a basis by noting that in an optimal basis no pivot is possible
that improves the the value of the objective function. We formulate this in a lemma.

Lemma 19.1 (Optimality lemma). A feasible basis B of the linear programming problem with tableau
T is optimal if all entries except for the last one in the tableau T−1

B T are ≥ 0. Conversely, if T has
no degenerate basis and the basis B is optimal, then there all entries of the first row of T−1

B T other
than the last entry are ≥ 0.

Proof. We may assume that all columns of the basis B are on the left of the matrix A. Then the
matrix T−1

B T has the following form:

(19.6) T−1
B T =

(
1 01×m −hT d0

0m×1 I B d

)

,

where I is the m×m identity matrix. Changing the original name x of the variables to

(z,xT ,yT )T =





z
x

y



 ,

where z is the variable representing the objective function, x is the column vector of basic variables,
and y is the column vector of nonbasic variables, the linear programming problem is described by
the equation

(19.7)

(
1 01×m −hT

0m×1 I B

)




z
x

y



 =

(
d0
d

)

.

19.11These row operations amount to making all coefficients of the entering variable yl 0 in rows other than row k, and
making it 0 in all other rows (including row 0). This is possible, since the existence of the above minimum implies
that ckl 6= 0 for the selected k.

It is possible that there are several ks that can be selected, so there may be several choices for the variable xk

exiting the basic variables. The selection of yl is more problematic. Any choice of yl will do for which c0l < 0. One
may be tempted to choose yl such that it will result in the largest possible increase in the value of z, but it may be
too time-consuming to calculate the best value of l rather than pick one that is suitable.
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At the basic feasible solution corresponding to the basis B we have x ≥ 0 and y = 0, so we
have z = d0 according to these equations. At any other feasible solution described by the vector
(z′,x′T ,y′T )T we have x′ ≥ 0 and y′ ≥ 0, so the equation described by the first row of the tableau
becomes z′ − hTy′ = d0. Since we have −hT ≥ 0 according to our assumptions, this shows that
z′ ≤ z, showing that the solution the basic solution corresponding to the basis B is indeed optimal.
This establishes the first assertion of the lemma.

To establish that the second assertion, assume that the basis B is optimal, and the vector
(z,xT ,yT ) is the feasible basic solution associated with this basis. According to the assumption,
this solution is nondegenerate, so x > 0 and y = 0. According to equation (19.7), we have the
equations

z − hTy = d0

x+By = d.

Since x > 0, any one of the entries of y can be changed from 0 to a small positive number; such
a change may change some or all of the values of the entries of the vector x, but each entry of x
has some room to decrease, and there is no limit how much a component of x is allowed to increase
if the second equation here is to be satisfied. If the entry of −hT correspoinding to an entry of y
is negative, the increase of this entry will result in an increase of the value of z according to the
first of the two equations above, showing that the basic solution corresponding to the basis B is not
optimal.

19.9 Finding a feasible basic solution.

Often one can find a basic feasible solution by the nature of the problem, but sometimes this is not
the case. Assume we start with a tableau

T = (A,b),

which does not need to be in canonical form, but the only nonzero entry in the first column must
be 1 (corresponding to the fact that the first column represents the variable having the value of the
objective function), and all entries of b = (b0, b1, . . . , bm) other than b0 are nonnetvative (b0 may
be negative). If this is not already the case, one can multiply some rows of T by −1. Then one
introduces new variables u = (u1, u2, . . . , u+m)T , and replaces the objective with the requirement
that the value of

m∑

k=1

uk

be minimized, or, equivalently, the value of −∑k=1 uk be maximized. A basic feasible solution of
this problem is uk = bk for k with 1 ≤ k ≤ m, and all other variables are 0 (except for the variable
z describing the value of the objective function). Then one solves this linear probramming problem.
If there is a basic feasible solution for which u1 = u2 = . . . um = 0, then one can drop these variables
can be dropped and one found a basic feasible solution of the original problem.19.12 If no such
basic solution can be found, then the original problem has no basic feasible solution, and so it is
unsolvable.

19.12There are some issues here with the degenerate situation where some among uk are basic variables in spite of
having value 0; we will not deal with this here.
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19.10 The Vandermonde matrix

We need to make a small detour in order to show that a matrix considered below is nonsingular.
Let n ≥ 0 be an integer, and let x0, x1, x2, . . ., xn be complex numbers. The Vandermonde matrix
is the (n+ 1)× (n+ 1) matrix

(19.8) V (x0, x1, . . . , xn) = (xl
k)0≤k,l≤n,

where the superscript indicates exponents; we take x0
k = 1 even if xk = 0. We will show by induction

on n that

(19.9) detV (x0, x1, . . . , xn) =
∏

k,l:0≤k<l≤n

(xl − xk).

The formula is true in case n = 0, since then left-hand is the determinant of a 1× 1 matrix with its
only entry being 1, and the right-hand side is the empty product. If xk = xl for any k 6= l, then both
sides are zero, so we may assume that the xks are distinct. Assume n > 0, and assume equation (19.9)
is true with n−1 replacing n, and consider the determinant P (x) = detV (x0, x1, . . . , xn−1, x). This
is a polynomial of x of degree n; it has zeros at x0, x1, x2, . . ., xn−1. With the assumption that the
xks are distinct, these account for all of the zeros of P (x). Writing a for the leading coefficient of
P (x), this means that

P (x) = a

n−1∏

j=0

(x− xj).

On the other hand, expanding the determinant detV (x0, x1, . . . , xn−1, x) with respect to its last
column, we can see that a = detV (x0, x1, . . . , xn−1). Writing x = xn, according to the induction
hypothesis, this means that

detV (x0, x1, . . . , xn) =
( ∏

k,l:0≤k<l≤n−1

(xl − xk)
) n−1∏

j=0

(xn − xj) =
∏

k,l:0≤k<l≤n

(xl − xk)

, establishing equation (19.9). What will be important for us is that this determinant is not zero if
x0, x1, x2, . . ., xn are distinct, and so the corresponding Vandermonde matrix is nonsingular.

19.11 Elimination of degeneracy

In the discussion of the simplex method we already saw that degeneracy causes some trouble if we
want to replace a basic variable that is zero with a nonbasic variable.

Theorem 19.2. Assume the linear programming problem

(P)
maximize: cTx

subject to: Ax = b, x ≥ 0,

has a feasible solution. Given an arbitrary ǫ > 0, there is a vector b′ such that ‖b′ − b‖∞ < ǫ for
which the linear programming problem

(P ′)
maximize: cTx

subject to: Ax = b′, x ≥ 0,

also has a feasible solution. Furthermore, all basic solutions of (P ′) are nondegenerate, and every
nonfeasible basis of (P) is also a nonfeasible basis of (P ′). Finally, if (P ′) has an optimal basis B,
then B is also an optimal basis of (P).
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Proof. Assuming the other assumptions of the theorem are true, we first establish the assertion in
the last sentence. Writing T for the tableau of the linear programming problem (P), the tableau T ′

of (P ′) differs only in its last column. Assume that B is an optimal basis of (P ′). Since (P ′) has no

degenerate basis, then all entries in the first row of T ′
B
−1T ′ other than the last are ≥ 0 acording to

the second assertion of the Optimality Lemma 19.1. There entries are the same as the corresponding
entries of T−1

B T . Since the basis B is a feasible basis of (P) (since every nonfeasible basis of (P)
is also a nonfeasible basis of (P ′) according to yet to be established assertions of the theorem to
be proved), the basis is an optimal basis of the problem (P) according to the first assertion of the
Optimality Lemma 19.1.

We now turn to the construction of (P ′), before establishing its other properties. Let C be a
feasible basis of (P), and assume, for the sake of simplicity, that the columns of C are the leftmost
columns of A. Writing T for the tableau of (P), the tableau of T−1

C T can be written similarly as in
formula (19.7), that is

(19.10) T−1
C T =

(
1 01×m −hT d0

0m×1 I B d

)

,

Again separating the variables into basic variables x and nonbasic variables y as in equation (19.7),19.13

at the basis C we have x = d and y = 0.
To define b′ so as to specify (P ′), we will take and appropriate δ > 0 and put d′ = d +

(δ, δ2, . . . , δm)T . This will ensure that the basis C remains feasible; in fact, for the solution (x′T ,y′T )T

of (P ′) associated with the basis C we have x′ = d′ and y′ = 0. For the vector b′ on the right-hand
side of (P ′) we will have b′ = ACd

′ = b + AC(δ, δ
2, . . . , δm)T . Assuming δ < 1, this implies that

‖b′ − b‖∞ < ‖AC‖∞ δ. If u is a basic solution associated with a basis B of the problem (P), and u′

is the basic solution associated with with the same basis B, then

‖u′ − u‖∞ ≤ ‖A−1
B ‖∞‖b′ − b‖∞ ≤ ‖A−1

B ‖∞‖AC‖∞ δ;

Given that there are only finitely many bases, and for an unfeasible basis B, the associated solution
u has a negative entry, by choosing δ small enough, we can ensure that u′ will also have a negative
entry, ensuring that no feasible unfeasible basis will be converted to a feasible basis by passing from
the problem (P) to the problem (P ′).

We have yet to show that (P) has no degenerate basis. This is equivalent to saying that for any
basis B, the vector

p(δ)
def
= A−1

B AC

(
d+ (δ, δ2, . . . , δm)T

)

has no zero entry. To establish this, we will show that each entry of this vector is a nonconstant
polynomial of δ. Since a polynomial can only have finitely many zeros, and there are only many
choices for B, it will then be possible to choose a small δ > 0 such that none of these vectors has a
zero entry. It is clear that each entry of the vector p(δ) is a polynomial of δ. In order to show that
none of the entries is a constant polynomial, write d0 = 0 and d = (d1, d2, . . . , dm)T Let δ0 = 0, δ1,
δ2, . . . , δm, be distinct real numbers and consider the matrix (m + 1) × (m + 1) matrix entry at
the intersection of row k and column l (0 ≤ k, l ≤ m) is dk + δkl (we take δ00 = 1).19.14 The matrix
M is nonsingular, because by elementary row operations (subtracting dk times the top row from

19.13This equation holds at present, with the the matrix B, the vectors h and d, and the quantity d0 with new values
here.
19.14Normally, 00 is not defined, but when one takes a polynomial of a variable, say δ, then it is customary to define
δ0 = 1 even for δ = 0.
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row k) the matrix M can be transformed into the Vandermonde matrix V (δ0, δ1, . . . , δm), which is
nonsingular – see subsection 19.10. Hence the matrix

(
1 01×m

0m×1 A−1
B AC

)

M =

(
1 1 1 . . . 1

p(δ0) p(δ1) p(δ2) . . . p(δm)

)

is also nonsingular. So it can only have at most one constant row; this is the first row, showing that
none of entries of the column vector p(δ) is a constant polynomial. This completes the proof.

20 Linear programming: duality

In the preceding chapter, we discussed the linear programming problem

(20.1)
maximize: cTx

subject to: Ax ≤ b.

We will call this the primal problem. The dual of this problem will be defined as

(20.2)
minimize: bTy

subject to: ATy ≥ c.

Here A is a given matrix, b and c are given column vectors, and x ≥ 0 and y ≥ 0 are column vectors
to be determined. It is assumed that these vectors are of appropriate sizes so that the indicated
multiplications can be carried out, and the indicated equations and inequalities make sense. A
feasible solution for the primal problem is a vector ≥0 that satisfies the required inequalities (whether
or not it achieves the optimum); similarly for the dual problem. It is easy to see that the dual of
the dual problem is the primal problem.

The weak duality theorem asserts that the for any feasible solution of the primal problem, the
value of the objective function is less than or equal to the value of the objective function for any
feasible solution of the dual problem. That is

Theorem 20.1 (Weak duality theorem). Assume that x is a feasible solution of the primal prob-
lem (20.1) and y is a feasible solution of the dual problem (20.2). Then cTx ≤ bTy.

The proof is immediate:

Proof. We have

cTx ≤ (ATy)Tx = (yTA)x = yT (Ax) ≤ yTb = (yTb)T = bTy;

here, the first inequality follows from the inequality in formula (20.2), and the second inequality
follows form the inequality in formula (20.1). Finally, the penultimate20.1 equation follows since
yTb is a scalar, so it is equal to its own transpose.

The strong duality theorem asserts that if an optimum for the primal problem exists, the dual
problem also has an optimum, and the two optima are the same.

20.1The one before the last one
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Theorem 20.2 (Strong duality theorem). Assume that x is an optimal solution of the primal prob-
lem (20.1). Then there is a y that is an optiman solution of the primal problem (20.2). Furthermore
we have

(20.3) cTx = bTy.

In the proof, we will assume that the primal problem has no degenerate basic feasible solution.
What this means that in a basic feasible solution, none of the basic variables is 0. When there is a
degenerate basic feasible solution, we can apply Theorem 19.2 with ǫ ց 0.

Proof. We start with the original tableau of the primal problem as described in formula (19.2), and
we will make pivots without making column interchanges. This will only affect pivoting in that in
a basic feasible solution, the basic variables will stay in place, rather than moved to as shown in
equation (19.5). Then the new tableu can be obtained from the original tablea by row operations;
since row operations on a matrix correspond to multiplying the matrix by a nonsingular matrix on
the left, after performing a number of pivots the new tableau will look like

T ′ =

(
1 yT

0 M

)

T =

(
1 yT

0 M

)(
1 −cT 01×m 0

0m×1 A I b

)

=

(
1 −cT + yTA yT yTb

0m×1 MA M Mb

)

.

As in formula (19.2), T has m+ 1 rows, so M is an m×m square matrix, and y is a m× 1 column
vector. Here M represents the row operations on rows 1 through m of the matrix T (the top row
being row 0), and the vector y represents a addition of multiples of row 1 through m from row 0.
Assuming the tableau represents the optimal feasible solution of the problem, all entries of the top
row except for the its leftmost entry (which stays 1) and its rightmost entry must be ≤ 0. This
is because the entry over a basic variable must be 0, and the entry over a nonbasic varialble must
be nonnegative. The reason for the latter is that the nonbasic variables are currently 0, but any
one of them can be made to be a small positive value. Indeed, such a change would involve only
a small change in the values of the basic variables; since, they are currently all positive, an small
enough change would not make them negative, so the solution would still remain feasible, (though
probably not a basic feasible solution). If the entry in the matrix on the right-hand side over one of
the nonbasic variable is negative, then we can make this variable slightly positive while increasing
the value of the objective solution, meaning that the solution represented by the tableau T ′ is not
optimal.

Hence −cT + yTA ≥ 0 and yT ≥ 0. This means that y is a solution of the dual problem. The
first row of tableau T ′ means that

z + (−cT + yTA)x+ yT s = yTb,

where x are the main variables of the primal problem, and s are its slack variables. Actually, the
terms on the left-hand side other than z are 0. This is because the coefficents of the basic variables
are 0, and the nonbasic variables themselves are 0, that is,

(20.4) z = yTb,

Here z represents the value of the objective function for the variables (xT , sT )T at the optimamum
point of the the primal problem, that is z = cTx (cf. (19.1) and (19.5)), while y is a feasible
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solution of the dual problem. Noting that yTb being a scalar, it is equal to its own dual, that is
yTb = (yTb) = bTy. Hence, equation (20.4) implies that

cTx = bTy.

y gives the optimum solution of the dual problem according to the weak Duality Theorem, i.e.,
Theorem 20.1. for the places x and y of optimum of the primal and dual problem, respectively. The
last displayed equation confirms equation (20.3).

21 Finding the maximum of a function

We want to find the maximum of a functiono f on an interval [a, b] by numerial search. We will
assume that the function is continuous, had a single maximum at c ∈ [a, b], and f is strictly increasing
in the interval [a, c] and strictly decreasing in the interval [c, b]. Such a function will be called
unimodal.21.1

21.1 A review of bisection finding zeros

Let f be a continuous function on the interval [a, b], and f(a)f(b) < 0.21.2 Then, by the Intermediate
Value Theorem, the equation f(x) = 0 must have at least one solution in the interval (a, b). Such
a solution may be approximated by successive halving of the interval. Namely, writing x1 = a and
x2 = b, if x3 = (x1 + x2)/2, and f(x1)f(x3) < 0 then one of these solutions must be in the interval
(x1, x3), and if f(x1)f(x3) > 0, then there must be a solution in the interval (x3, x2); of course if
f(x1)f(x3) = 0 then x3 itself is a solution. By repeating this halving of the interval, a root can be
localized in successively smaller intervals. There is no guarantee that all roots are found this way,
since both of the intervals (x1, x3) and (x3, x2) may contains roots of the equation f(x) = 0.

21.2 Golden mean search

This method will not work for finding the maximum, since we need to at least two points in an
interval to localize the maximum. We will assume that f is a continuous function on the interval
[a, b] that is unimodal in the sense described at the beginning of this section. We are going to define
a sequence of closed intervals

[a, b] = I0 ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . .

such that, for every n ≥ 0, the place c of maximum of f on [a, b] is contained in In, and |In|/|In+1| =
(1+

√
5)/2 (the number on the right-hand side is called the golden ratio or the golden mean), where

I denotes the length of the interval I.
Assume In has already been constructed with c ∈ In, and write In = [x1, x4]. We will pick

points x2 and x3 with x1 < x2 < x3 < x4 to localize c. Clearly, we have either c ∈ [x1, x3] or
c ∈ [x2, x4] According to the assumptions on f , if f(x2) ≥ f(x3), then we must have c ∈ [x1, x3],
and if f(x2) ≤ f(x3), then we must have if c ∈ [x2, x4]. Unless f(x2) = f(x3), In the former case,
we specify In+1 = [x1, x3], in the latter case, In+1 = [x2, x4]. If f(x2) = f(x3), we can make either
choice.

As for the selection of x2 and x3, we need to calculate the function values at x2 and x3; since
function evaluations may be expensive, we want to use both of these points. That is, if we pick

21.1The term unimodal comes from statistics, but since its meaning is not quite agreed upon, it should not be used
without first defining it.
21.2This is just a simple way of saying that f(a) and f(b) have different signs.
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In+1 = [x2, x4], and in the next step, we pick two points inside In+1, we want to make sure that
one of these points will be x3, since f has alerady been evaluated at x3. Similarly, if we pick
In+1 = [x1, x3], and in the next step, we pick two points inside In+1, we want to make sure that one
of these points will be x2, since f has alerady been evaluated at x2. Next, we also want to make
sure that |In|/|In+1| = |In+1|/|In+2|. The restriction that the length of In+1 does not depend on
whether we pick x2 or x3 as one of its endpoints implies that we must have

x3 − x1 = x4 − x2,

and the equlity of the above ratios implies that such that

x4 − x1

x3 − x1
=

x3 − x1

x3 − x1

Writing d = x4 − x1 and a = x3 − x1 = x4 − x2, we have x2 − x1 = (x4 − x1)− (x4 − x2) = d− a),
and so this means this means that d/a = a/(d− a), i.e., that d2 − ad = a2. Dividing this equation
by a2 and writing φ = d/a, we have φ2 −φ = 1, that is φ2 −φ− 1 = 0. Noting that φ > 1 and using
the quadratic formula, we obtain that

φ =
1 +

√
5

2
.

As we mentioned above, the number φ is called the golden ratio or golden mean. Noting that the
equation φ2 − φ− 1 = 0 implies that φ−1 = φ− 1. That is,

(21.1) x3 = x1 + φ−1 · (x4 − x1) = x1 + (φ− 1)(x4 − x1).

As a consequence, we have

(21.2) x4 − x1 = φ · (x3 − x1).

Similarly,

x2 = x4 − φ−1 · (x4 − x1) = x1 + (1− φ−1)(x4 − x1)

= x1 + (1− φ−1)φ · (x3 − x1) = x1 + (φ− 1)(x3 − x1).
(21.3)

One can make the following conclusions from equations (21.1 and (21.3). Given In = [x1, x4], if
one picks In+1 = [x1, x3], and writing x1 new = x1 and x4 new = x3, one needs to pick x3 new = x2

and
x2 new = x1 new + (1− φ−1)(x4 new − x1 new).

Similarly, if one pick In+1 = [x2, x4], then one picks x1 new = x2 and x4 new = x4, x2 new = x3, and

x3 new = x1 new + (φ− 1)(x4 new − x1 new).

See [9, Section 10.1, p 401] for more details.

References

[1] Frank R. Giordano, William P. Fox, and Steven B. Horton. A First Course in Mathematical
Modeling. Brooks/Cole (Cengage Learning), Boston, Massachusetts, fifth edition, 2014.

75
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[10] Hernann Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Mathematische Annalen,
77(3):313–352, 1916. Free access: Mathematics Annalen.

[11] Bernard Widynski. Middle square Weyl sequence RNG. https://arxiv.org/abs/1704.00358,
April 4, 2017.

[12] Wenyu Zhang. Introduction to Ito’s lemma.
http://www.math.cornell.edu/~web6720/Wendy_slides.pdf, May 6, 2015.

76

http://www.sci.brooklyn.cuny.edu/~mate/nml/numanal.pdf
http://www.sci.brooklyn.cuny.edu/~mate/misc/cyclic_decomposition.pdf
http://www.sci.brooklyn.cuny.edu/~mate/misc/jordan_canonical.pdf
http://www.sci.brooklyn.cuny.edu/~mate/misc/exp_x.pdf
http://www.sci.brooklyn.cuny.edu/~mate/misc/time_series.pdf
https://web.math.princeton.edu/~nelson/books/qf.pdf
https://de.wikisource.org/wiki/Mathematische_Annalen
https://arxiv.org/abs/1704.00358
http://www.math.cornell.edu/~web6720/Wendy_slides.pdf

	Contents
	Introduction to Maxima scripting
	The logistic difference equation

	Fixed-point iteration
	Some results on the stability of difference equations
	Stability of the logistic equation

	Fixed points of linear matrix difference equations
	Reducing the inhomogeneous equation to a homogeneous equation
	Fixed points of the homogeneous equation
	The case of multiple fixed points
	An example
	A note on hand calculations

	The Maxima program supporting the above example

	Random numbers and Monte Carlo methods
	A Monte Carlo calculation of the area of the circle

	The middle square random number generator
	The classic middle-quare method
	The updated middle square method: a C++ implementation
	The updated middle square method: a C implementation

	Gasoline inventory model
	Cubic splines
	The maxima model

	Queueing models
	The subject of queueing theory
	A model of ships unloading in a harbor

	Stochastic matrices
	Limiting distribution of a Markov process

	The Perron–Frobenius theorem
	The infinity norm
	Proof of Clause (a) of the Perron–Frobenius Theorem

	The power method for eigenvalues
	Norms on vector spaces and the infinity norm

	The rest of the proof of the Perron–Frobenius theorem
	Differential versus difference equations
	Systems of differential equations with constant coefficients 
	Homogeneous linear differential equations with constant coefficients
	Matrix exponentiation

	Equilibrium points of autonomous differential equations
	Two dimensional real valued cases
	The case of two positive eigenvalues
	The case of two negative eigenvalues
	The case of a positive and a negative eigenvalue
	The case of complex eigenvalues

	Comparing the linear equation to the original equation
	Finding the Jordan canonical form of a matrix

	Stochastic processes
	Random walk
	Wiener process
	Integration
	The Kolmogorov probability model
	Filtration
	Comment on the Ito integral

	Stochastic differential equations
	Itô's lemma
	The Stratonovich integral

	The Euler–Maruyama method
	Geometric Brownian motion
	A Maxima implementation of the Euler–Maruyama method

	Linear programming: the simplex method
	Tableau representation of the problem
	Allowed manipulations of the tableau
	Existence of a basic feasible solution
	Bases and degeneracy
	Transforming a basis to the columns of the identity matrix
	Feasible solutions, basic and nonbasic variables
	Pivoting
	Optimal bases
	Finding a feasible basic solution.
	The Vandermonde matrix
	Elimination of degeneracy

	Linear programming: duality
	Finding the maximum of a function
	A review of bisection finding zeros
	Golden mean search

	References

