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Preface v

PREFACE

These notes started as a set of handouts to the students while teaching a course on introductory
numerical analysis in the fall of 2003 at Brooklyn College of the City University of New York. The
notes rely on my experience of going back over 25 years of teaching this course. Many of the methods
are illustrated by complete C programs, including instructions how to compile these programs in a
Linux environment. These programs can be found at

http://www.sci.brooklyn.cuny.edu/~mate/nml_progs/numanal_progs.tar.gz

They do run, but many of them are works in progress, and may need improvements. While the
programs are original, they benefited from studying computer implementations of numerical methods
in various sources, such as [AH], [CB], and [PTVF]. In particular, we heavily relied on the array-
handling techniques in C described, and placed in the public domain, by [PTVF]. In many cases,
there are only a limited number of ways certain numerical methods can be efficiently programmed;
nevertheless, we believe we did not violate anybody’s copyright (such belief is also expressed in
[PTVF, p. xvi] by the authors about their work).

New York, New York, July 2004
Last Revised: August 25, 2014

Attila Máté
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1. Floating point numbers 1

1. FLOATING POINT NUMBERS

A floating point number in binary arithmetic is a number of form 2e · 0.m, where e and m are
integers written in binary (that is, base 2) notation, and the dot in 0.m is the binary “decimal” point,
that is, if the digits ofm arem1,m1, . . . ,mk (mi = 0 or 1), then 0.m = m1·2−1+m1·2−2+. . .m1·2−k.
Here e is called the exponent and m is called the mantissa. In the standard form of a floating point
number it is assumed that m1 = 1 unless all digits of m are 0; a nonzero number in nonstandard
form can usually be brought into standard form by lowering the exponent and shifting the mantissa
(the only time this cannot be done is when this would bring the exponent e below its lower limit –
see next). In the IEEE standard,1 the mantissa m of a (single precision) floating point is 23 bits. For
the exponent e, we have −126 ≤ e ≤ 127. To store the exponent, 8 bits are needed. One more bit
is needed to store the sign, so altogether 40 bits are needed to store a single precision floating point
number. Thus a single precision floating point number roughly corresponds to a decimal number
having seven significant digits. Many programming languages define double precision numbers and
even long double precision numbers.

As a general rule, when an arithmetic operation is performed the number of significant digits is
the same as those in the operands (assuming that both operands have the same number of significant
digits). An important exception to this rule is when two numbers of about the same magnitude are
subtracted. For example, if

x = .7235523 and y = .7235291,

both having seven significant digits, then the difference

x− y = .0000232

has only three significant digits. This phenomenon is called loss of precision. Whenever possible,
one must avoid this kind of loss of precision.

When evaluating an algebraic expression, this is often possible by rewriting the expression. For
example, when solving the quadratic equation

x2 − 300x+ 1 = 0,

the quadratic formula gives two solutions:

x =
300 +

√
89996

2
and x =

300−
√
89996

2
.

There is no problem with calculating the first root, but with the second root there is clearly a loss of
significance, since

√
89996 ≈ 299.993. It is easy to overcome this problem in the present case. The

second root can be calculated as

x =
300−

√
89996

2
=

300−
√
89996

2
· 300 +

√
89996

300 +
√
89996

=
2

300 +
√
89996

≈ .003, 333, 370, 371, 193, 4

and the loss of significance is avoided.

1IEEE is short for Institute of Electric and Electronics Engineers.
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Problems

1. Calculate x −
√
x2 − 1 for x = 256, 000 with 10 significant digit accuracy. Avoid loss of

significant digits.

Solution. We cannot use the expression given directly, since x and
√
x2 − 1 are too close, and their

subtraction will result in a loss of precision. To avoid this, note that

x−
√

x2 − 1 =
(

x−
√

x2 − 1
)

· x+
√
x2 − 1

x+
√
x2 − 1

=
1

x+
√
x2 − 1

.

To do the numerical calculation, it is easiest to first write that x = y · 105, where y = 2.56. Then

1

x+
√
x2 − 1

=
1

y +
√

y2 − 10−10
· 10−5 ≈ 1.953, 125, 000, 0 · 10−6.

2. Calculate
√
x2 + 1 − x for x = 1, 000, 000 with 6 significant digit accuracy. Avoid the loss of

significant digits.

Solution. We cannot use the expression given directly, since
√
x2 + 1 and x are too close, and their

subtraction will result in a loss of precision. To avoid this, note that

√

x2 + 1− x =
(

√

x2 + 1− x
)

·
√
x2 + 1 + x√
x2 + 1 + x

=
1√

x2 + 1 + x
.

To do the numerical calculation, it is easiest to first write that x = y · 106, where y = 1. Then

1√
x2 + 1 + x

=
1

√

y2 + 10−12 + y
· 10−6 ≈ 5.000, 000, 000 · 10−7.

3. Show how to avoid the loss of significance when solving the equation

x2 − 1000x− 1 = 0.

4. Evaluate e0.0002 − 1 on your calculator. Hint: The best way to avoid the loss of precision is to
use the Taylor series approximation of ex. Using only two terms and the Lagrange remainder term,
we have

ex = 1 + x+
x2

2
+ eξ

x3

6
,

where ξ is between 0 and x. With x = .0002 = 2 · 10−4, we have x3 = 8 · 10−12, and noting that eξ

is very close to one, this formula will give accurate results up to 11 decimal places (i.e., the error is
less than 5 · 10−12).

5. Calculate

sin 0.245735− sin 0.245712.
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(Note that angles are measured in radians.) Hint: Rather than evaluating the sines of the angles
given, it may be better to use the formula

sinx− sin y = 2 cos
x+ y

2
sin

x− y

2

with x = 0.245735 and y = 0.245712. Then sine of a small angle may be more precisely evaluated
using a Taylor series than using the sine function on your calculator. Note, however, that this
approach does not avoid the loss of precision that results from calculating x−y. From what is given,
this cannot be avoided.

6. Find 1− cos 0.008 with 10 decimal accuracy.

Solution. Of course 0.008 means radians here. Using the value of cos 0.008 here would lead to
unacceptable loss of precision, since to value is too close to 1. Using the Taylor series of cosx gives
a more accurate result:

cosx =

∞
∑

n=0

(−1)n · x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

For |x| ≤ 1 this is an alternating series, and so, when summing finitely many terms of the series, the
absolute value of the error error will be less than that of the first omitted term. With x = 0.008, we
have

x6

6!
<

0.016

720
= 10−12 · 1

720
< 10−12 · .00139 < 1.39 · 10−15,

and so this term can safely be omitted. Thus, writing x = 8 · 10−3, with sufficient precision we have

1− cosx ≈ x2/2!− x4/4! = 32 · 10−6 − 512

3
· 10−12 ≈ 0.0000319998293

7. Find 1− e−0.00003 with 10 decimal digit accuracy.

Solution. Using the value of e−0.00003 would lead to an unnecessary and unacceptable loss of
accuracy. It is much better to use the Taylor series of ex with x = −3 · 10−5:

1− ex = 1−
∞
∑

n=0

xn

n!
= −x− x2

2
− x3

6
− . . . .

For x = −3 · 10−5 this becomes an alternating series:

3 · 10−5 − 9 · 10−10

2
+

27 · 10−15

6
− . . . .

When summing finitely many terms of an alternating series, the error will be smaller than the first
omitted term. Since we allow an error no larger than 5 · 10−11, the third term here can be safely
omitted. Thus,

1− e−0.00003 ≈ 3 · 10−5 − 9 · 10−10

2
= .000, 029, 999, 55.

8. Calculate
9999
∑

n=1

1

n2
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Note. The issue here is that the proper order to calculate this sum is

1

99992
+

1

99982
+

1

99972
+

1

99962
+ . . .+

1

22
+

1

12
,

and not
1

12
+

1

22
+

1

32
+

1

42
+ . . .+

1

99982
+

1

99992
.

To explain this, assume that the calculation used a floating point calculation with 10 significant
digits in decimal arithmetic. When calculating the latter sum, after the first term is added, the size
of the sum is at least 1 = 100, and so no digits with place value less than 10−9 can be taken into
account. Now, 1/99992 = 1.000, 200, 030, 004, 0 · 10−8, so when one gets to this last term, only two
significant digits of this term can be added. When one calculates the former sum, the first term
added is 1/100002, and all its ten significant digits can be taken into account. Of course, when one
gets to the end of the calculation, all the digits smaller than 10−8 will be lost. However, when adding
ten thousand numbers, the error in these additions will accumulate, and it will make a significant
difference that the addition initially was performed greater precision (i.e., when adding the numbers
by using the first method), since this will result in a smaller accumulated error.

This means that adding floating point numbers is not a commutative operation. Whenever
practical, one should first add the smaller numbers so as to reduce the error.

Euler has proved that
∞
∑

n=1

1

n2
=
π2

6
.

We have π2/6 ≈ 1.644, 934, 066, 848. If we calculate the sum

9,999,999
∑

n=1

1

n2

in the forward order (i.e., by adding the terms for n = 1, then n = 2, then n = 3, . . . ), we
obtain 1.644, 725, 322, 723 and if we calculate it in the backward order (i.e., by adding the terms for
n = 9, 999, 999, then n = 9, 999, 998, then n = 999, 997, . . . ), we obtain 1.644, 933, 938, 980. The
former differs from the value of π2/6 by 2.08744·10−4, while the latter differs from it by 1.27868·10−7,
showing that the latter approximation is much better.

A computer experiment. The following computer experiment was done to produce the above
results on a computer running Fedora Core 5 Linux, using the compiler GCC version gcc (GCC)

4.1.0 20060304 (Red Hat 4.1.0-3).2 The program addfw.c carried out the addition in forward
order:

1 #include <stdio.h>

2 #include <math.h>

3

4 main()

5 {
6 float sum, term;

7 int i;

8 sum=0.0;

9 for(i=1; i < 10000000; i++)

10 {
2GCC originally stood for the GNU C Compiler (version 1.0 was released in 1987), but now that it can also handle

many languages in addition to C, GCC stands for the GNU Compiler Collection.
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11 term = (float) i;

12 term = term * term;

13 term = 1/term;

14 sum += term;

15 }
16 printf("The sum is %.12f\n", sum);

17 }
Here the number at the beginning of each line is a line number, and it is not a part of the file. In
line 6, float is the type of a single precision floating point number, giving about seven significant
decimal digits of precision. (the type double gives about 14 significant digits, and long double about
21 significant digits)3. In calculating the ith term of the series to be added, in line 11 the variable i
is converted to floating point before its square is calculated in line 12; calculating the square of an
integer would cause an overflow for large values of i. The program addbw.c was used to carry out
the addition in the backward order;

1 #include <stdio.h>

2 #include <math.h>

3

4 main()

5 {
6 float sum, term;

7 int i;

8 sum=0.0;

9 for(i=9999999; i >= 1; i--)

10 {
11 term = (float) i;

12 term = term * term;

13 term = 1/term;

14 sum += term;

15 }
16 printf("The sum is %.12f\n", sum);

17 }
Finally, in calculating π2/6, we used the fact that π/4 = arctan 1, and then used the C-function
atan2l to do the calculation in the file pi.c:

1 #include <stdio.h>

2 #include <math.h>

3

4 main()

5 {
6 long double pisqo6;

7 double toprint;

8 pisqo6 = atan2l(0.0, -1.0);

9 pisqo6 *= pisqo6;

10 pisqo6 /= (long double) 6.0;

11 toprint = (double) pisqo6;

12 /* The conversion of the long double

13 value pisqoe6 to the double value toprint

14 is necessary, since printf apparently is

15 unable to handle long double variables;

3These values are only rough guesses, and are not based on the technical documentation of the GCC compiler
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16 this may be a bug */

17 printf(" pi^2/6 is %.12f\n", toprint);

18 }
In this last program, the long double variable pisqo6 is used to calculate π2/6. First the atan2

function, or, rather, the atan2l function (the final l here stands for “long,” to indicate that this
function takes arguments as long double floating point numbers, and gives its result as as long

double. The meaning of the atan2(y,x) function is to give the polar angle of the point (x,y) in
the plane; and, of course, the polar angle of the point (−1, 0), given by atan2(0.0,-1.0) is π.4 In
line 11, the double long variable pisqo6 is cast to (i.e., converted to) a double variable, since the
function printf does not seem to work with long double variables.5 In compiling these programs
without optimization, we used the following makefile:

1 all : addfw addbw pi

2 addfw : addfw.o

3 gcc -o addfw -s -O0 addfw.o -lm

4 addfw.o : addfw.c

5 gcc -c -O0 addfw.c

6 addbw : addbw.o

7 gcc -o addbw -s -O0 addbw.o -lm

8 addbw.o : addbw.c

9 gcc -c -O0 addbw.c

10 pi : pi.o

11 gcc -o pi -s -O4 pi.o -lm

12 pi.o : pi.c

13 gcc -c -O4 pi.c

14 clean : addfw addbw pi

15 rm *.o

This makefile does the compilation of the programs after typing the command

$ make all

Here the dollar sign $ at the beginning of the line is the prompt given by the computer to type a
command; in an actual computer, the prompt is most likely different (in fact, in Unix or Linux, the
prompt is highly customizable, meaning that the user can easily change the prompt in a way she
likes). The makefile contains a number of targets on the left hand-side of the colons in lines 1, 2, 4,
6, 8, 10, 12, 15. These targets are often names of files to be produced (as in lines 2 and 4, etc.), but
they can be abstract objectives to be accomplished (as in line 1 – to produce all files – and in line 15
– to clean up the directory by removing unneeded files). On the right-hand side of the colon there
are file names or other targets needed for (producing) the target. After each line naming the target,
there are zero or more lines of rules describing how to produce the target. Each rule starts with a
tab character (thus lines 3 and 5, etc. each start with a tab character, and not with a number of
spaces), and then a computer command follows. No rule is needed to produce the target all, what
is needed for all to be produced that the three files mentioned after the colon should be present.
No action is taken if the target is already present, unless the target is a file name. In this case, it
is checked if the target is newer than the files needed to produce it (as described on the right-hand
side of the colon). If the target is older than at least one of the files needed to produce it, the rule
is applied to produce a new target.6

4The atan2 function is more practical for computer calculations than the arctan function of mathematics. Of
course, arctany can be calculated as atan2(y, 1.0).

5This bug has been fixed in newer releases of GCC; see
http://gcc.gnu.org/ml/gcc-bugs/2006-11/msg02440.html

The version we used was gcc 4.1.0.
6The idea is that the tasks described in the rules should not be performed unnecessarily.
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For example, the rule needed to produce the target addfw.o, the object file (i.e., the compiled
program) of the C program addfw.c, one uses the command

$ gcc -c -O0 addfw.c

This command specifies that the file addfw.c should be compiled with the optimization level 0, as
specified by the -O0 option (here the first letter is capital “oh” and the second letter is 0, the level
of optimization). This means that no optimization is to be done. The rule used the produce the
target file addfw is

$ gcc -o addfw -s -O0 addfw.o -lm

Here the -o option specifies the resulting object file should be called addfw, and the -lm option
specifies that the object file should be linked to the mathematics library (denoted by the letter m)
of the C compiler. The file addfw is an executable program, and one can run it simply by typing
the command

$ addfw

When one works on this program, after each change in one of the C program files, one can type
to command

$ make all

to recompile the executable programs. Only those programs will be recompiled for which recompi-
lation is needed; that is, only those programs for which the source file (the C program), or one of
the source files, have been changed. After finishing work on this program, one can type

$ make clean

which will remove all files of form *.o, that is those files whose name ends in .o (* is called a wild
card character, that can be replaced with any string of characters.)

If the above programs are compiled with optimization, using the makefile

1 all: addfw addbw pi

2 addfw : addfw.o

3 gcc -o addfw -s -O4 addfw.o -lm

4 addfw.o : addfw.c

5 gcc -c -O4 addfw.c

6 addbw : addbw.o

7 gcc -o addbw -s -O4 addbw.o -lm

8 addbw.o : addbw.c

9 gcc -c -O4 addbw.c

10 pi : pi.o

11 gcc -o pi -s -O4 pi.o -lm

12 pi.o : pi.c

13 gcc -c -O4 pi.c

14 clean : addfw addbw pi

15 rm *.o

the result will be different. In lines 4, 5, 7, etc., it is now indicated by the option -O4 (minus capital
“oh” four) that optimization level 4 is being used. In this case, the output of the program addfw

and addbw will be identical: 1.644, 933, 966, 848. This differs from the value 1.644, 934, 066, 848 by
about 1.00000 · 10−7. This means that the optimizing compiler notices the problem with adding the
terms of the sequence in the forward orders, and corrects this problem.7

7What the optimizing compiler gcc actually does is not clear to me. It must be doing something more complicated

than just adding the terms of the series in reverse order, since the result is somewhat better that would be obtained
by doing the latter.
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2. ABSOLUTE AND RELATIVE ERRORS

The absolute error when calculating a quantity x is the difference x− x̄, where x̄ is the calculated
value of x. The relative error is defined as (x − x̄)/x. Since x is usually not known, one usually
estimates the relative error by the quantity (x− x̄)/x̄; so if the size of the absolute error is known,
in this way one can calculate also the relative error.8

The error in evaluating a function f(x, y) can be estimated as follows. If we write ∆x = x − x̄
and ∆y = y − ȳ, then

f(x, y)− f(x̄, ȳ) ≈ ∂f(x̄, ȳ)

∂x
(x− x̄) +

∂f(x̄, ȳ)

∂y
(y − ȳ)

The right-hand side represents the approximate error in the function evaluation f(x, y).
We will apply this with f(x, y) replaced with xy and x/y respectively, writing E(·) for the error.

For multiplication we obtain
E(xy) ≈ y∆x+ x∆y.

For the relative error, this means
E(xy)

xy
≈ ∆x

x
+

∆y

y
.

In other words, the relative error of multiplication is approximately the sum of the relative errors of
the factors.

For division, we get a similar result:

E(x/y) ≈ 1

y
∆x− x

y2
∆y,

so
∣

∣

∣

∣

E(x/y)

x/y

∣

∣

∣

∣

/

∣

∣

∣

∣

∆x

x

∣

∣

∣

∣

+

∣

∣

∣

∣

∆y

y

∣

∣

∣

∣

,

that is the relative error of the division is roughly9 less than the sums of the absolute values of the
relative errors of the divisor and the dividend.

The condition of a function describes how sensitive a function evaluation to relative errors in its
argument: It is “defined” as

max

{∣

∣

∣

∣

∣

f(x)− f(x̄)

f(x)

/

x− x̄

x

∣

∣

∣

∣

∣

: x− x̄ is “small”

}

≈
∣

∣

∣

∣

xf ′(x)

f(x)

∣

∣

∣

∣

,

where x is the fixed point where the evaluation of f is desired, and x̄ runs over values close to x.
This is not really a definition (as the quotation marks around the word defined indicate above), since
it is not explained what small means; it is meant only as an approximate description.

Problems

1. Evaluate
cos(2x+ y2)

for x = 2± 0.03 and y = 1± 0.07. (The arguments of cosine are radians, and not degrees.)

8Of course, one does not usually know the exact value of the error, since to know the exact error and the calculated
value is to know x itself, since x = x̄+ ǫ, where ǫ is the error.

9The word roughly has to be here, since the equation on which this derivation is based is only an approximate
equation. The sign / means “approximately less than.”
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Solution. There is no problem with the actual calculation. With x = 2 and y = 1 we have

cos(2x+ y2) = cos 5 ≈ 0.283, 662.

The real question is, how accurate this result is? Writing

f(x, y) = cos(2x+ y2),

we estimate the error of f by its total differential

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy = −2 sin(2x+ y2) dx− 2y sin(2x+ y2) dy,

where x = 2, y = 1, and dx = ±0.03 and dy = ±0.07, that is, |dx| ≤ 0.03 and |dy| ≤ 0.07.10 Hence

|df(x, y)| ≤ | − 2 sin(2x+ y2)||dx|+ | − 2y sin(2x+ y2)||dy|
/ 2 · 0.959 · 0.03 + 2 · 0.959 · 0.07 = 0.192

Thus f(x, y) ≈ 0.284± 0.192.

2. Evaluate

s = x
(

1− cos
y

x

)

for x = 30± 3 and y = 20± 2.

Solution. There is no problem with the actual calculation, since there is no serious loss of precision:

30 ·
(

1− cos
20

30

)

≈ 6.42338.

The real question is, how accurate this result is? Writing

f(x, y) = x
(

1− cos
y

x

)

,

we estimate the error of f by its total differential

df(x, y) =
∂f(x, y)

∂x
dx+

∂f(x, y)

∂y
dy =

(

1− cos
y

x
− y

x
sin

y

x

)

dx+ sin
y

x
dy,

where x = 30, y = 20, and dx = ±3 and dy = ±2, that is, |dx| ≤ 3 and |dy| ≤ 2.11 Thus

|df(x, y)| ≤
∣

∣

∣1− cos
y

x
− y

x
sin

y

x

∣

∣

∣ |dx|+
∣

∣

∣sin
y

x

∣

∣

∣ |dy| / 0.198 · 3 + 0.618 · 2 ≈ 1.8.

Thus f(x, y) ≈ 6.42± 1.8.

3. Find the condition of y = x3 near x = 2.

4. Find the condition of y = tanx near x = 1.5.

10It is more natural to write ∆x and ∆y for the errors of x and y, but in the total differential below one customarily
uses dx, and dy.

11It is more natural to write ∆x and ∆y for the errors of x and y, but in the total differential below one customarily
uses dx, and dy.
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3. ROUNDOFF AND TRUNCATION ERRORS

The main types of errors are roundoff error, and truncation error. The former refers to the fact
that real numbers, which are usually infinite decimals, are represented by a finite number of digits
in the computer. The latter refers to the error committed in a calculation when an infinite process
is replaced by a finite process of calculation. A simple example for this latter is when the sum of an
infinite series is evaluated by adding finitely many terms in the series. More generally, continuous
processes in the computer are represented by finite, discrete processes, resulting in truncation error.

A third type of error, error resulting from a mistake or blunder is an altogether different matter;
such errors ought to be avoided in so far as possible, whereas roundoff and truncation errors cannot
be avoided.

4. THE REMAINDER TERM IN TAYLOR’S FORMULA

In Taylor’s formula, a function f(x) is approximated by a polynomial

n
∑

k=0

f (k)(a)

k!
(x− a)k.

The goodness of this approximation can be measured by the remainder term Rn(x, a), defined as

Rn(x, a)
def
= f(x)−

n
∑

k=0

f (k)(a)

k!
(x− a)k.

To estimate Rn(x, a), we need the following lemma.

Lemma. Let n ≥ 1 be an integer. Let U be an open interval in R and let f : U → R be a function
that is n+ 1 times differentiable. Given any b ∈ U , we have

(1)
d

dx
Rn(b, x) = −f

(n+1)(x)(b− x)n

n!

for every x ∈ U .

Proof. We have

Rn(b, x) = f(b)−
n
∑

k=0

f (k)(x)
(b− x)k

k!
= f(b)− f(x)−

n
∑

k=1

f (k)(x)
(b− x)k

k!
.

We separated out the term for k = 0 since we are going to use the product rule for differentiation,
and the term for k = 0 involves no product. We have

d

dx
Rn(b, x) =

d

dx
f(b)− d

dx
f(x)

−
n
∑

k=1

(

df (k)(x)

dx

(b− x)k

k!
+ f (k)(x)

d

dx

(b− x)k

k!

)

= −f ′(x)−
n
∑

k=1

(

f (k+1)(x)
(b− x)k

k!
+ f (k)(x)

−k(b− x)k−1

k!

)

= −f ′(x)−
n
∑

k=1

(

f (k+1)(x)
(b− x)k

k!
− f (k)(x)

(b− x)k−1

(k − 1)!

)

.
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Writing

Ak = f (k+1)(x)
(b− x)k

k!

for k with 0 ≤ k ≤ n, the sum (i.e., the expression described by
∑n

k=1) on the right-hand side equals

n
∑

k=1

(Ak −Ak−1) = (A1 −A0) + (A2 −A1) + . . . (An −An−1)

= An −A0 = f (n+1)(x)
(b− x)n

n!
− f ′(x).

Substituting this in the above equation, we obtain

d

dx
Rn(b, x) = −f ′(x)−

(

f (n+1)(x)
(b− x)n

n!
− f ′(x)

)

= −f (n+1)(x)
(b− x)n

n!
,

as we wanted to show.

Corollary 1. Let n ≥ 1 be an integer. Let U be an open interval in R and let f : U → R be a
function that is n+ 1 times differentiable. For any any a, b ∈ U with a 6= b, there is a ξ ∈ (a, b) (if
a < b) or ξ ∈ (b, a) (if a > b) such that

(2) Rn(b, a) =
f (n+1)(ξ)

(n+ 1)!
(b− a)n+1.

Proof. For the sake of simplicity, we will assume that a < b.12 We have b − a 6= 0, and so the
equation

(3) Rn(b, a) = K · (b− a)n+1

(n+ 1)!

can be solved for K. Let K be the real number for which this equation is satisfied, and write

φ(x) = Rn(b, x)−K · (b− x)n+1

(n+ 1)!

Then φ is differentiable in U ; as differentiability implies continuity, it follows that f is continuous on
the interval [a, b] and differentiable in (a, b).13 As φ(a) = 0 by the choice of K and φ(b) = 0 trivially,
we can use Rolle’s Theorem to obtain the existence of a ξ ∈ (a, b) such that φ′(ξ) = 0. Using (1),
we can see that

0 = φ′(ξ) = −f
(n+1)(ξ)(b− ξ)n

n!
−K · −(n+ 1)(b− ξ)n

(n+ 1)!
.

Noting that (n+1)
(n+1)! =

1
n! and keeping in mind that ξ 6= b, we obtain K = fn+1(ξ) from here. Thus

the result follows from (3).

12This assumption is never really used except that it helps us avoid circumlocutions such as ξ ∈ (a, b) if a < b or

ξ ∈ (b, a) if b < a.
13Naturally, φ is differentiable also at a and b, but this is not needed for the rest of the argument.
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Note. The above argument can be carried out in somewhat more generality. Let g(x) be a
function that is differentiable on (a, b), g′(x) 6= 0 for x ∈ (a, b), and g(b) = 0. Note that, by the
Mean-Value Theorem,

− g(a)

b− a
=
g(b)− g(a)

b− a
= g′(η)

for some η ∈ (a, b). Since we have g′(η) 6= 0 by our assumptions, it follows that g(a) 6= 0. Instead of
(3), determine K now such that

(4) Rn(b, a) = Kg(a).

As g(a) 6= 0, it is possible to find such a K. Write

φ(x) = Rn(b, x)−Kg(x).

We have φ(a) = 0 by the choice of K. We have φ(b) = 0 since Rn(b, b) = 0 and g(b) = 0 (the latter
by our assumptions). As φ is differentiable on (a, b), there is a ξ ∈ (a, b) such that φ′(ξ) = 0. Thus,
by (1) we have

0 = φ′(ξ) = −f
(n+1)(ξ)(b− ξ)n

n!
−Kg′(ξ).

As g′(ξ) 6= 0 by our assumptions, we can determine K from this equation. Substituting the value of
K so obtained into (4), we can see that

Rn(b, a) = −f
(n+1)(ξ)(b− ξ)n

n!
· g(a)
g′(ξ)

.

Note that in the argument we again assumed that a < b, but this was unessential. Further, note
that the function g can depend on a and b. We can restate the result just obtained in the following

Corollary 2. Let n ≥ 1 be an integer. Let U be an open interval in R and let f : U → R be a
function that is n+1 times differentiable. For any any a, b ∈ U with a < b, let ga,b(x) be a function
such that ga,b is continuous on [a, b] and differentiable on (a, b). Assume, further, that ga,b(b) = 0
and g′a,b(x) 6= 0 for x ∈ (a, b). Then there is a ξ ∈ (a, b) such that

Rn(b, a) = −f
(n+1)(ξ)(b− ξ)n

n!
· ga,b(a)
g′a,b(ξ)

.

If b < a, then the same result holds, except that one needs to write (b, a) instead of (a, b) and
[b, a] instead of [a, b] for the intervals mentioned (but the roles of a and b should not otherwise be
interchanged).

This result is given in [B]; see also [M]. The Wikipedia entry [Wiki] also discusses the result
(especially under the subheadingMean value theorem), without giving attributions. Taking ga,b(x) =
(b− x)r for an integer r with 0 < r ≤ n+ 1, we obtain that

Rn(b, a) =
f (n+1)(ξ)

rn!
(b− ξ)n−r+1(b− a)r.

This is called the Roche–Schlömilch Remainder Term of the Taylor Series. Here ξ is some number
in the interval (a, b) or (b, a); it is important to realize that the value of ξ depends on r. Taking
r = n + 1 here, we get formula (2); this is called Lagrange’s Remainder Term of the Taylor Series.
Taking r = 1, we obtain

Rn(b, a) =
f (n+1)(ξ)

n!
(b− ξ)n(b− a);
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this is called Cauchy’s Remainder Term of the Taylor Series.
The different forms of the remainder term of Taylor’s series are useful in different situations. For

example, Lagrange’s Remainder Term is convenient for establishing the convergence of the Taylor
series of ex, sinx, and cosx on the whole real line, but it is not suited to establish the convergence
of the Taylor series of (1 + x)α, where α is an arbitrary real number. The Taylor series of this last
function is convergent on the interval (−1, 1), and on this interval it does converge to the function
(1 + x)α (this series is called the Binomial Series). This can be established by using Cauchy’s
Remainder Term.

5. LAGRANGE INTERPOLATION

Let x1, x2, . . . ,xn be distinct real numbers, and let y1, y2, . . . ,yn also be real numbers, these not
necessarily distinct. The task of polynomial interpolation is to find a polynomial P (x) such that
P (xi) = yi for i with 1 ≤ i ≤ n. It is not too hard to prove that there is a unique polynomial of
degree n−1 satisfying these conditions, while a polynomial of lower degree usually cannot be found.
The polynomial interpolation problem was first solved by Newton. A different, elegant solution was
later found by Lagrange. Here we consider the latter solution.

Lagrange considers the polynomials14

li(x) =

n
∏

j=1
j 6=i

x− xj
xi − xj

It is clear that li(x) is a polynomial of degree n, since the numbers in the denominator do not depend
on x. Further, for any integer j with 1 ≤ j ≤ n we have

li(xj) =

{

1 if j = i,

0 if j 6= i.

Indeed, if x = xi then each of the fractions in the product expressing li(x) is 1, and if x = xj for j 6= i
then one of the fractions in this product has a zero numerator. For this reason, the polynomial P (x)
defined as

P (x) =
n
∑

i=1

yili(x)

satisfies the requirements; that is P (xi) = yi for i with 1 ≤ i ≤ n.

Example. Find a polynomial P (x) of degree at most 3 such that P (−1) = 7, P (2) = 3, P (4) =
−2, and P (6) = 8.

Solution. Writing x1 = −1, x2 = 2, x3 = 4, and x4 = 6, we have

l1(x) =
(x− 2)(x− 4)(x− 6)

(−1− 2)(−1− 4)(−1− 6)
= − 1

105
(x− 2)(x− 4)(x− 6),

l2(x) =
(x+ 1)(x− 4)(x− 6)

(2 + 1)(2− 4)(2− 6)
=

1

24
(x+ 1)(x− 4)(x− 6),

l3(x) =
(x+ 1)(x− 2)(x− 6)

(4 + 1)(4− 2)(4− 6)
= − 1

20
(x+ 1)(x− 2)(x− 6),

14These polynomials are sometimes called Lagrange fundamental polynomials.
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l4(x) =
(x+ 1)(x− 2)(x− 4)

(6 + 1)(6− 2)(6− 4)
=

1

56
(x+ 1)(x− 2)(x− 4).

Thus, the polynomial P (x) can be written as

P (x) = 7l1(x) + 3l2(x)− 2l3(x) + 8l4(x) = − 7

105
(x− 2)(x− 4)(x− 6)

+
3

24
(x+ 1)(x− 4)(x− 6)− 2

20
(x+ 1)(x− 2)(x− 6) +

8

56
(x+ 1)(x− 2)(x− 4)

= − 1

15
(x− 2)(x− 4)(x− 6) +

1

8
(x+ 1)(x− 4)(x− 6)− 1

10
(x+ 1)(x− 2)(x− 6)

+
1

7
(x+ 1)(x− 2)(x− 4).

Problems

1. Find the Lagrange interpolation polynomial P (x) such that P (−2) = 3, P (1) = 2, P (2) = 4.

Solution. Write x1 = −2, x2 = 1, x3 = 2. We have

l1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
=

(x− 1)(x− 2)

(−2− 1)(−2− 2)
=

1

12
(x− 1)(x− 2),

l2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
=

(x+ 2)(x− 2)

(1 + 2)(1− 2)
= −1

3
(x+ 2)(x− 2),

l3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
=

(x+ 2)(x− 1)

(2 + 2)(2− 1)
=

1

4
(x+ 2)(x− 1).

Thus, we have

P (x) = P (−2)l1(x) + P (1)l2(x) + P (2)l3(x) = 3 · 1

12
(x− 1)(x− 2) + 2 ·

(

−1

3

)

(x+ 2)(x− 2)

+ 4 · 1
4
(x+ 2)(x− 1) =

1

4
(x− 1)(x− 2)− 2

3
(x+ 2)(x− 2) + (x+ 2)(x− 1).

2. Find the Lagrange interpolation polynomial P (x) such that P (1) = −3, P (3) = −1, P (4) = 3.

Solution. Write x1 = 1, x2 = 3, x3 = 4. We have

l1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
=

(x− 3)(x− 4)

(1− 3)(1− 4)
=

1

6
(x− 3)(x− 4),

l2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
=

(x− 1)(x− 4)

(3− 1)(3− 4)
= −1

2
(x− 1)(x− 4),

l3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
=

(x− 1)(x− 3)

(4− 1)(4− 3)
=

1

3
(x− 1)(x− 3).

Thus, we have

P (x) = P (1)l1(x) + P (3)l2(x) + P (4)l3(x) = −3 · 1
6
(x− 3)(x− 4) + (−1) ·

(

−1

2

)

(x− 1)(x− 4)

+ 3 · 1
3
(x− 1)(x− 3) = −1

2
(x− 3)(x− 4) +

1

2
(x− 1)(x− 4) + (x− 1)(x− 3) = x2 − 3x− 1.
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3. Find a polynomial P (x) such that P (−2) = 3, P (−1) = 5, P (2) = 7, P (4) = 3, and P (5) = −1,

In describing the Lagrange interpolation polynomial, one usually writes p(x) =
∏n

i=1(x − xi),
since this allows one to write the polynomials li(x) in a simple way. In fact,

(1) li(x) =
p(x)

p′(xi)(x− xi)

Indeed, using the product rule for differentiation,

p′(x) =
n
∑

k=1

n
∏

j=1
j 6=k

(x− xj).

If one substitutes x = xi, all the terms of the sum except the one with j = i will be contain a zero
factor, so we obtain

(2) p′(xi) =
n
∏

j=1
j 6=i

(xi − xj).

Substituting this into our original definition of li(x), formula (1) follows. This formula, as stated,
cannot be used at x = xi, but the fraction on the right-hand side can clearly be reduced by dividing
both the numerator and the denominator by x− xi, after which the formula will be correct even for
x = xi.

Error of the Lagrange interpolation. The interpolation problem is usually used to approx-
imate a function f(x) by a polynomial P (x) of degree at most n − 1 such that P (xi) = f(xi) for i
with 1 ≤ i ≤ n. An important question is, how to estimate the error of this approximation at a point
x. To find the error f(x) − P (x) at x, assume x is different from any of the points xi (1 ≤ i ≤ n),
since for x = xi the error is clearly 0. Write

F (t) = f(t)− P (t)− (f(x)− P (x))
p(t)

p(x)

As is easily seen, F (t) = 0 for t = x and t = xi (1 ≤ i ≤ n).15 Assuming f is differentiable n times,
we can see that F is also differentiable n times. Applying Rolle’s theorem repeatedly, we obtain that
F (n)(t) has a zero in the open interval spanned by x and the xi’s (1 ≤ i ≤ n). Indeed, F ′(t) has a
zero between any two zeros of F (z). Since F (t) is known to have n+1 (distinct) zeros in the closed
interval spanned by x and the xi’s (namely x and the xi’s), F

′(t) must have at least n zeros in the
in the open interval spanned by x and the xi’s, by Rolle’s theorem. Applying Rolle’s theorem again,
F ′′(t) must have at least n−1 zeros, F ′′′(t) must have at least n−2 zeros, and so on. Repeating this
argument n times, we can see that, indeed, F (n)(t) has at least a zero in the open interval spanned
by x and the xi’s (1 ≤ i ≤ n). Let ξ be such a zero. Then we have

0 = F (n)(ξ) = f (n)(ξ)− (f(x)− P (x))
n!

p(x)
.

15This means that the polynomial

Q(t) = P (t) + (f(x)− P (x))
p(t)

p(x)

is the interpolation polynomial for f(t) at t = x and t = xi (1 ≤ i ≤ n). That is, the polynomial Q(t) interpolates
f(t) at the additional point t = x in addition the where P (t) interpolates f(t).
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Indeed, P (t), being a polynomial of degree n − 1, its nth derivative is zero, while p(t), being a
polynomial of form tn+ lower order terms, its derivative is n!. Solving this for the error f(x)−P (x)
of the interpolation at x, we obtain

f(x)− P (x) = f (n)(ξ)
p(x)

n!
.

This is the error formula for the Lagrange interpolation. Of course, the value of ξ is not known; for
this reason, this only allows one to estimate the error, and not calculate this exactly.

Problems

4. Estimate the error of interpolating lnx at x = 3 with an interpolation polynomial with base
points x = 1, x = 2, and x = 4, and x = 6.

Solution. We have n = 4,

p(x) = (x− 1)(x− 2)(x− 4)(x− 6),

and
d4

dx4
lnx = − 6

x4
.

So the error equals

E = − 6

ξ4
(3− 1)(3− 2)(3− 4)(3− 6)

4!
= − 3

2ξ4

The value of ξ is not known, but it is known that 1 < ξ < 6. Hence

−3

2
< E < − 3

2 · 64 = − 1

864
.

5. Estimate the error of Lagrange interpolation when interpolating f(x) =
√
x at x = 5 when

using the interpolation points x1 = 1, x2 = 3, and x3 = 4.

Solution. Noting that the third derivative of
√
x equals 3

8x
−5/2. So we have the error at x = 5 is

E(5) =
(5− 1)(5− 3)(5− 4)

3!
· 3
8
ξ−5/2 =

ξ−5/2

2

according to the error formula of the Lagrange interpolation, where ξ is some number in the interval
spanned by x, x1, x2, and x3, i.e., in the interval (1, 5). Clearly, the right-hand side is smallest for

ξ = 5 and largest for x = 1. Noting that 55/2 = 25
√
5, we have

1

50
√
5
< E(5) <

1

2
.

We have strict inequalities, since the values ξ = 1 and ξ = 5 are not allowed.

6. Estimate the error of Lagrange interpolation when interpolating f(x) = 1/x at x = 2 when
using the interpolation points x1 = 1, x2 = 4, and x3 = 5.
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Solution. Noting that the third derivative of 1/x equals −6/x4, with f(x) = 1/x and with some ξ
between 1 and 5, for the error at x = 2 we have

E(x) = f ′′′(ξ)
(x− 1)(x− 4)(x− 5)

3!
= − 6

ξ4
(2− 1)(2− 4)(2− 5)

6
= − 6

ξ4

according to the error formula of the Lagrange interpolation, where ξ is some number in the interval
spanned by x, x1, x2, and x3, i.e., in the interval (1, 5). Clearly, the right-hand side is smallest for
ξ = 1 and largest for ξ = 5. Thus we have

−6 < E(5) < − 6

625
.

We have strict inequalities, since the values ξ = 1 and ξ = 5 are not allowed.

7. Estimate the error of interpolating ex at x = 2 with an interpolation polynomial with base
points x = 1, x = 3, and x = 4, and x = 6.

8. Estimate the error of interpolating sinx at x = 3 with an interpolation polynomial with base
points x = −1, x = 1, and x = 2, and x = 4.

9. Assume a differentiable function f has n zeros in the interval (a, b). Explain why f ′ has at
least n− 1 zeros in the same interval.

Solution. By Rolle’s Theorem, in any any open interval determined by adjacent zeros of f there is
at least one zero of f ′. The n zeros give rise to n − 1 intervals determined by adjacent zeros, thus
giving rise to n− 1 zeros.

The result is also true if one takes multiplicities into account. One says that f has a k-fold zero
at α if

f(α) = f ′(α) = . . . = f (k−1)(α) = 0.16

Clearly, a k-fold zero of f gives rise a k − 1-fold zero of f ′ at the same location, so for a single
multiple zero the assertion is true. Assuming that f has n zeros, some possibly multiple, one could
carefully use this fact to compute the number of zeros17 of f ′, but the calculation is unnecessarily
messy. It is easier to note that if one scatters a k-fold zero, and replaces it by k nearby single zeros,
the total count of n zeros will not change.18 To avoid confusion, call the function so changed g. In
counting the zeros of g′, the count will not change either. The cluster of k single zeros of g will give
rise to k− 1 zeros of g′, just as a k-fold zero of f gave rise to k− 1 zeros of f ′. As we already know
that g′ has (at least) n− 1 zeros, the same will also be true for f .

16This definition is motivated by the case of polynomials. If a polynomial P (x) has the form

P (x) = (x− α)kQ(α),

then it is easy to see that P (x) has a k-fold zero in the sense of the above definition.
17More precisely, to give a lower bound for the number of zeros.
18One need not reflect how to do this analytically, i.e., one need not think up an expression for a function g that

will have scattered zeros near the multiple zeros of f . One can simply redraw the graph of f near the multiple zero,
and argue “geometrically.”
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6. NEWTON INTERPOLATION

Newton, in his solution to the interpolation problem, looked for the interpolation polynomial in
the form

P (x) = A1 +A2(x− x1) +A3(x− x1)(x− x2) + . . .+An(x− x1)(x− x2) . . . (x− xn−1)

=

n
∑

i=1

Ai

i−1
∏

j=1

(x− xj).

Given a function f(x), we want to determine the coefficients Ai’s in such a way that P (xi) = f(xi)
for each i with 1 ≤ i ≤ n. This equation with x = x1 gives A1 = f(x1). Hence

f(x2) = P (x2) = f(x1) +A2(x2 − x1).

From now on, assume that the numbers x1, x2, . . . , xn are pairwise distinct. We then have

A2 =
f(x2)− f(x1)

x2 − x1
=
f(x1)− f(x2)

x1 − x2
.

For arbitrary distinct real numbers t1, t2, . . . , define the divided differences recursively as

(1) f [t1] = f(t1),

(2) f [t1, t2] =
f [t2]− f [t1]

t2 − t1
,

and, in general,

(3) f [t1, · · · , ti−1, ti] =
f [t2, · · · , ti]− f [t1, · · · , ti−1]

ti − t1
.

If we write

(4) f[t2,t3,... ,ti−1](t) = f [t, t2, . . . ti−1]

then we have

(5) f [t1, · · · , ti−1, ti] = f[t2,··· ,ti−1][t1, ti]

for i > 2.19 If we write f[ ] = f , then (5) is true even for i = 2. While this could be established
directly, a more elegant approach is the following: we discard the original definition of divided
differences, and take formulas (1), (2), (4), and (5) as the definition. We will establish (3) as a
consequence later.

We can show by induction that

(6) Ai = f [x1, x2, · · · , xi].
19To make sense of this last formula, assume that the above formulas define the divided differences for an arbitrary

function f , not just the specific function f for which we are discussing the Newton interpolation polynomial. We will
take this point of view in what follows, in that we will consider divided differences also for functions other than f .
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In fact, assume this result is true for all i with i < n; we will show it for i = n. In view of this
assumption, the polynomial interpolating f at the points xi for 1 ≤ i ≤ n− 1 is

Pn−1(x) =
n−1
∑

i=1

f [x1, · · · , xi]
i−1
∏

j=1

(x− xj).

Then the polynomial

P (x) =

n−1
∑

i=1

f [x1, · · ·xi]
i−1
∏

j=1

(x− xj) +An

n−1
∏

j=1

(x− xj)

still interpolates f(x) at the points xi for 1 ≤ i ≤ n− 1, since the last term vanishes at these points.
We need to determine An in such a way that the equation P (xn) = f(xn) also holds. Clearly,

P (x) = Anx
n−1 + lower order terms,

For each integer k, with Q(x) = xk+1 we have

(7) Q[x, a] = xk + lower order terms

for x 6= a. In fact,

Q[x, a] =
xk+1 − ak+1

x− a
=

k
∑

j=0

xk−jaj .

Hence taking divided differences of P (x) m times for 0 ≤ m ≤ n, we have20

P [x, x2, x3, . . . xm] = Anx
n−m + lower order terms.

Indeed, this is true for m = 1 if we note that the left-hand side for m = 1 is P (x).21 Assume m > 1
and assume that this formula is true with m− 1 replacing m, that is, we have

P [x, x2, x3, . . . xm−1] = P[x2,x3,...xm−1](x) = Anx
n−m+1 + lower order terms.

Taking divided differences and using (5) and (7), we obtain that

P [x, x2, x3, . . . xm] = P[x2,x3,...xm−1][x, xm] = Anx
n−m + lower order terms,

showing that the formula is also true for m. Hence the formula is true for all m with 1 ≤ m ≤ n.
Using this formula with m = n, we obtain that

P [x, x2, x3, . . . xn] = An.

This is true for every x; with x = x1, this shows that

P [x1, x2, x3, . . . xn] = An.

Now, clearly,
f [x1, x2, x3, . . . xn] = P [x1, x2, x3, . . . xn].

This is so, because the left-hand side is calculated by using the values f(x1), . . . , f(xn), while the
right-hand side is calculated by using the values P (x1), . . . , P (xn), and these values are in turn the
same. This completes the proof of (6) (for i = n; for i < n its validity was assumed as the induction
hypothesis).

To summarize, the Newton interpolation polynomial at the points x1, x2, . . . , xn we have

P (x) =

n
∑

i=1

f [x1, · · ·xi]
i−1
∏

j=1

(x− xj).

20In the argument that follows, we need to assume that x is different from x2, x3, . . . , xn, but we may allow
x = x1.

21Here we take [x2, x3, . . . , xm] for m = 1 to be the empty tuple. That is, for m = 1 we have P[x2,x3,...xm] = P[ ]

and P [x, x2, x3, . . . xm] = P [x] = P (x).
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Permuting the arguments of a divided difference. Divided differences are independent of
the order in which the points are listed.

Theorem. Let x1, x2, . . . , xk be distinct points, and let xi1 , xi2 , . . . , xik be a permutation of
these points (i.e., a listing of the same points in a different order). Let f be a function defined at
these points. Then

f [x1, x2, . . . , xk] = f [xi1 , xi2 , . . . , xik ];

that is, a divided difference does not change if we rearrange the points.

Proof. It is not hard to prove this by induction. But another, simpler argument is based on the
observation that the leading term of the interpolating polynomial to f using the base points x1, x2,
. . . , xk is

f [x1, x2, . . . , xk]x
k−1,

while the leading term of the interpolating polynomial to f using the base points xi1 , xi2 , . . . , xik is

f [xi1 , xi2 , . . . , xik ]x
k−1.

As these two interpolating polynomials are the same, the coefficients of their leading terms must
agree. This establishes the assertion.

Note that so far, everything was proved by taking formulas (1), (2), (4), and (5) as the definition
of divided differences. With the aid of the above Theorem, we can now easily establish (3). Indeed,
using (1), (2), (4), and (5), and the Theorem above, we have

f [t1, · · · , ti−1, ti] = f[t2,··· ,ti−1][t1, ti] =
f [ti, t2, · · · , ti−1]− f [t1, t2, · · · , ti−1]

ti − t1

=
f [t2, · · · , ti−1, ti]− f [t1, t2, · · · , ti−1]

ti − t1
,

showing that (3) also holds. Hence one can indeed use (1)–(3) to define divided differences.

Problems

1. Find the Newton interpolation polynomial P (x) of degree at most 3 such that P (1) = 2,
P (2) = 4, P (4) = 6, P (5) = 9.

Solution. We have

P [1, 2] =
P [2]− P [1]

2− 1
=

4− 2

2− 1
= 2,

P [2, 4] =
P [4]− P [2]

4− 2
=

6− 4

4− 2
= 1,

P [4, 5] =
P [5]− P [4]

5− 4
=

9− 6

5− 4
= 3,

P [1, 2, 4] =
P [2, 4]− P [1, 2]

4− 1
=

1− 2

4− 1
= −1

3
,

P [2, 4, 5] =
P [4, 5]− P [2, 4]

5− 2
=

3− 1

5− 2
=

2

3

P [1, 2, 4, 5] =
P [2, 4, 5]− P [1, 2, 4]

5− 1
=

2
3 −

(

− 1
3

)

5− 1
=

1

4
.
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We can summarize these values in a divided difference table:

x f [.] f [., .] f [., ., .] f [x., ., ., .]

1 2
2

2 4 − 1
3

1 1
4

4 6 2
3

3
5 9

Thus,

P (x) = P [1] + P [1, 2](x− 1) + P [1, 2, 4](x− 1)(x− 2) + P [1, 2, 4, 5](x− 1)(x− 2)(x− 4)

= 2 + 2(x− 1)− 1

3
(x− 1)(x− 2) +

1

4
(x− 1)(x− 2)(x− 4).

Observe that we can take these points in any other order. Since, as we know, P [x1, . . . , xi] does not
change if we permute its argument, we can use already calculated divided difference to write the
result in different ways. For example

P (x) = P [4] + P [4, 2](x− 4) + P [4, 2, 1](x− 4)(x− 2) + P [4, 2, 1, 5](x− 4)(x− 2)(x− 1)

= 6 + 1(x− 4)− 1

3
(x− 4)(x− 2) +

1

4
(x− 4)(x− 2)(x− 1).

2. Find the Newton interpolation polynomial P (x) of degree 3 such that P (2) = 3, P (4) = 5,
P (7) = 2, P (8) = 3.

3. The leading term of the Newton interpolation polynomial P to a function f with the nodes
x0, x1, . . . xn is

f [x0, x1, · · · , xn]xn.
Using this, show that

f [x0, x1, · · · , xn] =
f (n)(ξ)

n!

for some ξ in the interval spanned by x0, x1, . . . xn. (All the nodes x0, x1, . . . xn are assumed to
be distinct.)

Solution. Taking the nth derivative of the polynomial P , only the derivative of the leading term
survives. That is,

P (n)(x) = n!f [x1, x2, · · · , xn].
On the other hand, f(x) − P (x) has at least n + 1 zeros, x0, x1, . . . xn. Hence f (n)(x) − P (n)(x)
has at least one zero in the interval spanned by x0, x1, . . . xn. Writing ξ for such a zero, we have

0 = f (n)(ξ)− P (n)(ξ) = f (n)(ξ)− n!f [x1, x2, · · · , xn].
Omitting the middle member of these equations and solving the remaining equality, we obtain

f [x1, x2, · · · , xn] =
f (n)(ξ)

n!
.

as we wanted to show. (Note: This result is stated as a lemma in the next section, Section 7 on
Hermite interpolation.)
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7. HERMITE INTERPOLATION

Hermite interpolation refers to interpolation where at some of the interpolation points not only the
value of the function is prescribed, but also some of its derivatives. In the most general formulation
of the problem, assume we are given pairwise distinct points x1, x2, . . . , xn, and for each i with
1 ≤ i ≤ n, let a number mi > 0 be given. Given a function f , we are looking for a polynomial P
such that

(1) P (l)(xi) = f (l)(xi) (1 ≤ i ≤ n, and 0 ≤ l < mi)

Intuitively, the number mi specifies how many values (including the value of the function itself and
perhaps some of its derivatives) are prescribed at the point xi. The lowest degree of the polynomial
for which these equations are solvable is one less than the number of equations, that is, the degree
of P must be at least

N =

n
∑

i=1

mi − 1.

The Newton interpolation polynomial of gives a fairly easy way of solving this problem. The idea is
to replace each interpolation point xi by mi distinct closely situated points, and take the limiting
case when these points all approach xi.

To figure out how this works, we need the following simple

Lemma. Given an interval [a, b] and a positive integer n, let f be a function that is continuous
in [a, b] and has at least n derivatives in the interval (a, b). Let x0, x1, . . . , xn be n + 1 distinct
points in the interval [a, b]. Then there is a number ξ ∈ (a, b) such that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ).

Proof. Let P be the Newton interpolation polynomial interpolating f at the points x0, x1, . . . ,
xn. That is

P (x) =

n
∑

i=0

f [x0, · · ·xi]
i−1
∏

j=0

(x− xj).

Then the function f(x) − P (x) has at least n + 1 zeros in the interval [a, b]. Thus, similarly as in
the argument used to evaluate the error of the Lagrange interpolation, there is a ξ ∈ [a, b] such that

f (n)(ξ)− P (n)(ξ) = 0.

Here P is a polynomial of degree n; hence its nth derivative is n! times its leading coefficient. That
is

f (n)(ξ)− n!f [x0, . . . xn] = 0.

This is clearly equivalent to the equation we wanted to prove.

An easy consequence of this Lemma is the following: If f (n) is continuous at a then

(2) lim
x0→a
x1→a
. . . . .
xn→a

f [x0, x1, . . . , xn] =
1

n!
f (n)(a);

in the limit on the left-hand side, we need to assume that x0, x1, . . . , xn are pairwise distinct while
approaching a, in order that the divided difference on the left-hand side be defined.
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Motivated by the above Lemma, we can define the n-fold divided difference f [x, x, · · · , x] (x taken
n times) as

f [x, x, · · · , x] = 1

(n− 1)!
f (n−1)(x)

provided that the derivative on the right-hand side exists. Taking this into account, we can extend
the definition of the divided difference to the case when several points agree. When x1 and xi are
different, we can still use the formula

f [x1, · · · , xi−1, xi] =
f [x2, · · ·xi]− f [x1, · · · , xi−1]

xi − x1
,

That is, given arbitrary points x1, . . . , xn that are no longer assumed to be pairwise distinct, we
define the divided differences by first assuming that x1 ≤ x2 ≤ . . . ≤ xn. For any t1, . . . ti with
t1 ≤ t2 ≤ . . . ≤ ti we put f [t1] = f(t1) for i = 1, and for i > 1 we use a recursive defininition: we
write

(3) f [t1, t2, · · · , ti] =
1

(i− 1)!
f (i−1)(t1) if t1 = ti,

and

(4) f [t1, · · · , ti−1, ti] =
f [t2, · · · ti]− f [t1, · · · , ti−1]

ti − t1
if t1 6= ti.

Finally, if i1, i2, . . . , ik is a permutation of the numbers 1, 2, . . . , k then we put

(5) f [ti1 , ti2 , . . . , tik ] = f [t1, t2, . . . , tk].

With this definition, writing

(6) P[i1,... ,in](x) =

n
∑

k=1

f [xi1 , · · · , xik ]
k−1
∏

j=1

(x− xij )

for any permutation i1, i2, . . . , in of the numbers 1, 2, . . . , n, we have

(7) P[i1,... ,in](x) = P[1,... ,n](x)

for all x, i.e., the polynomial P[i1,... ,in] does not depend on the permutation i1, i2, . . . , in.
In order to prove this result, we may assume that f is continuously differentiable n times at each

of the points x1, . . . , xn. Indeed, if this is not already the case, then we can replace f by a function
g with n continuous derivatives at these points such that g(l)(xk) = f (l)(xk) for all those k and l
with 1 ≤ k ≤ n and 1 ≤ l ≤ n for which the right-hand side exists. This will not change any of
the divided differences. Making this assumption (about the continuity of the derivatives), we will
define the divided differences in a different way, and then we will show that with new this definition
formulas (3)–(7) are satisfied. Assuming that the points t1, t2, . . . , ti (i ≤ n) come from among the
points x1, x2, . . . , xn, we put

(8) f [t1, t2, . . . , ti] = lim
y1→t1
y2→t2. . . . .
yi→ti

f [y1, y2, . . . , yi];

in the limit on the right-hand side, we need to assume that y1, y2, . . . , yi are pairwise distinct while
approaching t1, t2, . . . , ti, respectively, in order that the divided difference on the right-hand side
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be defined. It is not immediately clear that the limit on the right-hand side exists, but if it does, it
is clear that the limit also exists and is the same if we permute the points t1, t2, . . . , ti, since in a
divided difference with distinct arguments the points can be permuted. This establishes (5) as long
as we can show that the limit on the right-hand side exists if t1 ≤ t2 ≤ . . . ≤ ti. Assuming that
indeed t1 ≤ t2 ≤ . . . ≤ ti, if t1 = ti the existence of the limit and the validity of (3) follows from (2),
and if t1 < ti then the existence of the limit and the validity (4) follows by induction on i and the
definition of divided differences for pairwise distinct arguments.

This also establishes (7), since, according to (8), the polynomial interpolating at the points xi1 ,
. . . , xin defined in (6) can be obtained as the limit of the polynomial interpolating at y1, . . . , yn as
y1 → xi1 , . . . , yn → xin for pairwise distinct y1, . . . , yn; so we may simply write P (x) instead of
P[i1,... ,in](x). If t1, . . . , tn is a permutation of the points x1, . . . , xn such that t1 = . . . = tk, then
according to (3) we have

P (x) =
n
∑

i=1

f [t1, · · · , ti]
i−1
∏

j=1

(x− tj)

=

k
∑

i=1

1

(i− 1)!
f (i−1)(t1)(x− t1)

i + (x− t1)
k

n
∑

i=k+1

f [t1, · · · , ti]
i−1
∏

j=k+1

(x− tj).

This shows that for l with 0 ≤ l < k we have P (l)(t1) = f (l)(t1); that is, the relation analogous to (1)
is satisfied – note that the notation used now is different from the one used in (1) (in fact, there
we assumed that the points x1, . . . , xn were pairwise distinct, whereas here we do not make this
assumption). This shows that the polynomial P (x) defined here is indeed the Hermite interpolation
polynomial.

One can also show that, with this extended definition of divided differences, the Lemma above
remains valid even if the points x0, . . . , xn are not all distinct but at least two of them are different,
except that one needs to assume appropriate differentiability of f even at the endpoints a or b in
case these points are repeated in the divided difference f [x0, x1, . . . , xn], to ensure that this divided
difference is defined. The proof is identical to the proof given above.

Problems

1. Find the Newton-Hermite interpolation polynomial P (x) such that P (2) = 3, P ′(2) = 6,
P ′′(2) = 4, P (4) = 5 P ′(4) = 7.

Solution. We have P [2] = 3 and P [4] = 5. Further

P [2, 2] =
P ′[2]

1!
= 6,

P [2, 2, 2] =
1

2
P ′′(2) = 2

P [2, 4] =
P [4]− P [2]

4− 2
=

5− 3

4− 2
= 1,

P [4, 4] =
P ′[4]

1!
= 7,

P [2, 2, 4] =
P [2, 4]− P [2, 2]

4− 2
=

1− 6

4− 2
= −5

2
,

P [2, 4, 4] =
P [4, 4]− P [2, 4]

4− 2
=

7− 1

4− 2
= 3,
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P [2, 2, 2, 4] =
P [2, 2, 4]− P [2, 2, 2]

4− 2
=

− 5
2 − 2

4− 2
= −9

4
,

P [2, 2, 4, 4] =
P [2, 4, 4]− P [2, 2, 4]

4− 2]
=

3−
(

− 5
2

)

4− 2
=

11

4
,

P [2, 2, 2, 4, 4] =
P [2, 2, 4, 4]− P [2, 2, 2, 4]

4− 2
=

11
4 −

(

− 9
4

)

4− 2
=

20

8
=

5

2

Hence we can write the Newton-Hermite interpolation polynomial as

P (x) = P [2] + P [2, 2](x− 2) + P [2, 2, 2](x− 2)(x− 2) + P [2, 2, 2, 4](x− 2)(x− 2)(x− 2)

+ P [2, 2, 2, 4, 4](x− 2)(x− 2)(x− 2)(x− 4) = 3 + 6(x− 2) + 2(x− 2)2

− 9

4
(x− 2)3 +

5

2
(x− 2)3(x− 4).

We can step through the coefficients in any other order. For example

P (x) = P [2] + P [2, 4](x− 2) + P [2, 4, 2](x− 2)(x− 4) + P [2, 4, 2, 4](x− 2)(x− 4)(x− 2)

+ P [2, 4, 2, 4, 2](x− 2)(x− 4)(x− 2)(x− 4) = 3 + (x− 2)− 5

2
(x− 2)(x− 4)

+
11

4
(x− 2)2(x− 4) +

5

2
(x− 2)2(x− 4)2.

Note that, in evaluating the coefficients here, the order of the points does not make any difference;
that is, P [2, 4, 2, 4] = P [2, 2, 4, 4], and the latter was evaluated above.

2. Find the Newton-Hermite interpolation polynomial P (x) such that P (1) = 3, P ′(1) = 6,
P (3) = 6, P ′(3) = 5 P ′′(3) = 8, P(4)=5.

8. THE ERROR OF THE NEWTON INTERPOLATION POLYNOMIAL

The Newton interpolation formula describes the same polynomial as the Lagrange interpolation
formula, so the error term for the Newton interpolation formula should be the same. Yet the Newton
interpolation formula allows us to contribute to the discussion of the error of interpolation. Given
distinct base points x1, . . . , xn, the Newton interpolation polynomial P (t) on these points can be
written as

P (t) =

n
∑

i=1

f [x1, · · · , xi]
i−1
∏

j=1

(t− xj).

If we add the point x to the interpolation points, the polynomial Q(t) interpolating f at the points
x, x1, . . . , xn can be written as

Q(t) = P (t) + f [x1, · · · , xn, x]
n
∏

j=1

(t− xj).

Clearly, Q(x) = f(x), since x is one of the interpolation points for Q(t). Thus, the error

E(x) = f(x)− P (x)
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at x of the interpolating polynomial P can be written as

(1) E(x) = Q(x)− P (x) = f [x, x1, · · · , xn]
n
∏

j=1

(x− xj),

where, noting that the order of arguments in immaterial in the divided differences, we wrote x as
the first argument. In view of the Lemma in Section 7 on Hermite interpolation, we have

(2) E(x) =
f (n)(ξ)

n!

n
∏

j=1

(x− xj)

for some ξ in the open interval spanned by the points x, x1, . . . , xn, assuming that f is n times
differentiable in this open interval and is continuous in the closed interval spanned by these points.

Sometimes we need to differentiate the error term in (2). Since the dependence of ξ on x is not
known, this cannot be done directly. However, formula (1) can provide a starting point. In fact, we
have

Lemma. Let n ≥ 1 be an integer, and let x0, x1, . . . , xn be pairwise distinct points, and that
f ′(x0) exists. Then

d

dx
f [x, x1, . . . , xn]

∣

∣

∣

x=x0

= f [x0, x0, x1, . . . , xn]

Remark. The assumption that the points x0, x1, . . . , xn be pairwise distinct can be omitted
the price of additional differentiability requirements to make sure that the divided difference on the
right-hand side is defined. As long as the right-hand side is meaningful, the statement in the Lemma
is true. We will restrict the main discussion to the case of distinct points, and then describe what
modifications are needed to establish the result in case the points are not necessarily distinct.

Proof. Let t be a point such that t 6= xi for i with 0 ≤ i ≤ n, and Qt(u) be the interpolation
polynomial that interpolates f(u) at the points t, and x0, x1, . . . xn. Write

P (x) = lim
t→x0

Qt(x).

First, we need to show that this limit exists. To this end, note that for any k with 1 ≤ k ≤ n the
limit

Ck = lim
t→x0

f [t, x0, x1, . . . xk] = lim
t→x0

f [t, x1, . . . xk]− f [x0, x1, . . . xk]

t− x0
=

d

dx
f [x, x1, . . . , xk]

∣

∣

∣

x=x0

exists. Indeed, f [x, x1, . . . , xn] can be written as a fraction with the numerator being a polynomial
of x and f(x), with coefficients depending on x1, . . . xn, and f(x1), . . . , f(xn), and the denominator
being a product of differences of the form x− xi and xi − xj for 1 ≤ i, j < k (i 6= j). Since none of
these differences is zero, and since f(x) is differentiable at x0, the existence of the derivative on the
right-hand side follows.

Thus, in the Newton interpolation formula22

Qt(x) = f [x0] + f [x0, t](x− x0) + (x− x0)(x− t)

n
∑

k=1

f [x0, t, x1, . . . , xk]

k−1
∏

j=1

(x− xj)

22We often use the fact that in the divided differences, the order of the arguments is immaterial; so, while above
we used the order t, x0, next we use the order x0, t.
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the coefficients converge when t → x0. Using the simple equation limt→x0
f [x0, t] = f ′(x0) and

making t→ x0, we obtain

P (x) = lim
t→x0

Qt(x) = f(x0) + f ′(x0)(x− x0) + (x− x0)
2

n
∑

k=1

Ck

k−1
∏

j=1

(x− xj)

with the Ck’s just defined. It is clear from here that P (x0) = f(x0) and P
′(x0) = f ′(x0). Further-

more, we have Qt(xi) = f(xi) for any i with 1 ≤ i ≤ n, and so P (xi) = f(xi). Thus P (x) is the
Newton-Hermite polynomial interpolating f at the points x0, x0 (twice), x1, x2, . . . , xn.

23 Hence,
we also have

P (x) = f [x0] + f [x0, x0](x− x0) + (x− x0)
2

n
∑

k=1

f [x0, x0, x1, . . . xk]

k−1
∏

j=1

(x− xj).

The coefficients in these two representations of P (x) are equal. In particular, the leading coefficients
are equal; that is

Cn = f [x0, x0, x1, . . . xn].

Comparing this with the definition of Ck for k = n, the assertion of the lemma follows.

One can easily extend the above argument to establish the result when some of the points xi
are repeated. First, in the limit expressing Ck above, various derivatives of f may occur, but the
existence of the limit still can easily be established. Second, if x0 is equal to some of the xi for i > 0,
then some additional effort needs to be made to show that the right-hand side of the first formula
describing P (x) indeed represents a polynomial interpolating f at the points x0, x0, x1, x2, . . . , xn
(since the point x0 is repeated more than twice in this case, we need to show that the derivates of
order higher than one of f(x) and P (x) agree at x = x0).

As a consequence, we have the following

Theorem (A. Ralston).24 Let the points x1 < x2 < . . . < xn, and assume x ∈ (x1, xn), and
assume that x 6= xi for 1 ≤ i ≤ n. Assume f is continuous in [x1, xn] and that f (n+1) exists in
[x1, xn]. Let ξ ∈ (x1, xn) be such that formula (2) for the error of the interpolation polynomial at x
is satisfied with ξ; then ξ depends on x. We have

d

dx
f (n)(ξ) =

f (n+1)(η)

n+ 1

for some η ∈ (x1, xn).

Proof. We have
f (n)(ξ) = n!f [x, x1, x2, . . . , xn]

according to the definition of ξ, in view of (1) and (2) above. The Lemma just proved implies that

d

dx
f (n)(ξ) = n!

d

dx
f [x, x1, x2, . . . , xn] = n!f [x, x, x1, x2, . . . , xn].

Observing that Lemma in Section 7 on Hermite interpolation can easily be extended to the case
when the point x is repeated, one can conclude that the right-hand side here equals

d

dx
f (n)(ξ) =

f (n+1)(η)

n+ 1

23As before, taking the point x0 twice just means that we require both of the equations P (x) = f(x) and P ′(x) =

f ′(x).
24See A. Ralston, [Ral].
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for some η ∈ (x1, xn), as claimed.
Indeed, when we stated the Lemma in question in Section 7, divided differences with repeated

points had not yet been defined, so it was not possible to state the lemma with points repeated.
In light of the later definition given for divided differences with points repeated, no essential mod-
ifications need to be made in the proof. If in that lemma we assume that x0 = x1, the function
f(x) − P (x) will have a double zero at x = x0, and so f ′(x) − P ′(x) will still have a single zero at
x0; n− 1 further zeros of f ′(x)−P ′(x) will be guaranteed by Rolle’s theorem, resulting in the same
zero count of n for f ′(x)− P ′(x) as in the case when the points x0, x1, . . . , xn are all distinct.

Remark. If x = xi for some i with 1 < i < n, then f (n)(ξ) is not determined by (2). This is
the main reason that x = xi is not allowed in the Theorem. Furthermore, if x = xi for some i, then
the derivative of E(x) in (2) does not depend on the derivative of f (n)(ξ) (since this derivative is
multiplied by

∏n
j=1(x− xj) in the derivative of E(x)).

9. FINITE DIFFERENCES

We will consider interpolation when the interpolation points are equally spaces. Given h > 0, let
xk = x0 + kh for every integer. We will introduce the operators I, E, ∆, and ∇, called, in turn,
identity, forward shift, forward difference, and backward difference operators with the following
meanings:

(If)(x) = f(x), (Ef)(x) = f(x+ h), (∆f)(x) = f(x+ h)− f(x), (∇f)(x) = f(x)− f(x− h).

We will write E−1 for the inverse of the operator E:

(E−1f)(x) = f(x− h).

We will drop some of these parentheses; e.g., we will write ∆f(x) instead of (∆f)(x). These operators
will multiply in a natural way. For example, ∆0f(x) = f(x) and, for any integer k ≥ 0 we have

∆k+1f(x) = ∆(∆kf(x)) = ∆kf(x+ h)−∆kf(x).

One can write ∆ = E − I. Using the Binomial Theorem, we have

∆n = (E − I)n = (E + (−1)I)n =
n
∑

i=0

(

n

i

)

(−1)n−iEi.

Applying this to a function f we obtain

∆nf(x) = (E − I)nf(x) = (E + (−1)I)nf(x)

=
n
∑

i=0

(

n

i

)

(−1)n−iEif(x) =
n
∑

i=0

(

n

i

)

(−1)n−if(x+ ih).

This calculation appears to be purely formal, but it is not hard to justify the operator calculus on
algebraic grounds. In fact, let A and B be two operators acting on functions on the real line, let r
be a real number, and let f be a function on reals. Writing

[(A+B)f ](x)
def
= [Af ](x) + [Bf ](x), [(rA)f ](x)

def
= r[Af ](x), [(AB)f ](x)

def
= [A(Bf)](x),
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the operators will form a noncommutative ring. In justifying the Binomial Theorem above for
operators, the only thing one needs to notice that the operators E and I commute (because EI =
IE = E). The standard arguments used to establish the Binomial Theorem shows that we have

(A+B)n =

n
∑

i=1

(

n

i

)

AiBn−i

whenever the operators A and B commute.

There are other uses of the Binomial Theorem. For example, we have E = ∆+ I. Hence

En = (∆ + I)n =

n
∑

i=1

(

n

i

)

∆i

Applying this to a function f , we obtain

f(x+ nh) = Enf(x) =
n
∑

i=1

(

n

i

)

∆if(x).

This is called Newton’s forward formula. Similarly, E−1 = (I −∇). Thus

E−n = (I + (−1)∇)n =

n
∑

i=1

(

n

i

)

(−1)i∇i.

Applying this to f , we obtain

f(x− nh) = E−nf(x) =
n
∑

i=1

(

n

i

)

(−1)i∇if(x).

We have ∇ = E−1∆. As ∇ and E−1 commute, we have

∇if(x) = ∆iE−if(x) = ∆if(x− ih).

Hence the above formula can also be written as

f(x− nh) = E−nf(x) =
n
∑

i=1

(

n

i

)

(−1)i∆if(x− ih).

Problem

1. Express ∆3f(x) as a linear combination of f(x), f(x+ h), f(x+ 2h), and f(x+ 3h).

Solution. We have

∆3f(x) = (E − I)3f(x) = (E3 − 3E2 + 3E − I)f(x) = f(x+ 3h)− 3f(x+ 2h) + 3f(x+ h)− f(x).
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10. NEWTON INTERPOLATION WITH EQUIDISTANT POINTS.

Let a point x0 be given, and let h > 0. Consider the points xt = x0 + th for a real t with

−∞ < t < ∞. Given a function f on reals, write ft
def
= f(xt) and ∆kft

def
= ∆kf(xt). We will be

particularly interested in integer values of t, and we will consider interpolating f on the consecutive
points xi, xi+1, . . . , xi+n for integers n ≥ 0 and k. Denoting by P the interpolating polynomial on

these points, we will write Pt
def
= P (xt) and ∆kPt

def
= ∆kP (xt), similarly as for f .

In order to calculate the Newton interpolation polynomial, first we show that

(1) f [xi, xi+1, . . . , xi+k] =
1

k!hk
∆kfi.

for integers k ≥ 0 and i.
In fact, it is easy to show this by induction on k. For k = 0 the result is obvious:

f [xi] = f(xi) = fi =
1

0!h0
∆0fi,

since 0!=1 and ∆0 is the identity operator. Now, assume that k ≥ 1 and that (1) holds with k − 1
replacing k. Then, using the definition of divided differences, we have

f [xi, xi+1, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi

=

1
(k−1)!hk−1 (∆

k−1fi+1 −∆k−1fi)

kh
=

1

k!hk
∆∆k−1fi =

1

k!hk
∆kfi

Thus (1) is established.
Using this, the Newton interpolation formula on the points x0, x1, . . . , xn can be written as

follows.

Pt = P (x0 + th) =

n
∑

i=0

f [x0, x1, . . . xi]

i−1
∏

j=0

(xt − xj) =

n
∑

i=0

1

i!hi
(

∆if0
)

i−1
∏

j=0

(t− j)h

Since h occurs in each factor of the product on the right-hand side, this produces a factor of hi,
which can be canceled against 1/hi before this product. We define the binomial coefficient

(

t
i

)

as

(2)

(

t

i

)

def
=

i−1
∏

j=0

t− j

i− j
=

1

i!

i−1
∏

j=0

(t− j)

for real t and nonnegative integer i; note that this definition agrees with the customary definition of
the binomial coefficient

(

t
i

)

if t is also an integer. With this, the above formula becomes

Pt =
n
∑

i=0

(

t

i

)

∆if0.

This is Newton’s forward formula. This formula uses the interpolation points x0, x1, . . . , xn.
If t is an integer with 0 ≤ t ≤ n, then xt is one of the interpolation points; that is, we have
ft = f(xt) = P (xt) = Pt. Hence

ft =
n
∑

i=0

(

t

i

)

∆if0 if t is an integer with 0 ≤ t ≤ n
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Recall that when interpolating through a sequence of points, one can take these points in any order
in the Newton interpolation formula. Assume that we step through some of the points xj in the
order xi0 , xi1 , . . . , xin . Then Newton’s interpolation formula becomes

Pt =
n
∑

k=0

f [xi0 , xi1 , . . . xik ]
k−1
∏

j=0

(xt − xij ) =
n
∑

k=0

f [xi0 , xi1 , . . . xik ]h
k
k−1
∏

j=0

(t− ij).

If we want to be able to use formula (1) for the divided differences, we need to make sure that the
points xi0 , xi1 , . . . , xik are consecutive for any integer k with 0 ≤ k ≤ n.25 That is, for k > 0 we
must have

ik = max(i0, . . . ik−1) + 1 or ik = min(i0, . . . ik−1)− 1.

We have

{i0, . . . ik} = {j : ik − k ≤ j ≤ ik} and {i0, . . . ik−1} = {j : ik − k ≤ j ≤ ik − 1}

in the former case, and

{i0, . . . ik} = {j : ik ≤ j ≤ ik + k} and {i0, . . . ik−1} = {j : ik + 1 ≤ j ≤ ik + k}

in the latter case.26 Since the value of the divided differences is independent of the order the points
are listed, it is easy to see from (1) and (2) that we have

f [xi0 , xi1 , . . . xik ]
k−1
∏

j=0

(t− ij) = hk
(

t− ik + k

k

)

∆kfik−k,

the former case, and

f [xi0 , xi1 , . . . xik ]

k−1
∏

j=0

(t− ij) = hk
(

t− ik − 1

k

)

∆kfik ,

Note that these formulas work even in the case k = 0, since
(

u
0

)

= 1 for any real u.27 Thus, we have

Pt =

n
∑

k=0























(

t− ik + k

k

)

∆kfik−k if ik = max(i0, . . . ik−1) + 1 or k = 0,

(

t− ik − 1

k

)

∆kfik if ik = min(i0, . . . ik−1)− 1.























.

With ik = k for each k with 0 ≤ k ≤ n this gives Newton’s forward formula above. The choice
ik = −k for each k with 0 ≤ k ≤ n gives Newton’s backward formula:

Pt =
n
∑

k=0

(

t+ k − 1

k

)

∆kf−k.

25Of course, this requirement is vacuous for k = 0.
26These equalities are equalities of sets, meaning that on either side the same integers are listed, even though the

order they are listed is probably not the same.
27The empty product in (2) is 1 by convention. Thus, in the formula next, case k = 0 could have been subsumed

in either of the alternatives given in the formula, since the binomial coefficient is 1 for k = 0 in both cases.
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The choice i0 = 0, i2m−1 = m and i2m = −m m ≥ 1, i.e., when the sequence i0, i1, . . . start out as
0, 1, −1, 2, −2, 3 gives the formula

Pt = f0 +

n
∑

m=0

((

t+m− 1

2m− 1

)

∆2m−1f−m+1 +

(

t+m− 1

2m

)

∆2mf−m

)

if the points x0,. . . , x2n are used to interpolate, or

Pt = f0 +
n−1
∑

m=0

((

t+m− 1

2m− 1

)

∆2m−1f−m+1 +

(

t+m− 1

2m

)

∆2mf−m

)

+

(

t+ n− 1

2n− 1

)

∆2n−1f−n+1

if the points x0,. . . , x2n−1 are used to interpolate (n > 0). This is called Gauss’s forward formula.
It starts out as

Pt = f0 +

(

t

1

)

∆f0 +

(

t

2

)

∆2f−1 +

(

t+ 1

3

)

∆3f−1 +

(

t+ 1

4

)

∆4f−2 + . . . .

The choice i0 = 0, i2m−1 = −m and i2m = m m ≥ 1, i.e., when the sequence i0, i1, . . . start out as
0, −1, 1, −2, 2, −3,. . . gives the formula

Pt = f0 +

n
∑

m=0

((

t+m− 1

2m− 1

)

∆2m−1f−m +

(

t+m

2m

)

∆2mf−m

)

if the points x0,. . . , x2n are used to interpolate, or

Pt = f0 +
n−1
∑

m=0

((

t+m− 1

2m− 1

)

∆2m−1f−m +

(

t+m− 1

2m

)

∆2mf−m

)(

t+ n− 1

2n− 1

)

∆2n−1f−n

if the points x0,. . . , x2n−1 are used to interpolate (n > 0). This is called Gauss’s backward formula.
It starts out as

Pt = f0 +

(

t

1

)

∆f−1 +

(

t+ 1

2

)

∆2f−1 +

(

t+ 1

3

)

∆3f−2 +

(

t+ 2

4

)

∆4f−2 + . . . .

11. THE LAGRANGE FORM OF HERMITE INTERPOLATION

We consider the following special case of Hermite interpolation. Let n and r be a positive integer
with r ≤ n, and let x1, x2, . . . , xn be distinct points. We want to find a polynomial P (x) such
that P (x) = f(x) for i with 1 ≤ x ≤ n, and P ′(x) = f ′(x) for i with 1 ≤ x ≤ r. There are n + r
conditions here, and the lowest degree polynomial satisfying these condition has degree n + r − 1.
For this polynomial we have

(1) P (x) =

n
∑

j=1

f(xj)hj(x) +

r
∑

j=1

f ′(xj)h̄j(x),

where, writing

ljn(x) =

n
∏

i=1
i6=j

x− xi
xj − xi

(1 ≤ j ≤ n),
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ljr(x) =
r
∏

i=1
i6=j

x− xi
xj − xi

(1 ≤ j ≤ r),

and

pn(x) =

n
∏

i=1

(x− xi) and pr(x) =

r
∏

i=1

(x− xi),

we have

(2) hj(x) =

{

(1− (x− xj)
(

l′jr(xj) + l′jn(xj)
)

ljr(x)ljn(x) if 1 ≤ j ≤ r,

ljn(x)
pr(x)
pr(xj)

if r < j ≤ n.

and

(3) h̄j(x) = (x− xj)ljr(x)ljn(x) if 1 ≤ j ≤ r.

To see this, first note that we have

(4) hj(xi) = 0 if i 6= j (1 ≤ i, j ≤ n).

This is because ljn(xi) = 0 in this case, and both expressions on the of (2) are multiplied by ljn(x).
Further, note that

(5) hj(xj) = 1 (1 ≤ j ≤ n).

This is immediate by (2) in case r < j ≤ n, since ljn(xj) = 1. In case 1 ≤ j ≤ r, by (2) we have

hj(xj) = ljr(xj)ljn(xj) = 1 · 1 = 1.

Next, observe that

(6) h′j(xi) = 0 (1 ≤ i ≤ r and 1 ≤ j ≤ n).

Indeed, if r < j ≤ n, then ljn(x) = 0 and pr(x) = 0 for x = xi; that is, each of these polynomials is
divisible by (x− xi). Hence hj(x) is divisible by (x− xi)

2 according to (2); therefore h′j(xi) = 0 as
we wanted to show. A similar argument works in case 1 ≤ j ≤ r and i 6= j. In this case ljr(x) and
ljn(x) are each divisible by (x − xi). Hence hj(x) is again divisible by (x − xi)

2 according to (2);
therefore h′j(xi) = 0 again.

Finally, consider the case i = j (when 1 ≤ j ≤ r). We have

h′j(x) =
(

−l′jr(xj)− l′jn(xj)
)

ljr(x)ljn(x)

+ (1− (x− xj)(l
′
jr(xj) + l′jn(xj))l

′
jr(x)ljn(x))

+ (1− (x− xj)(l
′
jr(xj) + l′jn(xj))ljr(x)l

′
jn(x)).

Substituting x = xj and noting that ljr(xj) = 1 and ljn(xj) = 1, it follows that

h′j(xi) = h′j(xj) =
(

−l′jr(xj)− l′jn(xj)
)

+ l′jr(xj) + l′jn(xj) = 0;

thus (6) follows.
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Further, note that28

(7) h̄′j(xi) = δij (1 ≤ i, j ≤ r)

Indeed, according to (3) we have

h̄j(x) = ljr(x)ljn(x) + (x− xj)l
′
jr(x)ljn(x) + (x− xj)ljr(x)l

′
jn(x)

For x = xj this gives
h̄′j(xj) = ljr(xj)ljn(xj) = 1 · 1 = 1.

On the other hand, for x = xi with i 6= j the above equality implies h̄′j(xj) = 0, because ljr(xi) =
ljn(xi) = 0 in this case. Thus (7) follows.

Using (1) and (4)–(7), we can easily conclude that P (xi) = f(xi) for i with 1 ≤ i ≤ n and
P ′(xi) = f ′(xi) for i with 1 ≤ i ≤ r. Thus P is indeed the interpolation polynomial we were looking
for.

Problems

1. Find the Hermite interpolating polynomial P (x) in the Lagrange form such that P (1) = 3,
P ′(1) = 5, P (3) = 4, P ′(3) = 2, and P (4) = 7.

Solution. Writing x1 = 1, x2 = 3, and x3 = 4, we have n = 3, r = 2, and

p3(x) = (x− 1)(x− 3)(x− 4) and p2(x) = (x− 1)(x− 3).

First, we are going to calculate h1(x). We have

l13(x) =
(x− 3)(x− 4)

(1− 3)(1− 4)
=

(x− 3)(x− 4)

6
,

l′13(1) =
(x− 4) + (x− 3)

6

∣

∣

∣

∣

x=1

=
2x− 7

6

∣

∣

∣

∣

x=1

= −5

6
,

and

l12(x) =
x− 3

1− 3
= −x− 3

2
and l′12(1) = −1

2
.

Thus

h1(x) = (1− (x− 1)(l′13(1) + l′12(1))l13(x)l12(x)

=

(

1− (x− 1)

(

−5

6
− 1

2

))(

−x− 3

2

)

(x− 3)(x− 4)

6
= − (4x− 1)(x− 3)2(x− 4)

36
.

Next, we are going to calculate h2(x). We have

l23(x) =
(x− 1)(x− 4)

(3− 1)(3− 4)
= − (x− 1)(x− 4)

2
,

l′23(3) = − (x− 1) + (x− 4)

2

∣

∣

∣

∣

x=3

= −2x− 5

2

∣

∣

∣

∣

x=3

= −1

2
,

28δij , called Kronecker’s delta, is defined to be 1 is i = j and 0 if i 6= j.
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and

l22(3) =
x− 1

3− 1
=
x− 1

2
and l′22(3) =

1

2
.

Thus

h2(x) = (1− (x− 3)(l′23(3) + l′22(3))l23(x)l22(x)

=

(

1− (x− 1)

(

−1

2
+

1

2

))

x− 1

2

(

− (x− 1)(x− 4)

2

)

= − (x− 1)2(x− 4)

4
.

The formula for, hence the calculation of, h3(x), is simpler:

h3(x) = l33(x)
p2(x)

p2(4)
=

(x− 1)(x− 3)

(4− 1)(4− 3)
· (x− 1)(x− 3)

(4− 1)(4− 3)
=

(x− 1)2(x− 3)2

9
.

The formula for h̄1(x) is also simple:

h̄1(x) = (x− 1)l12(x)l13(x) = (x− 1) · x− 3

1− 3
· (x− 3)(x− 4)

(1− 3)(1− 4)
= − (x− 1)(x− 3)3(x− 4)

12
.

Similarly for h̄2(x):

h̄2(x) = (x− 3)l22(x)l23(x) = (x− 3) · x− 1

3− 1
· (x− 1)(x− 4)

(3− 1)(3− 4)
= − (x− 1)2(x− 3)(x− 4)

4
.

So

P (x) = 3h1(x) + 4h2(x) + 7h3(x) + 5h̄1(x) + 2h̄2(x) = −3
(4x− 1)(x− 3)2(x− 4)

36

− 4
(x− 1)2(x− 4)

4
+ 7

(x− 1)2(x− 3)2

9

− 5
(x− 1)(x− 3)3(x− 4)

12
− 2

(x− 1)2(x− 3)(x− 4)

4
=

= − (4x− 1)(x− 3)2(x− 4)

12
− (x− 1)2(x− 4) + 7

(x− 1)2(x− 3)2

9

− 5
(x− 1)(x− 3)3(x− 4)

12
− (x− 1)2(x− 3)(x− 4)

2
.

2. Find the Hermite interpolating polynomial P (x) in the Lagrange form such that P (2) = 5,
P ′(2) = 2, P (4) = 3, P (5) = 4, and P ′(5) = 6.

Hint. In order to use (1), we may take n = 3, r = 2, and x1 = 2, x2 = 5, x3 = 4. (Listing the
points in the natural order as x1 = 2, x2 = 4, x3 = 5 would not work, since the derivatives of P are
specified at the first r points of the given n points. Of course it is possible to modify formula (1) in
an appropriate way and then take the points in the natural order.)
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12. SOLUTION OF NONLINEAR EQUATIONS

Bisection. Assume f is a continuous function, and f(x1)f(x2) < 0.29 Then, by the Intermediate
Value Theorem, the equation f(x) = 0 must have at least one solution in the interval (x1, x2). Such a
solution may be approximated by successive halving of the interval. Namely, if x3 = (x1+x2)/2, and
f(x1)f(x3) < 0 then one of these solutions must be in the interval (x1, x3), and if f(x1)f(x3) > 0,
then there must be a solution in the interval (x3, x2); of course if f(x1)f(x3) = 0 then x3 itself is
a solution. By repeating this halving of the interval, a root can be localized in successively smaller
intervals. There is no guarantee that all roots are found this way, since both of the intervals (x1, x3)
and (x3, x2) may contains roots of the equation f(x) = 0.

Newton’s method. If f is differentiable and x1 is an approximate solution of the equation
f(x) = 0 then a better approximation might be obtained by drawing the tangent line to f at x1 and
taking the new approximation x2 to be the point where the tangent line intersects the x axis. The
equation of the tangent line to f at x1 is

y − f(x1) = f ′(x)(x− x1).

Solving this for y = 0, and writing x = x2 for the solution, we obtain

x2 = x1 −
f(x1)

f ′(x1)
.

This process can be repeated to get successively better approximations to the root.

The secant method. While Newton’s method is usually considerably faster than bisection,
its disadvantage is that the derivative of f needs to be calculated. The secant method usually is
somewhat slower than Newton’s method, but there is no need to calculate the derivative. Given two
approximations x1 and x2 to the root, the secant line, i.e., the line through the points (x1, f(x1))
and (x2, f(x2)) is drawn, and the place x3 where this line intersects the x axis is taken to be the
next approximation. The equation of the secant line is

y − f(x2) =
f(x2)− f(x1)

x2 − x1
(x− x2).

Solving this for y = 0 and writing x = x3 for the solution, we obtain

x3 = x2 − f(x2)
x2 − x1

f(x2)− f(x1)
.

This equation can also be written as

x3 =
x1f(x2)− x2f(x1)

f(x2)− f(x1)
;

however, the former equation is preferred in numerical calculations to the latter, because of the loss
of precision.30 If xn−1 and xn have been determined for n ≥ 2, then analogously, one uses the
formula

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
.

29This is just a simple way of saying that f(x1) and f(x2) have different signs.
30Loss of precision occurs when two nearly equal numbers are subtracted. Both expressions for x3 may be affected

by losses of precision, because each expression contains a number of subtractions where the result is likely be small.

However, in the former expression, only the correction term

−f(x2)
x2 − x1

f(x2)− f(x1)

is affected by losses of precision. One would expect that this correction term in small in comparison to x2, so the loss
of precision is less important than it would be if the latter formula were used.
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In the method of regula falsi,31 one similarly uses the secant line, but one tries to make sure that
successive iterations are on different sides of the root, so as to bracket the root. One starts with two
approximations x1 and x2 to the root of f(x) = 0 such that f(x1)f(x2) < 0 (which is just a short
way of saying that f(x1) and f(x2) have opposite signs). Assuming that f is continuous, then x1
and x2 enclose a solution of the equation f(x) = 0. Then one forms the sequence x1, x2, x3, . . . ,
as follows. Assuming that x1, . . . xn have already been calculated for n ≥ 2, and take i to be the
largest integer with 1 ≤ i < n such that f(xn)f(xi) < 0, and then calculated xn+1 by using the
formula

(1) xn+1 = xn − f(xn)
xn − xi

f(xn)− f(xi)

(this is just the formula above for x3 with i, n, n + 1 replacing 1, 2, 3, respectively). The trouble
with this method is that if f is convex,32 say, and x1 < x2, and further, f(x1) < 0 < f(x2), then
all the successive iterates x2, x3, . . . lie to the left of the root. That is, when xn+1 is calculated
by the above formula, we will have i = 1, and so the above formula will use x1 instead of a later,
presumably better approximation of the root. This will make the method converge relatively slowly.

The method can be speeded up by using formula (1) for the first step (even if f(x1)f(x2) > 0) with
1, 2, 3 replacing i, n, and n+1. In successive steps one uses formula (1) calculate xn+1 with i = n−1
unless we have f(xn−2)f(xn) < 0 and f(xn−1)f(xn) > 0. On the other hand, if f(xn−2)f(xn) < 0
and f(xn−1)f(xn) > 0, then one uses a modified step as follows: xn+1 is taken to be the intersection
of the straight line through the points (xn−2, αf(xn−2)) and (xn, f(xn)), where different choices
of the parameter α give rise to different methods. In the simplest choice, one takes α = 1/2; the
method so obtained is called the Illinois method. To get the equation for the “Illinois step,” write
ȳn−2 = αf(xn−2). The equation of the line through the points (xn−2, ȳn−2) and (xn, f(xn)) can be
written as

y − f(xn) =
ȳn−2 − f(xn)

xn−2 − xn
(x− xn).

Solving this for y = 0 and writing x = xn+1 for the solution, we obtain

xn+1 = xn − f(xn)
xn−2 − xn
ȳn−2 − f(xn)

.

As mentioned, here ȳn−2 = f(xn−2)/2. for the Illinois method.

Problems

1. An approximate solution of the equation f(x) = 0 with f(x) = x3 − 12x+8 is x = 3. Perform
one step of Newton’s method to find the next approximation.

31meaning false rule
32f is convex on an interval [a, b] if for any x, t ∈ [a, b] and for any λ with 0 < λ < 1 we have

f(λx+ (1− λ)t ≤ λf(x) + (1− λ)f(t).

Geometrically, this means that the chord between x and t lies above the graph of the function. Such a function in
elementary calculus courses is called concave up, but the term “concave up” is not used in the mathematical literature.
If instead we have the opposite inequality

f(λx+ (1− λ)t ≥ λf(x) + (1− λ)f(t),

i.e., when the chord is below the graph, the function is called concave (in elementary calculus courses, one used the
term “concave down.”)
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Solution. We have f ′(x) = 3x2 − 12, x1 = 3, and

x2 = x1 −
f(x1)

f ′(x1)
= x1 −

x31 − 12x1 + 8

3x21 − 12
= 3 +

1

15
≈ 3.06667.

2. Consider the equation f(x) = 0 with f(x) = 2−x+ lnx. Using Newton’s method with x0 = 3
as a starting point, find the next approximation to the solution of the equation.

Solution. We have

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

2− x0 + lnx0
1
x0

− 1
= 3− −1 + ln 3

−2/3
=

3 + 3 ln 3

2
≈ 3.14792.

The actual solution is approximately 3.14619.

3. Explain the Illinois modification of the secant method.

Solution. When solving the equation f(x) = 0, one starts with two approximations x1 and x2 for
the solution of the equation, and further approximations x3, x4,. . . are generated. In the secant step,
xn+1 is the intersection of the line connecting the points (xn−1, f(xn−1)) and (xn, f(xn)) with the x
axis. In the Illinois step, xn+1 is the intersection (xn−2, f(xn−2)/2) and (xn, f(xn)). The secant step
is performed in case of n = 3 (in this case the Illinois step cannot be performed, since the Illinois
step requires three earlier approximations), and for n > 3 it is performed when f(xn−1) and f(xn)
have different signs, or if f(xn−2), f(xn−1), and f(xn) all have the same sign. The Illinois step is
performed otherwise, i.e., when n > 3 and f(xn−1) and f(xn) have the same sign and f(xn−2) has
a different sign.

13. PROGRAMS FOR SOLVING NONLINEAR EQUATIONS

In the following C programs, the methods discussed above are used to solve the equation f(x) = 0,
where

f(x) =
1

x
− 2x.

We discuss these programs in a Linux environment (their discussion in any Unix environment would
be virtually identical). The following file funct.c will contain the definition of the function f :33

1 #include <math.h>

2

3 double funct(double x)

4 {
5 double value;

6 value = 1.0/x-pow(2.0,x);

7 return(value);

8 }
Here pow(x,y) is C’s way of writing xy. Using decimal points (as in writing 1.0 instead of 1), we

indicate that the number is a floating point constant. The numbers at the beginning of these lines
are not part of the file; they are line numbers that are occasionally useful in a line-by-line discussion

33The Perl programming language was used to mark up the computer files in this section for AMS-TEX typesetting
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of such a file. The program for bisection is in the file bisect.c, to be discussed later. The simplest
way of compiling these programs is to write a makefile. In the present case, the makefile is called
(surprise) makefile (this is the default name for a makefile), with the following content:

1 all: bisect

2 bisect : funct.o bisect.o

3 gcc -o bisect -s -O4 funct.o bisect.o -lm

4 funct.o : funct.c

5 gcc -c -O4 funct.c

6 bisect.o : bisect.c

7 gcc -c -O4 bisect.c

Line 1 here describes the file to make; namely, the file bisect. This file contains the compiled
program, and the program can be run by typing its name on the command line, that is, by typing

$ bisect

Here the dollar sign $ is the customary way of denoting the command line prompt of the computer,
even though in actual life the command line prompt is usually different.34 The second line contains
the dependencies; the file bisect to be made depends on the files funct.o and bisect.o (the .o

suffix indicates that these are object files, that is, already compiled programs – read on). The file
on the left of the colon is called the target target file, and the files on the right are called the source
files. When running the make command, by typing, say,

$ make all

on the command line, the target file is created only if it does not already exist, or if it predates at
least one of the source files (i.e., if at least one of the source files has been change since the target
file has last been created). Clearly, if the source files have not changed since the last creation of the
target file, there is no need to create the target file again. Line 3 contains the rule used to create the
target. One important point, a quirk of the make command, that the first character of line three is
a tab character (which on the screen looks like eight spaces); the rule always must start with a tab
character. The command on this line invokes the gcc compiler (the GNU C compiler) to link the
already created programs funct.o and bisect.o, and the mathematics library (described as -lm at
the end of the line). The -o option gives the name bisect to the file produced by the compiler. The
option -s gives is passed to the loader35 to strip all symbols from the compiled program, thereby
making the compiled program more compact. The option -O4 (the first character is “Oh” and not
“zero”) specifies the optimization level. Lines 4 and 6 contain the dependencies for creating the
object files funct.o and bisect.o, and lines 5 and 7 describe the commands issued to the GNU C
compiler to create these files from the source files funct.c and bisect.c. The compiler option -c

means compile but do not link the assembled source files. These latter two files need to be written
by the programmer; in fact, the file funct.c has already been described, and we will discuss the file
bisect.c next:

1 #include <stdio.h>

2 #include <math.h>

3

4 double funct(double);

5 double bisect(double (*fnct)(double),

6 double x0, double x1, double xtol,

7 int maxits, double *fatroot,

8 int *noofits, int *converged);

34Unix is highly customizable, and you can set the prompt to be almost anything at will.
35The loader links together the object programs funct.o and bisect.o, and the mathematics library invoked by

the -lm option. Apparently only linking and no compilation is done by line 3 of the makefile. The option -O4 is

probably useless on this line, since it is a compiler and not a loader option. The option -s of gcc is undocumented as
of version 2.96, but our description of it is probably correct.
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9

10 main()

11 {
12 /* This program implements the bisection method

13 for solving an equation funct(x)=0. The function

14 funct() is defined separately. */

15 const double tol=5e-10;

16 double x, fx, root;

17 int its, success;

18 root=bisect(&funct, 0.01, 1.0, tol,

19 50, &fx,

20 &its, &success);

21 if ( success == 2 ) {
22 printf("The function has the same signs at "

23 "both endpoints.\n");

24 }
25 else if ( success ) {
26 printf("The root is %.12f. The value of "

27 " the function\nat the root is %.12f.\n", root, fx);

28 printf("%u iterations were used to find "

29 " the root\n", its);

30 }
31 else {
32 printf("The method cannot find the root.\n");

33 }
34 }
35

36 double bisect(double (*fnct)(double),

37 double x0, double x1, double xtol,

38 int maxits, double *fatroot,

39 int *itcount, int *converged)

40 {
41 double x, fx, f0, root;

42 int iterating=1, withintol=0;

43 *converged = 0;

44 f0 = fnct(x0);

45 fx = fnct(x1);

46 if ( (f0>=0 && fx>=0) || (f0<=0 && fx<=0) ) {
47 *converged = 2;

48 return 0;

49 }
50 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
51 x = (x0+x1)/2; fx = fnct(x);

52 if ( (f0<=0 && fx>=0) || (f0>=0 && fx<=0) )

53 x1 = x;

54 else

55 { x0 = x; f0 = fx; }
56 /* The next two lines are included so as to monitor

57 the progress of the calculation. These lines

58 should be deleted from a program of

59 practical utility. */
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60 printf("Iteration number %2u: ", *itcount);

61 printf("x=% .12f and f(x)=% .12f\n", x, fx);

62 if ( x1-x0 <= xtol ) {
63 *converged = 1;

64 break;

65 }
66 }
67 root = (x0+x1)/2;

68 *fatroot = fnct(x);

69 return root;

70 }
Lines 10 through 34 here is the calling program, and the bisection method itself is described

in the function bisect through lines 36–65. The first parameter of bisect in line 36 is a pointer
double (*fnct)(double) to a function, which is called by the address of the current function
parameter, &funct in line 18.36 The program is called with the initial values x1 = 0.01 and x1 = 1.
The program itself is a fairly straightforward implementation of the bisection method. Note the
additional parameter success to indicate the whether the program was successful in finding the
root. Further, the number of iterations is limited to 50 is the calling statement in lines 18–20
to avoid an infinite loop. Note the output statements in lines 60–61; these were included in the
program only for the purposes of illustration. Normally, these lines should be deleted (or, better
yet, commented out, since they may need to be restored for debugging). The printout of the program
is as follows:

1 Iteration number 0: x= 0.505000000000 and f(x)= 0.561074663602

2 Iteration number 1: x= 0.752500000000 and f(x)=-0.355806027449

3 Iteration number 2: x= 0.628750000000 and f(x)= 0.044232545092

4 Iteration number 3: x= 0.690625000000 and f(x)=-0.166018770776

5 Iteration number 4: x= 0.659687500000 and f(x)=-0.063871145198

6 Iteration number 5: x= 0.644218750000 and f(x)=-0.010624951276

7 Iteration number 6: x= 0.636484375000 and f(x)= 0.016594102551

8 Iteration number 7: x= 0.640351562500 and f(x)= 0.002933217996

9 Iteration number 8: x= 0.642285156250 and f(x)=-0.003858575571

10 Iteration number 9: x= 0.641318359375 and f(x)=-0.000465872209

11 Iteration number 10: x= 0.640834960938 and f(x)= 0.001232872504

12 Iteration number 11: x= 0.641076660156 and f(x)= 0.000383300305

13 Iteration number 12: x= 0.641197509766 and f(x)=-0.000041335881

14 Iteration number 13: x= 0.641137084961 and f(x)= 0.000170969726

15 Iteration number 14: x= 0.641167297363 and f(x)= 0.000064813802

16 Iteration number 15: x= 0.641182403564 and f(x)= 0.000011738180

17 Iteration number 16: x= 0.641189956665 and f(x)=-0.000014799045

18 Iteration number 17: x= 0.641186180115 and f(x)=-0.000001530481

19 Iteration number 18: x= 0.641184291840 and f(x)= 0.000005103837

20 Iteration number 19: x= 0.641185235977 and f(x)= 0.000001786675

21 Iteration number 20: x= 0.641185708046 and f(x)= 0.000000128096

22 Iteration number 21: x= 0.641185944080 and f(x)=-0.000000701193

23 Iteration number 22: x= 0.641185826063 and f(x)=-0.000000286548

24 Iteration number 23: x= 0.641185767055 and f(x)=-0.000000079226

25 Iteration number 24: x= 0.641185737550 and f(x)= 0.000000024435

26 Iteration number 25: x= 0.641185752302 and f(x)=-0.000000027396

36The address operator & with functions is superfluous, since the name funct already refers to the address of this
function; so we could have written simple funct in line 18. We wrote &funct for the sake of clarity.
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27 Iteration number 26: x= 0.641185744926 and f(x)=-0.000000001480

28 Iteration number 27: x= 0.641185741238 and f(x)= 0.000000011477

29 Iteration number 28: x= 0.641185743082 and f(x)= 0.000000004998

30 Iteration number 29: x= 0.641185744004 and f(x)= 0.000000001759

31 Iteration number 30: x= 0.641185744465 and f(x)= 0.000000000139

32 The root 0.641185744696. The value of the function

33 at the root is 0.000000000139.

34 30 iterations were used to find the root

For Newton’s method, in addition to the function, its derivative also needs to be calculated. The
program to do this constitutes the file dfunct.c:

1 #include <math.h>

2

3 double dfunct(double x)

4 {
5 double value;

6 value = -1.0/(x*x)-pow(2.0,x)*log(2.0);

7 return(value);

8 }
The program itself is contained in the file newton.c. The makefile to compile this program is as

follows:

1 all: newton

2 newton : funct.o newton.o dfunct.o

3 gcc -o newton -s -O4 funct.o dfunct.o newton.o -lm

4 funct.o : funct.c

5 gcc -c -O4 funct.c

6 dfunct.o : dfunct.c

7 gcc -c -O4 dfunct.c

8 gcc -c -O4 bisect.c

9 newton.o : newton.c

10 gcc -c -O4 newton.c

The file newton.c itself is as follows:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double dfunct(double);

8

9 double newton(double (*fnct)(double), double (*deriv)(double),

10 double startingval, double xtol, int maxits, double *fx,

11 int *itcount, int *outcome);

12

13 main()

14 {
15 /* This program implements the Newton’s method

16 for solving an equation funct(x)=0. The function

17 funct() and its derivative dfunct() is defined

18 separately. */
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19 const double tol=5e-10;

20 double x, fx, root;

21 int its, success;

22 root = newton(&funct, &dfunct,

23 3.0, tol, 50, &fx,

24 &its, &success);

25 if ( success == 2 ) {
26 printf("The root is %.12f. The value of "

27 " the function\nat the root is %.12f.\n", root, fx);

28 printf("%u iterations were used to find "

29 " the root\n", its);

30 }
31 else if (success == 1) {
32 printf("The derivative is too flat at %.12f\n", x);

33 }
34 else if (success == 0) {
35 printf("The maximum number of iterations has been reached\n");

36 }
37 }
38

39 double newton(double (*fnct)(double), double (*deriv)(double),

40 double startingval, double xtol, int maxits, double *fx,

41 int *itcount, int *outcome)

42 {
43 double x, dx, dfx, assumedzero=1e-20;

44 *outcome = 0;

45 x = startingval;

46 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
47 dfx = deriv(x);

48 if ( absval(deriv(x))<=assumedzero ) {
49 *outcome = 1; /* too flat */

50 break;

51 }
52 *fx = fnct(x);

53 /* The next two lines are included so as to monitor

54 the progress of the calculation. These lines

55 should be deleted from a program of

56 practical utility. */

57 printf("Iteration number %2u: ", *itcount);

58 printf("x=% .12f and f(x)=% .12f\n", x, *fx);

59 dx = -*fx/dfx; x = x+dx;

60 if ( absval(dx)/(absval(x)+assumedzero) <= xtol ) {
61 *outcome = 2; /* within tolerance */

62 *fx = fnct(x);

63 break;

64 }
65 }
66 return x; /* returning the value of the root */

67 }
The calling statement calls in lines 22-24 calls the bisection function, located in lines 39–67, with

initial approximation x1 = 3. The variable success keeps track of the outcome of the calculation,
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the value 2 indicates that the root has been successfully calculated within the required tolerance,
given as 5 ·10−10 by the constant tol specified in line 19. The value 1 indicates that the tangent line
is too flat at the current approximation (in which case the next approximation cannot be calculated
with sufficient precision). Finally, the value 0 indicates that the maximum number of iterations (50
at present, specified in the calling statement in line 23) has been exceeded. This program produces
the following output:

1 Iteration number 0: x= 3.000000000000 and f(x)=-7.666666666667

2 Iteration number 1: x= 1.644576458341 and f(x)=-2.518501258529

3 Iteration number 2: x= 0.651829979669 and f(x)=-0.037017477051

4 Iteration number 3: x= 0.641077330609 and f(x)= 0.000380944220

5 Iteration number 4: x= 0.641185733066 and f(x)= 0.000000040191

6 Iteration number 5: x= 0.641185744505 and f(x)= 0.000000000000

7 The root 0.641185744505. The value of the function

8 at the root is -0.000000000000.

9 5 iterations were used to find the root

The Illinois method, a modification of the secant method, is given in the file secant.c:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double secant(double (*fnct)(double),

8 double x0, double x1, double xtol,

9 int maxits, double *fatroot,

10 int *itcount, int *outcome);

11

12 main()

13 {
14 /* This program implements the Illinois variant of

15 the secant method for solving an equation funct(x)=0.

16 The function funct() is defined separately. */

17 const double tol=5e-10;

18 double x, fx, root;

19 int its, success;

20 root = secant(&funct, 0.01, 1.0, tol,

21 50, &fx,

22 &its, &success);

23 if ( success == 2 ) {
24 printf("The root %.12f. The value of "

25 " the function\nat the root is %.12f.\n", root, fx);

26 printf("%u iterations were used to find"

27 " the root\n", its);

28 }
29 else if (success == 0) {
30 printf("The maximum number of iterations has been reached\n");

31 }
32 }
33

34 double secant(double (*fnct)(double),
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35 double x0, double x1, double xtol,

36 int maxits, double *fatroot,

37 int *itcount, int *outcome)

38 {
39 double xold, xnew, dx, dfx, f0, f1, f2, fbar, fold,

40 root, assumedzero=1e-20, alpha;

41 *outcome = 0;

42 alpha = 0.5;

43 /* This called the Illinois method. There are other,

44 more complicated choices for alpha. */

45 f0 = fnct(x0); f1 = fnct(x1);

46 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
47 /* The next two lines are included so as to monitor

48 the progress of the calculation. These lines

49 should be deleted from a program of

50 practical utility. */

51 printf("Iteration number %2u: ", *itcount);

52 printf("x=% .12f and f(x)=%15.12f\n", x1, f1);

53 if ( *itcount == 0 || f0<=0 && f1>=0 || f0>=0 && f1<=0

54 || fold<=0 && f1<=0 || fold>=0 && f1>=0 ) {
55 xnew = x1-f1*(x1-x0)/(f1-f0);

56 }
57 else {
58 fbar = alpha*fold;

59 xnew= x1-f1*(xold-x1)/(fbar-f1);

60 }
61 if ( absval(xnew-x1)/(absval(x1)+assumedzero) <= xtol ) {
62 *outcome = 2; /* within tolerance */

63 root = xnew;

64 *fatroot = fnct(root);

65 break;

66 }
67 xold = x0; x0 = x1; x1 = xnew;

68 fold = f0; f0 = f1; f1 = fnct(xnew);

69 }
70 return root; /* returning the value of the root */

71 }

Here we still use the value 2 for the variable success (see line 23) to indicate that the method
was successful. The value 1 for success is no longer used, but at the price of some additional
calculations, one could add the option of telling the user that the secant line is too flat, so the root
cannot be calculated. Eventually, the user will find it out either by having the maximum number
of iterations exceeded or by receiving a floating point exception (overflow, because of dividing by a
number too close to zero). The calling statement in lines 20–22 specifies the starting values x1 = 0.01
and x2 = 1 in line 20, the same starting values we used for bisection. The output of this program is
as follows:

1 Iteration number 0: x= 1.000000000000 and f(x)=-1.000000000000

2 Iteration number 1: x= 0.990099311353 and f(x)=-0.976322026870

3 Iteration number 2: x= 0.971140749370 and f(x)=-0.930673220217

4 Iteration number 3: x= 0.584619671930 and f(x)= 0.210870175492

5 Iteration number 4: x= 0.656019294352 and f(x)=-0.051383435810
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6 Iteration number 5: x= 0.642029942985 and f(x)=-0.002963594600

7 Iteration number 6: x= 0.640460359614 and f(x)= 0.002550386255

8 Iteration number 7: x= 0.641186340346 and f(x)=-0.000002093441

9 Iteration number 8: x= 0.641185744926 and f(x)=-0.000000001479

10 Iteration number 9: x= 0.641185744085 and f(x)= 0.000000001476

11 Iteration number 10: x= 0.641185744505 and f(x)=-0.000000000000

12 The root 0.641185744505. The value of the function

13 at the root is -0.000000000000.

14 10 iterations were used to find the root

A single makefile, usually called makefile, can be used to compile all these programs:

1 all: bisect newton secant

2 bisect : funct.o bisect.o

3 gcc -o bisect -s -O4 funct.o bisect.o -lm

4 newton : funct.o newton.o dfunct.o

5 gcc -o newton -s -O4 funct.o dfunct.o newton.o -lm

6 secant : funct.o secant.o

7 gcc -o secant -s -O4 funct.o secant.o -lm

8 funct.o : funct.c

9 gcc -c -O4 funct.c

10 dfunct.o : dfunct.c

11 gcc -c -O4 dfunct.c

12 bisect.o : bisect.c

13 gcc -c -O4 bisect.c

14 newton.o : newton.c

15 gcc -c -O4 newton.c

16 secant.o : secant.c

17 gcc -c -O4 secant.c

As we pointed out before, lines 3, 5, 7, 9, 11, 13, 15, 17 here start with a tab character, and there
is no space character before the first letter in these lines.

14. NEWTON’S METHOD FOR POLYNOMIAL EQUATIONS

Given the polynomial

P (x) =

n
∑

k=0

akx
n−k = a0x

n + a1x
n−1 + . . .+ an

= (. . . ((a0x+ a1)x+ a2)x+ . . .+ an−1)x+ an.

it is easy to calculate the value of P (x0): put

(1) b0 = a0 and bk = ak + bk−1x0 for k with 0 < k ≤ n.

Then P (x0) = bn. This method of calculating the value of a polynomial is called Horner’s rule. If
we write

Q(x) =

n−1
∑

k=0

bkx
n−1−k,

it is easy to see that

(2) P (x) = (x− x0)Q(x) + bn.
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Indeed, using the above expression for Q(x), the right-hand side can be written as

(x− x0)Q(x) + bn = (x− x0)

n−1
∑

k=0

bkx
n−k−1 + bn = x

n−1
∑

k=0

bkx
n−k−1 + bn − x0

n−1
∑

k=0

bkx
n−k−1

=

n−1
∑

k=0

bkx
n−k + bn −

n−1
∑

k=0

bkx
n−k−1x0 =

n
∑

k=0

bkx
n−k −

n
∑

k=1

bk−1x
n−kx0.

Here, in obtaining the last equality, the term bn was incorporated into the first sum, and in the
second sum, k was replaced with k+ 1 (so, in the second sum on the right-hand side, k goes from 1
to n instead of going from 0 to n− 1). If we make the assumption that b−1 = 0 (b−1 has not been
defined so far), we can extend the summation in the second sum on the right-hand side to k = 0:

n
∑

k=0

bkx
n−k −

n
∑

k=0

bk−1x
n−kx0 =

n
∑

k=0

(bkx
n−k − bk−1x

n−kx0)

=
n
∑

k=0

(bk − bk−1x0)x
n−k =

n
∑

k=0

akx
n−k = P (x);

The penultimate37 equality holds because we have

ak = bk − bk−1x0 (0 ≤ k ≤ n)

according to (1) (the case k = 0 also follows, since we assumed that b−1 = 0). Finally, taking the
derivative of (2), we obtain

P ′(x) = (x− x0)Q
′(x) +Q(x).

Substituting x = x0, we obtain
P ′(x0) = Q(x0).

These reflections allow us to draw the following conclusions. 1) Equations (1) allow a speedy eval-
uation of the polynomial P (x) at x0. 2) These equations also allow us to evaluate the coefficients
of the polynomial Q(x). Hence the derivative of P (x) can also be easily evaluated at x0 (since we
only need to evaluate Q(x0) for this, using the same method). Hence, we can use Newton’s method
to approximate the zero of P (x).

Once a root α0 of P (x) = 0 is found, one can look for further roots of the equation by looking for
zeros of the polynomial P (x)/(x−α0). Here one can observe that 3) the coefficients of P (x)/(x−α0)
can be evaluated by using equations (1) with α0 replacing x0. This is because the bk’s are the
coefficients of the quotient of dividing x−x0 into P (x). Division by the factor x−α0 corresponding
to the root α0 is called deflation, and the quotient P1(x) is called the deflated polynomial. Once an
approximate zero β1 of the deflated polynomial is found (by Newton’s method, say), one can use this
approximation as the starting value for Newton’s method to find the root of the equation P (x) = 0.
The reason for doing this is to eliminate the errors resulting from the fact that the coefficients of
P1(x) are only approximate values. If one continues this procedure, and deflates a polynomial several
times, the errors might accumulate to an unacceptable level unless each time one goes back to the
original polynomial to refine the approximate root.

An illustration how this works is given in the following program to solve a polynomial equation.
The file newton.c is essentially the same as the program performing Newton’s method above (only
some fprint statements used to monitor the progress of the calculation were deleted):

1 #include "newton.h"

37Last but one.
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2

3 double newton(double (*fnct)(double), double (*deriv)(double),

4 double startingval, double xtol, int maxits, double *fx,

5 int *itcount, int *outcome)

6 {
7 double x, dx, dfx, assumedzero=1e-20;

8 *outcome = 0;

9 x = startingval;

10 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
11 dfx = deriv(x);

12 if ( absval(deriv(x))<=assumedzero ) {
13 *outcome = 1; /* too flat */

14 break;

15 }
16 *fx = fnct(x);

17 dx = -*fx/dfx; x = x+dx;

18 if ( absval(dx)/(absval(x)+assumedzero) <= xtol ) {
19 *outcome = 2; /* within tolerance */

20 *fx = fnct(x);

21 break;

22 }
23 }
24 return x; /* returning the value of the root */

25 }
The first line here invokes the header file newton.h:

1 #include <stdio.h>

2 #include <math.h>

3 #include <float.h>

4 #include <stdlib.h>

5

6 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

7

8 double funct(double);

9 double dfunct(double);

10 double origfunct(double);

11 double dorigfunct(double);

12 double evalp(double a[], int n, double x, double b[]);

13 double newton(double (*fnct)(double), double (*deriv)(double),

14 double startingval, double xtol, int maxits, double *fx,

15 int *itcount, int *outcome);

The function evalp to evaluate polynomials is given in the file horner.c:

1 #include <math.h>

2

3 double evalp(double a[], int n, double x, double b[])

4 {
5 double value;

6 int k;

7 b[0]=a[0];

8 for ( k=1; k<=n; k++ ){
9 b[k]=a[k]+b[k-1]*x;
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10 }
11 return b[n];

12 }

As has been explained above, Horner’s method can be used to evaluate a polynomial, evaluate
its derivative, and to deflate it (i.e., to divide it by the linear factor corresponding to the root) once
a root is known. The function evalp() takes returns the value of a polynomial at x with coefficient
degree n and vector a (with a[n] being the coefficient of the highest degree term). The vector b is
used to store the coefficients of the polynomial Q(x) in equation (2) above.

The main program is contained in the file callnewton.c:

1 #include "newton.h"

2

3 double aa[20], a[20];

4 int nn, n;

5

6 main()

7 {
8 /* This program implements the Newton’s method

9 for solving an equation funct(x)=0. The function

10 funct() and its derivative dfunct() is defined

11 separately. */

12 const double tol=5e-10;

13 double x, y, fx, root, b[20];

14 int its, k, success, random, count;

15 extern double aa[], a[];

16 extern int nn, n;

17 char s[20];

18 FILE *coefffile;

19 coefffile=fopen("coeffs", "r");

20 for (nn=0; fscanf(coefffile, "%s", s) !=EOF; nn++) {
21 aa[nn]=strtod(s,NULL);

22 }
23 nn--;

24 n = nn;

25 for (k=0; k<=n; k++) {
26 a[k] = aa[k];

27 }
28 while ( n > 0 ) {
29 root = newton(&funct, &dfunct,

30 0.0, tol, 50, &fx,

31 &its, &success);

32 if ( n < nn && success == 2 ) {
33 root = newton(&origfunct, &dorigfunct,

34 root, tol, 50, &fx,

35 &its, &success);

36 }
37 if ( success == 2 ) {
38 printf("Root number %d is %.12f. The value of "

39 " the function\nat the root is %.12f.\n",

40 nn-n+1, root, fx);

41 }
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42 else {
43 printf("The procedure does not converge\n");

44 break;

45 }
46 evalp(a,n,root,b);

47 n--;

48 for (k=0; k<=n; k++) {
49 a[k] = b[k];

50 }
51 }
52 }
53 double origfunct(double x) {
54 extern double aa[];

55 extern int nn;

56 double b[20];

57 return evalp(aa, nn, x, b);

58 }
59 double dorigfunct(double x) {
60 extern double aa[];

61 extern int nn;

62 double b[20], c[20];

63 evalp(aa, nn, x, b);

64 return evalp(b, nn-1, x, c);

65 }
66 double funct(double x) {
67 extern double a[];

68 extern int n;

69 double b[20];

70 return evalp(a, n, x, b);

71 }
72 double dfunct(double x) {
73 extern double a[];

74 extern int n;

75 double b[20], c[20];

76 evalp(a, n, x, b);

77 return evalp(b, n-1, x, c);

78 }
In lines 4–5, the variables are declared outside the functions, because these variables are needed by
several functions in this file. The integer nn will store the degree of the original polynomial, n will
store the degree of the deflated polynomial (this will initially be nn, and will decrease gradually as
more roots are found), the array will aa contain the coefficients of the original polynomial, and a will
contain those of the deflated polynomial. The functions in lines 53–78 are used to provide an interface
between the function evalp() mentioned above, implementing Horner’s rule, and the functions
funct() used by the file newton.c implementing Newton’s method.38 The functions origfunct()
and dorigfunct() evaluate the original polynomial and its derivative, while the functions funct()
and funct() evaluate the deflated polynomial and its derivative.

The coefficients of the polynomial are contained in the file coeffs; this file is opened for reading

38This was done so that the program implementing Newton’s method could be used without change. An alternative,

and perhaps more efficient, but possibly less readable, solution would be to rewrite this program, so that the functions
providing these interfaces are not needed.
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in line 18, and the coefficients are read into the array aa[] in lines 19–22. The numbers in this file
are first read as character strings, and in line 21 they are converted to double39 At the same time,
the degree of the polynomial is calculated by counting the number of the coefficients read, and it is
stored in the integer nn; nn needs to be decremented in line 23, since it was incremented at the end
of the for loop in line 20. In lines 27–27 the array aa[] is copied into the array a[] since initially
the deflated polynomial is the same as the original polynomial (nn is also copied to n in line 24).

The calculation of the roots and the deflation of the polynomial is performed in the loop in lines
28–51. In line 28, Newton’s method is called with initial value 0.0 to calculate the next root of the
deflated polynomial. If this calculation is successful then in lines 32–34 this root is refined by calling
Newton’s for the original polynomial with the the root of the deflated polynomial just calculated
being used as initial value. This is done only for n<nn, since in case n=nn the deflated polynomial
agrees with the original polynomial. If at any time in the process, Newton’s method is unsuccessful,
the loop is broken in line 44, If the determination of the current root is successful, then the result is
printed out in lines 32–26.

Of course, there is no guarantee that Newton’s method will find the root of a polynomial, so there
is a good chance that the program will terminate unsuccessfully. Several measures could be taken
to prevent this. There are ways to estimate the size of the roots of a polynomial. If at any time
during the calculation, too large a value is used to approximate the root, Newton’s method could
be terminated and restarted with a new value. In this way one could make it likely that Newton’s
method calculates the real roots of a polynomial. The program was run with the following coefficient
file coeffs:

1 1.0 4.33 -19.733. -74.7168

The 1 at the beginning of the line is a line number, and not a part of the file. The roots were
successfully determined, and the printout was the following

1 Root number 1 is -3.200000000000. The value of the function

2 at the root is -0.000000000000.

3 Root number 2 is 4.300000000000. The value of the function

4 at the root is 0.000000000000.

5 Root number 3 is -5.430000000000. The value of the function

6 at the root is 0.000000000000.

Problems

1. Evaluate the derivative of P (x) = 2x3 +5x2 +3x+4 at x = −2 using Horner’s method. Show
the details of your calculation.

Solution. We have a0 = 2, a1 = 5, a2 = 3, a3 = 4, and x0 = −2. Further, we have b0 = a0 and
bk = ak + bk−1x0 for k with 0 < k ≤ 3. Therefore,

b0 = a0 = 2,

b1 = a1 + b0x0 = 5 + 2 · (−2) = 1,

b2 = a2 + b1x0 = 3 + 1 · (−2) = 1,

b3 = a3 + b2x0 = 4 + 1 · (−2) = 2.

Actually, we did not need to calculate b3, since it is not used in calculating the derivative. The
derivative as x = −2 is the value for x = −2 of the polynomial b0x

2 + b1x + b2. Using Horner’s

39the library function fscan seems to handle numbers of type float well, but not those of type double, so reading
the numbers as character strings and then converting them appears to be safer.



52 Introduction to Numerical Analysis

rule, this can be calculated by first calculating the coefficients c0 = b0 and ck = bk + ck−1 for k with
0 < k ≤ 2, and then value of the polynomial being considered will be c2. That is,

c0 = b0 = 2,

c1 = b1 + c0x0 = 1 + 2 · (−2) = −3,

c2 = b2 + c1x0 = 1 + (−3) · (−2) = 7.

That is, P ′(−2) = c2 = 7. It is easy to check that this result is correct. There is no real saving when
the calculation is done for a polynomial of such low degree. For higher degree polynomials, there
is definitely a saving in calculation. Another advantage of the method, especially for computers, is
that the formal differentiation of polynomials can be avoided.

2. Evaluate the derivative of P (x) = x3 − 4x2 + 6x + 4 at x = 2 using Horner’s method. Show
the details of your calculation.

Solution. We have a0 = 1, a1 = −4, a2 = 6, a3 = 4, and x0 = 2. Further, we have b0 = a0 and
bk = ak + bk−1x0 for k with 0 < k ≤ 3. Therefore,

b0 = a0 = 1,

b1 = a1 + b0x0 = −4 + 1 · 2 = −2,

b2 = a2 + b1x0 = 6 + (−2) · 2 = 2,

b3 = a3 + b2x0 = 4 + 2 · 2 = 8.

Actually, we did not need to calculate b3, since it is not used in calculating the derivative. The
derivative as x = 2 is the value for x = 2 of the polynomial b0x

2 + b1x + b2. Using Horner’s rule,
this can be calculated by first calculating the coefficients c0 = b0 and ck = bk + ck−1 for k with
0 < k ≤ 2, and then value of the polynomial being considered will be c2. That is,

c0 = b0 = 1,

c1 = b1 + c0x0 = −2 + 1 · 2 = 0,

c2 = b2 + c1x0 = 2 + 0 · 2 = 2.

That is, P ′(2) = c2 = 2. It is easy to check that this result is correct. There is no real saving when
the calculation is done for a polynomial of such low degree. For higher degree polynomials, there
is definitely a saving in calculation. Another advantage of the method, especially for computers, is
that the formal differentiation of polynomials can be avoided.

3. Let P and Q be polynomials, let x0 and r be a numbers, and assume that

P (x) = (x− x0)Q(x) + r.

Show that P ′(x0) = Q(x0).

Solution. We have
P ′(x) = Q(x) + (x− x0)Q

′(x)

simply be using the product rule for differentiation. Substituting x = x0, we obtain that P ′(x0) =
Q(x0).

Note: The coefficients of the polynomial Q(x) can be produced by Horner’s method. By another
use of Horner’s method, we can evaluate Q(x0). This provides an efficient way to evaluate P ′(x) on
computers without using symbolic differentiation.
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15. FIXED-POINT ITERATION

The equation x = f(x) can often be solved by starting with a value x = x1, and using the
simple iteration xn+1 = f(xn). This method is called fixed-point iteration, and it is important for
theoretical reasons. This is partly because other methods can often be reformulated in terms of
fixed-point iteration. For example, when using Newton’s method

xn+1 = xn − g(xn)

g′(xn)

to solve the equation g(x) = 0, this can be considered as using fixed-point iteration to solve the
equation

x = x− g(x)

g′(x)
.

Furthermore, variants of fixed-point iteration are useful for solving certain systems of linear equations
arising in practice (e.g., on account of cubic splines). A simple result describing the solvability of
equations by fixed-point iteration is the following:

Theorem. Assume x = c is a solution of the equation x = f(x). Assume further that there are
numbers r > 0 and q with 0 ≤ q < 1 such that

|f ′(x)| ≤ q for all x with c− r < x < c+ r.

Then, starting with any value x1 ∈ (c− r, c + r) and putting xn+1 = f(xn) for n ≥ 1, the sequence
{xn}∞n=1 converges to c.

When one tries to use this result in practice, the interval (c− r, c+ r) of course cannot be known
exactly. However, the fact that |f ′(x)| < q in an interval for some q with 0 ≤ q < 1 makes it
reasonable to try to use fixed-point iteration to find a solution of the equation x = f(x) in this
interval.

Proof. Let n ≥ 1, and assume that xn ∈ (c − r, c + r). By the Mean-Value Theorem of
differentiation we have

f(xn)− c = f(xn)− f(c) = f ′(ξn)(xn − c),

where the first equality used the assumption that c is a root of x = f(x), i.e., that c = f(c); here
ξn is some number between xn and c. Clearly, we have ξn ∈ (c − r, c + r), so we have |f ′(ξn)| ≤ q.
Therefore, noting that xn+1 = f(xn), we have

(1) |xn+1 − c| ≤ q|xn − c|.

Hence xn+1 ∈ (c− r, c+ r). Thus, given that x1 ∈ (c− r, c+ r) by assumption, we can conclude that
xn ∈ (c− r, c+ r) for all positive integers n. Hence inequality (1) is valid for all positive integers n;
thus we can conclude by induction that

|xn − c| ≤ qn−1|x1 − c|

for all positive integers n. As qn−1 converges to 0 when n tends to zero, it follows that xn converges
to c.

A partial converse to this is the following
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Theorem. Assume x = c is a solution of the equation x = f(x). Assume further that there are
numbers a, b with a < c < b such that

|f ′(x)| ≥ 1 for all x with a < x < b.

Then starting with any value x1 and putting xn+1 = f(xn) for n ≥ 1, the sequence {xn}∞n=1 does
not converge to c unless xk = c for some positive integer k.

Of course, if xk = c for some positive integer k, then xn = c for all n ≥ k. However, it is very
unlikely that we accidentally end up with xk = c in practice, and so, if |f ′(x)| > 1 near the solution of
the equation x = f(x), using fixed-point iteration to find the solution should be considered hopeless.

Proof. Assuming xn converges to c, we must have a positive integer N such that xn ∈ (a, b) for
every n ≥ N . So, for any n ≥ N we have, by the Mean-Value Theorem that

f(xn)− c = f(xn)− f(c) = f ′(ξn)(xn − c),

for some ξn ∈ (a, b), and so, noting that xn+1 = f(xn) and that |f ′(ξn)| ≥ 1, we obtain that

|xn+1 − c| ≥ |xn − c|

for all n ≥ N . Thus we have
|xn − c| ≥ |xN − c|

for all n ≥ N . Hence xn cannot converge to c unless xN = c.

Fixed point iteration is easy to implement on computer. In a C program doing fixed-point
iteration to solve the equation x = e1/x, the file funct.c implements the simple program calculating
the function e1/x:

1 #include <math.h>

2

3 double funct(double x)

4 {
5 double value;

6 value = exp(1.0/x);

7 return(value);

8 }
The ideas used in the implementation of fixed-point iteration are similar to the ideas are similar

to those used in earlier programs such as newton.c. The file fixedpoint.c contains the program:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double fixedpoint(double (*fnct)(double), double startingval,

8 double xtol, int maxits, int *itcount, int *outcome);

9

10 main()

11 {
12 /* This program implements fixed-point iteration

13 for solving an equation x=funct(x). The function

14 funct() is defined separately. */
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15 const double tol=5e-10;

16 double root;

17 int its, success;

18 root = fixedpoint(&funct, 1.0, tol, 50, &its, &success);

19 if ( success == 2 ) {
20 printf("The root is %.12f\n", root);

21 printf("%u iterations were used to find"

22 " the root\n", its);

23 }
24 else if (success == 0) {
25 printf("The maximum number of iterations has been reached\n");

26 }
27 }
28

29 double fixedpoint(double (*fnct)(double), double startingval,

30 double xtol, int maxits, int *itcount, int *outcome)

31 {
32 double x, oldx, assumedzero=1e-20;

33 *outcome = 0;

34 x = startingval;

35 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
36 oldx = x;

37 x = fnct(x);

38 /* The next line is included so as to monitor

39 the progress of the calculation. This line

40 should be deleted from a program of

41 practical utility. */

42 printf("Iteration number %2u: ", *itcount);

43 printf("x=% .12f\n", x);

44 if ( absval(x-oldx)/(absval(oldx)+assumedzero) <= xtol ) {
45 *outcome = 2; /* within tolerance */

46 break;

47 }
48 }
49 return x; /* returning the value of the root */

50 }

The calling statement on line 18 uses the starting value x = 1, and limits the number of iterations
to 50. The printout of the program is as follows:

1 Iteration number 0: x= 2.718281828459

2 Iteration number 1: x= 1.444667861010

3 Iteration number 2: x= 1.998107789671

4 Iteration number 3: x= 1.649502126004

5 Iteration number 4: x= 1.833530851751

6 Iteration number 5: x= 1.725291093281

7 Iteration number 6: x= 1.785346181250

8 Iteration number 7: x= 1.750874646996

9 Iteration number 8: x= 1.770289539914

10 Iteration number 9: x= 1.759235513562

11 Iteration number 10: x= 1.765490799373

12 Iteration number 11: x= 1.761938693392
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13 Iteration number 12: x= 1.763951807726

14 Iteration number 13: x= 1.762809621275

15 Iteration number 14: x= 1.763457255891

16 Iteration number 15: x= 1.763089906433

17 Iteration number 16: x= 1.763298230825

18 Iteration number 17: x= 1.763180076095

19 Iteration number 18: x= 1.763247085165

20 Iteration number 19: x= 1.763209080909

21 Iteration number 20: x= 1.763230634603

22 Iteration number 21: x= 1.763218410517

23 Iteration number 22: x= 1.763225343308

24 Iteration number 23: x= 1.763221411417

25 Iteration number 24: x= 1.763223641361

26 Iteration number 25: x= 1.763222376662

27 Iteration number 26: x= 1.763223093927

28 Iteration number 27: x= 1.763222687135

29 Iteration number 28: x= 1.763222917845

30 Iteration number 29: x= 1.763222786999

31 Iteration number 30: x= 1.763222861208

32 Iteration number 31: x= 1.763222819121

33 Iteration number 32: x= 1.763222842990

34 Iteration number 33: x= 1.763222829453

35 Iteration number 34: x= 1.763222837130

36 Iteration number 35: x= 1.763222832776

37 Iteration number 36: x= 1.763222835246

38 Iteration number 37: x= 1.763222833845

39 Iteration number 38: x= 1.763222834639

40 The root is 1.763222834639

41 38 iterations were used to find the root

Problems

1. Rearrange the equation x+ 1 = tanx so that it be solvable by fixed-point iteration.

Solution. In order to solve the equation by fixed-point iteration, it needs to be written in the form
x = f(x), and we also must have |f(x)| < q with some q < 1 near the solution. There are several
ways to write the above equation in the form x = f(x), for example

x = tanx− 1.

This will definitely not work, since the derivative of the right-hand side is 1 + tan2 x, and this is
always greater than 1 except when tanx = 0. On the other hand, one can also write

x = arctan(x+ 1) + kπ,

where k can be any integer (positive, negative, or zero). There are infinitely many solutions of this
equation. It is easy to see by inspecting the graphs of y = x and y = arctanx + kπ that they will
intersect exactly once for each value of k. The derivative of the right-hand side is

1

(x+ 1)2 + 1
,

and for any value of x this is less or equal to 1; equalility holds only in case x = −1. Thus this form
is well-suited for fixed-point iteration. For each value of k, one can use the starting value x = 0, for
example.
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2. The equation ex − x − 2 = 0 has one positive solution and one negative solution. Rearrange
the equation so that each of these solutions can be found by fixed-point iteration.

Solution. To find the negative solution, write x = f(x) with f(x) = ex − 2. Then f ′(x) = ex, and
so, for any number c < 0 we have 0 < f ′(x) ≤ ec < 1 for x ≤ c. Thus one can find the negative
solution by using any starting point x1 < 0 and using the iteration xn+1 = exn − 2 (actually x1 = 0
would also work, since then x2 = −1).

To find the positive solution, write f(x) = ln(x+ 2). Then we have f ′(x) = 1
x+2 , and so for any

c > −1 we have

0 <
1

x+ 2
≤ 1

c+ 2
< 1

for any x > c. Thus, one can find the positive solution using any starting point x1 > −1 and the
iteration xn+1 = ln(xn + 2); one might as well use the starting point x1 = 1 also in this case. The
approximate solutions are -1.84141 and 1.14619.

16. AITKEN’S ACCELERATION

Let α the solution of an equation, and let xn be the nth approximation to this solution. Write
ǫn = xn − α for the error of the nth approximation. In case we have limn→∞ xn = α we say that
the order of convergence of the approximation is λ if

(1) lim
n→∞

|ǫn+1|
|ǫn|λ

= C

for some constant C 6= 0, with the additional requirement of C < 1 in case λ = 1. In case λ = 1, 2, 3
we also talk of linear, quadratic, or cubic convergence, respectively.40 Intuitively, the higher the
order of convergence of a method the the faster the convergence is. For example, in case of linear
convergence (with C = 1/10), with each step one may expect one additional significant decimal
digit in the solution, while with quadratic convergence the number of significant decimal digits
would roughly double with each additional step.

With fixed point iteration, when it converges, one usually expect linear convergence. In fact, if
f(α) = 0 and xn+1 = f(x+ n), then

xn+1 − α = f(xn)− f(α) = f ′(ξn)(xn − α),

where the second equation is justified by the Mean-Value Theorem (under suitable differentiability
assumptions), for some ξn between xn and α, so that

xn+1 − α

xn − α
= f ′(ξn) ≈ f ′(α),

provided that f ′ is continuous at α and xn (and so also ξn) is close enough to α. So, in case
0 < |f ′α)| < 1 one would have linear convergence.

If one knows that we are dealing this linear convergence, there is a method, called Aitken’s
acceleration, to speed up this convergence. Assume we have

xn+1 − α

xn − α
= f ′(ξn) ≈ C

40If λ < 1 we obviously have divergence. In case λ = 1 and C = 1 we may or may not have convergence, but the
convergence is usually much slower than in case C < 1. Of course, limit in (1) may not exists, or it may be 0 for each

value of λ for which it exist. We do not intend to give a more inclusive definition or more precise definition of the
order of convergence here.
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for some C with −1 < C < 1.41 Then we have

xn+1 − α

xn − α
≈ xn+2 − α

xn+1 − α
,

since both sides are approximately equal to C. Determine xn+3, the next approximation to α, so
that, with xn+3 replacing α, this equation becomes exact:

xn+1 − xn+3

xn − xn+3
=
xn+2 − xn+3

xn+1 − xn+3
.

Thus
(xn+2 − xn+3)(xn − xn+3) = (xn+1 − xn+3)

2,

i.e.,

(2) xn+3 = xn − (xn+1 − xn)
2

xn+2 − 2xn+1 + xn
=

xn+2xn − x2n+1

xn+2 − 2xn+1 + xn
.

When one wants to solve the equation x = f(x) with fixed-point iteration combined with Aitken’s
acceleration, one starts with an approximate solution, does two fixed-point iteration steps, and then
does one Aitken acceleration step. That is, given an n ≥ 0 divisible by 3, one takes xn+1 = f(xn),
xn+2 = f(xn+2), and one calculates xn+3 according to (2). When doing so, one uses the middle
member of the equations in (2), since the right-hand side can cause greater loss of precision due to
the subtraction of quantities of approximately the same size.42

Next we will discuss a C program implementation of the method. As in the fixed-point iteration
example, we will use the method to find the solution of the equation x = e1/x. The program defining
this function, contained in the file funct.c, is the same as above:

1 #include <math.h>

2

3 double funct(double x)

4 {
5 double value;

6 value = exp(1.0/x);

7 return(value);

8 }
As for the program performing Aitken acceleration, this time we broke up the calling program and
the program performing the work into two separate files and a third header file (so as not to have
repeat the same declarations in the other files). The header file aitken.h is as follows:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5 #define square(x) ((x)*(x))

6

41Strictly speaking, this assumption is stronger than the assumption of linear convergence, since equation (1)

has absolute values (which is really necessary there, since ǫλn may not be defined for noninteger values of λ if ǫn is
negative). However, as we just saw in the example of fixed point iteration, in case of linear convergence the relation
usually holds without absolute values.

42This is because in the middle member the loss of precision is likely to occur in the fraction that is being subtracted

from xn; since this fraction represents a small correction to the value of xn, this loss of precision is not as fatal as
might occur on the right-hand side.
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7 double funct(double);

8 double aitken(double (*fnct)(double), double startingval,

9 double xtol, int maxits, int *itcount, int *outcome);

The calling program, in the file callaitken.c is very similar to the calling program of the fixed-point
iteration discussed before:

1 #include "aitken.h"

2

3 main()

4 {
5 /* This program implements fixed-point iteration

6 for solving an equation x=funct(x). The function

7 funct() is defined separately. */

8 const double tol=5e-10;

9 double root;

10 int its, success;

11 root = aitken(&funct, 1.0, tol, 50, &its, &success);

12 if ( success == 2 ) {
13 printf("The root is %.12f\n", root);

14 printf("%u iterations were used to find"

15 " the root\n", its);

16 }
17 else if (success == 0) {
18 printf("The maximum number of iterations has been reached\n");

19 }
20 }

The difference here is that instead of including the function declarations and the standard include
statements, all these are taken from the file aitken.h, included in line 1. Line 11 of the program
uses the starting value 1 for the iteration, the same starting value that was used in the fixed-point
iteration. The part of the program that performs the main work is contained in the file aitken.c:

1 #include "fixedpoint.h"

2

3 double aitken(double (*fnct)(double), double startingval,

4 double xtol, int maxits, int *itcount, int *outcome)

5 {
6 double x, x0, x1, oldx, assumedzero=1e-20;

7 int i=0;

8 *outcome = 0;

9 x = startingval;

10

11 for (*itcount = 0; *itcount < maxits; (*itcount)++) {
12 oldx = x;

13 switch(i) {
14 case 0:

15 x0 = x; x = fnct(x);

16 break;

17 case 1:

18 x1 = x; x = fnct(x);

19 break;

20 case 2:

21 x = x0 - square(x1-x0)/(x-2*x1+x0);
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22 break;

23 }
24 /* The next line is included so as to monitor

25 the progress of the calculation. This line

26 should be deleted from a program of

27 practical utility. */

28 printf("Iteration number %2u: ", *itcount);

29 printf("x=% .12f\n", x);

30 if ( absval(x-oldx)/(absval(oldx)+assumedzero) <= xtol ) {
31 *outcome = 2; /* within tolerance */

32 break;

33 }
34 i++;

35 if ( i==3 ) { i=0; }
36 }
37 return x; /* returning the value of the root */

38 }
The program is similar to the program performing fixed-point iteration. In the switch statement

in lines 13–23 decides whether fixed-point iteration (in case *itcount is of form 3k or 3k+1 for some
integer k) should be used to calculate x, the next approximation, or whether the Aitken acceleration
step (in case *itcount is of form 3k + 2) should be used.

The advantage of breaking up the program in all these files is that most files will never have to
be changed when performing the calculation with different functions. In fact, only the files funct.c
and callaitken.c need to be changed; the former when the function f in the equation x = f(x) to
be solved is changed, and the latter when one wants to change starting value, the precision of the
solution required (described by the parameter tol) or the maximum number of iterations permitted.
In fact, it would be easy to arrange for reading these parameters on the command line and never
change the calling program if one only wants to solve one equation. However, often solving an
equation is only a part of a larger calculation; in this case the calling program might still have to be
changed. The following makefile can be used to compile the programs scattered in the files above:

1 all: aitken

2 aitken : funct.o aitken.o callaitken.o

3 gcc -o aitken -s -O4 callaitken.o funct.o \

4 aitken.o -lm

5 funct.o : funct.c

6 gcc -c -O4 funct.c

7 callaitken.o : callaitken.c aitken.h

8 gcc -c -O4 callaitken.c

9 aitken.o : aitken.c aitken.h

10 gcc -c -O4 aitken.c

The backslash \ at the end of line 3 is the standard way of breaking up a line in Unix. The backslash
quotes the newline character at the end of the line, and when quoted, the newline character no longer
signifies the end of a command. That is, the command started in line 3 continues in line 4. Line 4
begins with three space characters; they are not required, but they make the layout more appealing.
The printout of the program is as follows:

1 Iteration number 0: x= 2.718281828459

2 Iteration number 1: x= 1.444667861010

3 Iteration number 2: x= 1.986829971168

4 Iteration number 3: x= 1.654194746033

5 Iteration number 4: x= 1.830380270380
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6 Iteration number 5: x= 1.769373837327

7 Iteration number 6: x= 1.759749886372

8 Iteration number 7: x= 1.765197485602

9 Iteration number 8: x= 1.763228455409

10 Iteration number 9: x= 1.763219646420

11 Iteration number 10: x= 1.763224642370

12 Iteration number 11: x= 1.763222834357

13 Iteration number 12: x= 1.763222834349

14 The root is 1.763222834349

15 12 iterations were used to find the root

One might compare this to fixed point iteration, where 38 iterations were used to find the solution
of the same equation, using the same starting value and requiring the same precision.

Problem

1. Explain in how Aitken’s acceleration for fixed point iteration works.

Solution. In solving the equation f(x) = x, one starts out with an approximation x0 to the solution.
Each time one does two steps of fixed-point iteration and then one step of Aitken acceleration. That
is, if n is divisible by 3, then one takes xn+1 = f(xn) and xn+2 = f(xn+1), and

xn+3 = xn − (xn+1 − xn)
2

xn+2 − 2xn+1 + xn
.

17. THE SPEED OF CONVERGENCE OF NEWTON’S METHOD

In solving the equation f(x) = 0, Newton’s method starts with an approximate solution x0, and
for n ≥ 0 one puts

(1) xn+1 = xn − f(xn)

f ′(xn)
.

Let α be a solution of the above equation, i.e., f(α) = 0, and assume that α is not a multiple root,
i.e., that f ′(α) 6= 0. Assuming that f ′ is continuous near α and that xn is close enough to α, we
will also have f ′(xn) 6= 0, so that equation (1) will make sense. Assume, further, that f is twice
differentiable in an open interval containing α and xn. By the Taylor expansion of f at xn with the
Lagrange remainder term we have

f(α) = f(xn) + (α− xn)f
′(xn) +

f ′′(ξn)

2
(α− xn)

2

with some ξn between xn and α. Noting that f(α) = 0, this equation can be written as

0 = f(xn) + (α− xn)f
′(xn) +

f ′′(ξn)

2
(α− xn)

2.

Dividing by f ′(xn) (recall that f ′(xn) 6= 0 by our assumptions above) and rearranging the equation,
we obtain

xn − f(xn)

f ′(xn)
− α =

f ′′(ξn)

2f ′(xn)
(α− xn)

2.
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Using equation (1), this leads to

xn+1 − α =
f ′′(ξn)

2f ′(xn)
(α− xn)

2.

That is,
xn+1 − α

(xn − α)2
=

f ′′(ξn)

2f ′(xn)
.

Assuming that limn→∞ xn = α, we can see that also limn→∞ ξn = α (since ξn is between xn and α).
Assuming, further, that f ′′ is continuous at α, it follows that limn→∞ f ′′(ξn) = f ′′(α), Hence,

lim
n→∞

xn+1 − α

(xn − α)2
=

f ′′(α)

2f ′(α)
.

Hence Newton’s method has quadratic convergence for simple roots.

18. NUMERICAL DIFFERENTIATION OF TABLES

When differentiating a function given by a table (for example, of experimental data), one can
approximate the derivative by using a polynomial interpolation formula:

f(x) = P (x) + E(x),

where P (x) is the interpolation polynomial (given either in the Lagrange or the Newton form), and,
for the error term we have

(1) E(x) = f (n)(ξ)
p(x)

n!
= f [x, x1, . . . , xn] p(x),

where

p(x) =

n
∏

j=1

(x− xj),

and ξ is a point in the open interval spanned by the points x, x1, . . . , xn; see (1) and (2) in Section 8
on the error term of the Newton interpolation polynomial. Thus

f ′(x) = P ′(x) + E′(x).

There is no difficulty here in determining P ′(x). As for E′(x), we have

(2) E′(x) =
df (n)(ξ)

dx

p(x)

n!
+ f (n)(ξ)

p′(x)

n!
.

The first term on the right-hand side here presents some difficulties, since the dependence of ξ on
x is not known; the only thing that is known that ξ is somewhere in the interval spanned by the
points x, x1, . . . , xn. If x is one of the interpolation points, we have p(x) = 0, so the first term will
be zero anyway. That is, at any one of the interpolation points, we have

E′(x) = f (n)(ξ)
p′(x)

n!
.
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Assume the points x1, . . . , xn are distinct and x belong to the open interval spanned by x1, . . . ,
xn. Assume, further, that f is differentiable n+1 times. Then E′(x) can be estimated even if x 6= xi
for any i with 1 ≤ i ≤ n. Using the the second expression in (1), the right-hand side of (2) can also
be written as we obtain

E′(x) =
df [x, x1, . . . , xn]

dx
p(x) + f [x, x1, . . . , xn] p

′(x)

= f [x, x, x1, . . . , xn] p(x) + f [x, x1, . . . , xn] p
′(x) = f (n+1)(η)

p(x)

(n+ 1)!
+ f (n)(ξ)

p′(x)

n!
,

where the second equality holds according to the Lemma in Section 8, and the third equality holds
for some ξ and η in the open interval spanned by the the numbers x1, . . . , xn, according to (1)
above and to the Theorem in Section 8 on the error term of the Newton interpolation polynomial.
That is, on the right-hand side, ξ and η are appropriate numbers in the interval spanned by the the
numbers x1, . . . , xn.

Another, more complicated argument is needed to give an error estimate for the derivative of f
if f is differentiable only n times. Instead of restricting us to the first derivative, we will discuss the
kth derivative for k with 1 ≤ k < n, where n is the number of interpolation points. Assuming that
f is n times differentiable, E(x) must also be differentiable n times.43 Furthermore, E(x) = 0 at
each of the interpolation points x1, . . . , xn. Therefore, by Rolle’s Theorem, its kth derivative E(k)

has at least n − k zeros in the interval spanned by the points x1, . . . , xn. Let these points be η1,
. . . , ηn−k. Then,

f (k)(x) = P (k)(x) + E(k)(x).

Here P (k)(x) is a polynomial of degree ≤ n− k− 1, and the error term E(k)(x) is zero at the points
η1, . . . , ηn−k. That is, P (k)(x) interpolates f (k)(x) at these points. Therefore, the error of this
interpolation can be expressed as he error of the Lagrange interpolation44 of the function f (k)(x) at
the points η1, . . . , ηn−k:

E(k)(x) =
1

(n− k)!
· d

n−kf (k)(t)

dtn−k

∣

∣

∣

t=ξ

n−k
∏

i=1

(x− ηi) =
1

(n− k)!
· f (n)(ξ)

n−k
∏

i=1

(x− ηi),

where ξ is in the interval spanned by x and by the points η1, . . . , ηn−k. The points η1, . . . , ηn−k

are not known here; but they are known to be located in the interval spanned by x1, . . . , xn, and
they do not depend on x (since they are the zeros of E(k)(t) guaranteed by Rolle’s theorem).

In fact, a little more precise information can be obtained about the location of the ηi’s. Assuming
x1 < x2 < . . . < xn and η1 < η2 < . . . < ηn−k, we can say that

xi < ηi < xi+k for i with 1 ≤ i ≤ n− k.

This can be proved by induction on k. For l with 0 ≤ l < n write ηli with 1 ≤ i ≤ n− l for the zeros
of E(i)(x) guaranteed by Rolle’s Theorem.45 Then η0i = xi (1 ≤ i ≤ n) and ηi = ηki (1 ≤ i ≤ n−k).
Clearly, xi < η1i < xi+1, so for k = 1 the above claim about the location of the ηi’s is correct.
Moreover, for k > 1, ηk−1 i < ηki < ηk−1 i+1. Assuming the assertion is valid with k − 1 replacing
k, we have xi < ηk−1 i < xi+k−1 and xi+1 < ηk−1 i+1 < xi+k, so xi < ηki < xi+k follows.

43Because E(x) = f(x)− P (x).
44Using the term Lagrange here is somewhat of a misnomer; the Newton interpolation has the same error, since

the Newton interpolation polynomial is the same as the Lagrange interpolation polynomial, written in a different way.

The name Lagrange was used only because this error formula was derived on account of a discussion of the Lagrange
interpolation formula. The same formula could have been derived on account of the Newton interpolation formula.

45E(i)(x) may have more zeros than those guaranteed by Rolle’s theorem; simply disregard the extra zeros, since
their presence is not assured. For example, if E′(x) has more than one zero between x1 and x2, disregard all but one.
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19. NUMERICAL DIFFERENTIATION OF FUNCTIONS

Given a function f that is differentiable sufficiently many times, for given x and h > 0 we have
according to Taylor’s formula (with the Lagrange remainder term)

f(x+ h) =
m
∑

k=0

f (k)(x)
hk

k!
+ f (m+1)(ξ1)

hm+1

(m+ 1)!

and

f(x− h) =
m
∑

k=0

f (k)(x)
(−h)k
k!

+ f (m+1)(ξ2)
(−h)m+1

(m+ 1)!
,

where ξ1 is between x and x+ h and ξ2 is between x and x− h, m ≥ 0 and integer. Assume m > 0
is odd, say m = 2n + 1, and subtract these formulas. Since every term for even k will cancel, we
obtain

f(x+ h)− f(x− h) = 2
n
∑

k=0

f (2k+1)(x)
h2k+1

(2k + 1)!
+
(

f (2n+2)(ξ1)− f (2n+2)(ξ2)
) h2n+2

(2n+ 2)!
.

We will consider this formula for a fixed value of x, but the value of h will change. Divide both sides
by 2h, and rearrange the equation so as to isolate f ′(x) on the left hand side. Writing46

−ck =
f (2k+1)(x)

(2k + 1)!
and −

(

f (2n+2)(ξ1)− f (2n+2)(ξ2)
) h2n+1

(2n+ 2)!
= O(h2n+1),

we obtain

(1)

f ′(x) =
f(x+ h)− f(x− h)

2h
+

n
∑

k=0

ckh
2k +O(h2n+1)

=
f(x+ h)− f(x− h)

2h
+ c1h

2 + c2h
4 + . . .+ cnh

2n +O(h2n+1).

The assumption needed to make this formula valid is that x be differentiable 2n+ 2 times near47 x
(n is a nonnegative integer here).

When using this formula to estimate f ′(x), one would like to choose h as small as possible. The
limitation in choosing h too small is the loss of precision when calculating f(x + h) − f(x − h).
Assuming the absolute value of the error in calculation f(t) for t near x is δ, and the error of
formula (1) is about |c1|h2, the absolute value of the total error in calculating f ′(x) will be

/
δ

h
+ |c1|h2,

where the first term is the error resulting from the numerical evaluation

f(x+ h)− f(x− h)

2h
.

46In a notation introduced by Edmund Landau in the early 20th century, O(f(x)) denotes a function g(x) such
that the ratio g(x)/f(x) stays bounded (for certain values of x understood from the context), and o(f(x)) denotes
a function g(x) that tends to zero (when x tends to a limit understood from the context; usually when x tends to
infinity or x tends to zero). When using the notation O(f(x)) or o(f(x)), one usually assumes that f(x) is positive in

the region considered. In the present case, we use the notation O(h2n+1) for h close to zero or when h→ 0.
47In an open interval containing x− h and x+ h, say. This requirement can be weakened somewhat.
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The above expression for the error assumes its minimum assumes its minimum when its derivative
with respect to h is 0, that is when

− δ

h2
+ 2|c1|h = 0,

i.e., when

h = 3

√

δ

2|c1|
.

the error in this case is

/ δ
3

√

2|c1|
δ

+ |c1|
(

δ

2|c1|

)2/3

=
3

22/3
|c1|1/3δ2/3.

While c1 here is not usually known (though it may be possible to estimate it), this should make
it clear that there are limitations to how small h can be chosen in a practical calculation. If no
estimate for c1 is available, it is not unreasonable to take c1 = 1 in the above formula to find the
optimal value of h.

Richardson extrapolation. For fixed x, write

F1(h) =
f(x+ h)− f(x− h)

2h
.

Then (1) above can be written as

f ′(x) = F1(h) + c1h
2 + c2h

4 + . . .+ cnh
2n +O(h2n+1).

The same formula with 2h replacing h says

f ′(x) = F1(2h) + 4c1h
2 + 16c2h

4 + . . .+ 22ncnh
2n +O(h2n+1).

If we take four times the first of these formulas and subtract the second one, the term corresponding
to h2 will drop out:

3f ′(x) = 4F1(h)− F1(2h)− 12c2h
4 + . . .− (22n − 4)cnh

2n +O(h2n+1).

That is, writing

F2(h) =
4F1(h)− F1(2h)

3
and c2,k =

4− 22k

3
· ck,

we have
f ′(x) = F2(h) + c2,2h

4 + c2,3h
6 + . . .+ c2,nh

2n +O(h2n+1).

This process can be continued. If we write this equation with 2h instead of h, we obtain

f ′(x) = F2(2h) + 16c2,2h
4 + 64c2,3h

6 + . . .+ 22nc2,nh
2n +O(h2n+1).

Multiplying the first equation by 16, subtracting the second equation, and dividing by 15, we obtain

f ′(x) = F3(h) + c3,3h
6 + . . .+ c3,nh

2n +O(h2n+1),

where

F3(h) =
16F2(h)− F2(2h)

15
and c2,k =

16− 22k

15
· ck,

This procedure can be continued along for a while, but eventually the procedure may become
unstable, and continuing the procedure further would produce less accurate results.
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Higher derivatives. According to the Lemma in the section on Hermite interpolation, we
showed that

f [x0, x1, . . . , xn] =
1

n!
f (n)(ξ)

for some ξ in the interval spanned by the numbers x0, . . . , xn, provided f is differentiable n times
in this interval. This formula can be used to estimate the nth derivative of a function:

f (n)(x) ≈ n!f [x0, x1, . . . , xn],

where one usually takes the points x0, . . . , xn to be equidistant, i.e., xk = x0 + kh for some h > 0
(0 ≤ k ≤ n, and x is taken to be the midpoint of the interval (x0, xn), i.e., x = x0+nh/2. Using the
forward difference operator ∆f(t) = f(t+h)−f(h) and the forward shift operator Ef(x) = f(x+h),
this formula can be written as

f (n)(x) ≈ ∆nf(x0)

hn
=

∆nE−n/2f(x)

hn

according to formula (1) in Section 10 on Newton interpolation with equidistant points.48 Taylor’s
formula can be used to estimate the error of this formula. For example, for n = 1 this formula gives

f ′(x) ≈ f(x+ h/2)− f(x− h/2)

h
,

which is the same formula we had above with h/2 replacing h. With n = 2, the same formula gives

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
.

Using Taylor’s formula for f(x + h) and f(x − h) involving the first two derivatives and using the
remainder term with the third derivative (i.e., using the Taylor expansions given at the beginning
of this section with m = 2), we obtain

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+
h

6
(f ′′(ξ2)− f ′′(ξ1))

with some ξ1 ∈ (x − h, x) and ξ2 ∈ (x, x + h). If higher order derivatives also exist, one can again
use Richardson extrapolation to obtain a more accurate result without having to use a smaller value
of h.

Problems

1. Consider the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate the derivative of a function f . Assume we are able to evaluate f with about 5
decimal precision. Assume, further, that f ′′′(x) ≈ 1. What is the best value of h to approximate
the derivative?

Solution. We have

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(x)

3!
h2 +O(h3).

48The second equation uses the observation that x = x0 − nh/2, and so f(x0) = E−n/2f(x).
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We are able to evaluate f(x) with 5 decimal precision, i.e., with an error of 5 · 10−6. Thus, the

(absolute value of the maximum) error in evaluating f(x+h)−f(x−h)
2h is 5 · 10−6/h. So the absolute

value of the total error (roundoff error plus truncation error) in evaluating f ′(x) is

5 · 10−6

h
+

|f ′′′(x)|
6

h2 ≈ 5 · 10−6

h
+
h2

6
,

as f ′′′(x) ≈ 1. The derivative of the right-hand side with respect to h is

−5 · 10−6

h2
+
h

3
.

Equating this with 0 gives the place of minimum error when h3 = 15 · 10−6, i.e., h ≈ 0.0246.

2. Consider the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate the derivative of a function f . Assume we are able to evaluate f with about 6
decimal precision. Assume, further, that f ′′′(x) ≈ 1. What is the best value of h to approximate
the derivative?

Solution. We have

f ′(x) =
f(x+ h)− f(x− h)

2h
− f ′′′(x)

3!
h2 +O(h3).

We are able to evaluate f(x) with 6 decimal precision, i.e., with an error of 5 · 10−7. Thus, the

(absolute value of the maximum) error in evaluating f(x+h)−f(x−h)
2h is 5 · 10−7/h. So the absolute

value of the total error (roundoff error plus truncation error) in evaluating f ′(x) is

5 · 10−7

h
+

|f ′′′(x)|
6

h2 ≈ 5 · 10−7

h
+
h2

6
,

as f ′′′(x) ≈ 1. The derivative of the right-hand side with respect to h is

−5 · 10−7

h2
+
h

3
.

Equating this with 0 gives the place of minimum error when h3 = 15 · 10−7, i.e., h ≈ 0.011, 447.

3. Given a certain function f , we are using the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate its derivative. We have

f̄(1, 0.1) = 5.135, 466, 136 and f̄(1, 0.2) = 5.657, 177, 752

Using Richardson extrapolation, find a better approximation for f ′(1).

Solution. We have

f ′(x) = f̄(x, h) + c1h
2 + c2h

4 . . .

f ′(x) = f̄(x, 2h) + c1(2h)
2 + c2(2h)

4 . . .
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with some c1, c2, . . . . Multiplying the first equation by 4 and subtracting the second one, we obtain

3f ′(x) = 4f̄(x, h)− f̄(x, 2h)− 12c2h
4 − . . . .

That is, with h = 0.1 we have

f ′(x) ≈ 4f̄(x, h)− f̄(x, 2h)

3
≈ 4 · 5.135, 466, 136− 5.657, 177, 752

3
= 4.961, 56

The function in the example is f(x) = x tanx and f ′(1) = 4.982, 93.

4. Given a certain function f , we are using the formula

f̄(x, h) =
f(x+ h)− f(x− h)

2h

to approximate its derivative. We have

f̄(2, 0.125) = 12.015625 and f̄(2, 0.25) = 12.062500

Using Richardson extrapolation, find a better approximation for f ′(2).

Solution. We have

f ′(x) = f̄(x, h) + c1h
2 + c2h

4 . . .

f ′(x) = f̄(x, 2h) + c1(2h)
2 + c2(2h)

4 . . .

with some c1, c2, . . . . Multiplying the first equation by 4 and subtracting the second one, we obtain

3f ′(x) = 4f̄(x, 2h)− f(x, h) + 12c2h
4 + . . . .

That is, with x = 2 and h = 0.125 we have

f ′(x) ≈ 4f̄(x, h)− f̄(x, 2h)

3
≈ 4 · 12.015, 625− 12.062, 500

3
= 12.000, 000

The function in the example is f(x) = x3 and f ′(2) = 12 is exact.49

20. SIMPLE NUMERICAL INTEGRATION FORMULAS

If we approximate a function f on an interval [a, b] by an interpolation polynomial P , we can
integrate the formula

f(x) = P (x) + E(x)

to approximate the integral of f . The polynomial P is easy to integrate. Often one can get reasonable
estimates of the integral of the error E. We consider two simple rules: the trapezoidal rule, and
Simpson’s rule. When considering these rules, the function f will be assumed to be Riemann-
integrable on [a, b]. Hence the error term E(x) = f(x)−P (x) will also be Riemann-integrable, even
though this might not be apparent from the formula we may obtain for E(x).

49It is natural that one step of Richardson extrapolation gives the exact result for a cubic polynomial, after all all

coefficients c2, c3, . . . in the Taylor expansion of f ′(x) above are zero. So, if we eliminate the coefficient c1, we must
get an exact result.
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The trapezoidal rule. Approximate f on the interval [0, h] by the linear polynomial P with
interpolating at the points 0 and h. Using the Newton interpolation formula, we have f(x) =
P (x) + E(x), where

P (x) = f [0] + f [0, h]x,

and, Assuming that f is continuous on [0, h] and is twice times differentiable in the interval (0, h),
for the error term, we have

E(x) = f [x, 0, h]x(x− h) =
1

2
f ′′(ξx)x(x− h),

where ξx ∈ (0, h) depends on x, according to Lemma 1 in the section on Hermite interpolation
(Section 7). Integrating these on the interval [0, h], we obtain

∫ h

0

P (x) dx =

∫ h

0

(f [0]+f [0, h]x) dx = f [0]h+f [0, h]
h2

2
= f(0)h+

f(h)− f(0)

h
·h

2

2
=
h

2
(f(0)+f(h)).

For the error, we need a simple Mean-Value Theorem for integrals that we will now describe. Given
integrable functions φ and ψ on the interval [a, b] such that

m < φ(x) < M and ψ(x) ≥ 0 for x ∈ (a, b),

we have
∫ b

a

φ(x)ψ(x) dx = H

∫ b

a

ψ(x) dx

for some number H with m ≤ H ≤ M . In fact, one can show that m < H < M .50 In case of the
usual form of error terms, this equality can be further simplified. Namely, if φ(x) = g′(ξx) for some
function g that is differentiable on (a, b) and where ξx ∈ (a, b) depends on x, we have

(1)

∫ b

a

g′(ξx)ψ(x) dx = g′(η)

∫ b

a

ψ(x) dx

for some η ∈ (a, b), provided that the integrals on both sides of this equation exist. This is because
the derivative of a function has the intermediate-value property, that is, if g′(α) < c < g′(β) or
g′(α) > c > g′(β) for some α, β ∈ (a, b) with α < β, we have g′(ξ) = c for some ξ with α < ξ < β;
this is true even if g′ is not continuous. This means that the set

{g′(x) : x ∈ (a, b)}

50The value of φ(x) and ψ(x) at a or b clearly have no influence on the value of the integrals, so it was sufficient

to impose conditions on these values only for x ∈ (a, b). If
∫ b
a ψ = 0, then the integrals on both sides of the last

equation are zero, so the value of H makes no difference. (This is difficult to explain without a more thorough
knowledge of integration theory. Noting that we assumed that ψ(x) ≥ 0, if one uses Lebesgue integration theory,

then then assumption together with the equation
∫ b
a ψ = 0 implies that ψ = 0 almost everywhere on [a, b], and so

∫ b
a φ(x)ψ(x) dx = 0 for any φ. The explanation for Riemann integration theory is somewhat more complicated, but

the statement is still true). If
∫ b
a ψ > 0 then one can take

H =

∫ b
a φ(x)ψ(x) dx
∫ b
a ψ(x) dx

.

Then m ≤ H ≤M can easily be shown. It can also be shows, however, that that H = m or H =M cannot happen.
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is an interval (open, closed, or semi-closed). Hence the number H above with the choice of φ(x) =
g′(ξx) can always be written as g′(η) for some η ∈ (a, b).51 It is clear that (1) is also valid if we
assume ψ(x) ≤ 0 for all x ∈ (a, b) instead of assuming ψ(x) ≥ 0.52

Using this Mean-Value Theorem, the integral of the error term can be written as
∫ h

0

E(x) dx =
1

2

∫ h

0

f ′′(ξx)x(x− h) dx =
1

2
f ′′(η)

∫ h

0

(x2 − hx) dx

=
1

2
f ′′(η)

(

h3

3
− h · h

2

2

)

= −h
3

12
f ′′(η)

With a simple change of variable t = a+ (b− a)x with h = b− a, we obtain
∫ b

a

f =
b− a

2
(f(a) + f(b))− (b− a)3

12
f ′′(η)

with some η ∈ (a, b), provided f is continuous in [a, b] and twice differentiable in (a, b).

Simpson’s rule. In Simpson’s rule, a function is interpolated by a quadratic polynomial at three
points, −h, 0, and h. To get a better and simpler error estimate, we interpolate at the points −h,
0, 0, and h by a cubic polynomial, but the cubic part of the interpolation polynomial will make no
contribution to the integral. The Newton-Hermite interpolation polynomial at the points 0, −h, h,
0 can be written as

f(x) = P (x) + E(x) = f [0] + f [0,−h]x+ f [0,−h, h]x(x+ h) + f [0,−h, h, 0]x(x+ h)(x− h)

+ f [x, 0,−h, h, 0]x2(x+ h)(x− h),

where the last term on the right-hand side is the error term. The main points of this equation is
that the integral on the interval [−h, h] of the fourth (cubic) term on the right-hand side is zero,
while the polynomial in the error term (the fifth and last term) is ≤ 0 in the interval (−h, h), so we
can use the Mean-Value Theorem (1) in the error estimate. Thus, for the main term we have

∫ h

−h

P (x) dx =

∫ h

−h

(

f [0] + f [0,−h]x+ f [0,−h, h](x2 + hx) + f [0,−h, h, 0]x(x2 − h2)
)

dx

= f [0] · 2h+ f [0,−h, h] · 2h
3

3
=
h

3
(f(−h) + 4f(0) + f(h)).

Assuming that f is continuous on [−h, h] and is four times differentiable in the interval (−h, h), for
the error term, we have

E(x) = f [x, 0,−h, h, 0]x2(x+ h)(x− h) =
1

4!
f (4)(ξx)x

2(x2 − h2)

for some ξx ∈ (−h, h) depending on x, according to Lemma 1 in the section on Hermite interpolation
(Section 7).53 As the polynomial multiplying the (fourth) derivative on the right-hand side is
nonpositive for x ∈ (−h, h), we can use (1) to estimate the integral of the error:

∫ h

−h

E(x) dx =
1

24

∫ h

−h

f (4)(ξx)(x
4 − h2x2) dx =

f (4)(η)

24

∫ h

−h

(x4 − h2x2) dx

=
f (4)(η)

24

(

2h5

5
− h2 · 2h

3

3

)

= −h
5

90
f (4)(η)

51Above, we assumed that the function φ(x) is bounded. Here, g′(ξx) replaces φ(x), and g′ need not be bounded.

However, if g′ is bounded neither from above nor from below on (a, b) then (1) does not say anything useful, since
g′(η) can be any real number (because g′ has the intermediate value property). If g′ is bounded from above or from
below, then the useful half of the argument above is still applicable so as to establish (1).

52To show this, use (1) with −ψ replacing ψ.
53See the comment at the end of Section 7 (before the Problems) saying that the Lemma can be extended to the

case of repeated interpolation points.
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with some η ∈ (−h, h). Writing h = (b−a)/2, with the change of variable t = a+h+2hx, we obtain

∫ b

a

f =
b− a

6

(

f(a) + 4f

(

a+ b

2

)

+ f(b)

)

− (b− a)5

25 · 90 f (4)(η)

with some η ∈ (a, b), provided f is continuous in [a, b] and five times differentiable in (a, b). Here
25 · 90 = 2880.

The above discussion assumed that the fourth derivative of f exists. If we assume that f has only three derivatives
on (−h, h), we to use the The Newton interpolation polynomial at the points 0, −h, h:

f(x) = P (x) + E(x) = f [0] + f [0,−h]x+ f [0,−h, h]x(x+ h) + f [x,−h, h, 0]x(x+ h)(x− h),

and the error term here is

E(x) = f [x,−h, h, 0]x(x+ h)(x− h) =
1

3!
f ′′′(ξx)x(x

2 − h)

for some ξx ∈ (−h, h) depending on x. The problem here is that x(x2 − h) changes sign on (−h, h), hence formula
(1) above is not directly applicable. We need to apply formula (1) separately on the interval [0, h] and [−h, 0]:

∫ h

0
E(x) dx =

1

6

∫ h

0
f ′′′(ξx)(x

3 − h2x) dx =
f ′′′(η1)

6

∫ h

0
(x3 − h2x) dx

=
f ′′′(η1)

6

(

h4

4
− h2 · h

2

2

)

= −h
4

24
f ′′′(η1)

with some η1 ∈ (−h, h).54 Similarly, we have

∫ 0

−h
E(x) dx =

1

6

∫ 0

−h
f ′′′(ξx)(x

3 − h2x) dx =
f ′′′(η2)

6

∫ 0

−h
(x3 − h2x) dx

=
f ′′′(η2)

6

(

−h
4

4
+ h2 · h

2

2

)

=
h4

24
f ′′′(η2)

with some η2 ∈ (−h, h). So we obtain that

∫ h

−h
E(x) dx =

h4

24

(

f ′′′(η2)− f ′′′(η1)
)

,

for some η1, η2 ∈ (−h, h).

21. COMPOSITE NUMERICAL INTEGRATION FORMULAS

In composite integration formulas, one divides the interval [a, b] into equal parts, and on each
part uses the same numerical integration formula.

Composite trapezoidal rule. Let f be a continuous function on the interval [a, b], and assume
that f is twice differentiable on (a, b). Let n be a positive integer, put h = b−a

n , and let xi = a+ hi
for i with 0 ≤ i ≤ n. We use the trapezoidal rule on each of the intervals [xi−1, xi] (1 ≤ i ≤ n), and
add the results. The calculation involving the main term is straightforward; as for the sum of the
error terms, we have

−h
3

12

n
∑

i=1

f ′′(ηi),

54Formula (1) above is not applicable literally, since we only have ξx ∈ (−h, h) and so ξx need not belong to the

interval of integration (0, h). It is easy to show, however, that (1) can be generalized to the case where one assumes
that ξx belongs to another interval (c, d), and not the interval (a, b) of integration.
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where ηi ∈ (xi−1, xi) for each i. Since the derivative of any function satisfies the intermediate-value
property, the sum equals nf ′′(ξ) for some ξ ∈ (a, b). Thus, the error term can be written as

− (b− a)3

12n2
f ′′(ξ).

Hence, we have
∫ b

a

f =
b− a

2n

(

f(a) + 2

n−1
∑

i=1

f(xi) + f(b)
)

− (b− a)3

12n2
f ′′(ξ).

The error committed when using this formula to calculate an integral results from the error term
and the accumulation of the errors committed in calculating each term on the right-hand side. To
estimate this error, let δ be the maximum error in calculating the value of f . Then assuming the
errors in evaluating function values are independent of one another, the error resulting of adding n
function values can be considered a random variable having a normal distribution of mean 0 and
standard deviation δ

√

n/6.55 This error will be less than 2.58δ
√

n/6 with 99% probability. Thus,
the error in calculating the right-hand side of the above formula is about56

b− a

2n
· 2 · 2.58δ

√

n/6 ≈ 1.053δ · b− a√
n

≈ δ · b− a√
n
.

Noting that the truncation error (i.e., the error given by the error term) decreases in proportion of
1/n2 while the round-off error decreases in proportion of 1/

√
n (i.e., much more slowly), once the

size of the roundoff error is about equal to the size of the truncation error, there is relatively little
payoff in increasing the value of n.

Composite Simpson’s rule. Let f be a continuous function on the interval [a, b], and assume
that f is four times differentiable on (a, b). Let n be a positive integer, and put h = b−a

2n ; that is, we
divide the interval [a, b] in 2n equal parts. Let xi = a + hi for i with 0 ≤ i ≤ 2n. Using Simpson’s
rule on each of the intervals [x2k−1, x2k] for k with 1 ≤ k ≤ n, and adding the results, we obtain

∫ b

a

f =
b− a

6n

(

f(a) + 4f(x1) +

n−1
∑

k=1

(

2f(x2k) + 4f(x2k+1)
)

+ f(b)
)

− (b− a)5

2880n4
f (4)(ξ)

for some ξ ∈ (a, b). The error calculation used the fact that f (4) satisfies the mean-value property,
in a way similar to the error calculation in the composite trapezoidal rule.

As an example, Simpson’s rule is used to calculate the integral

∫ 4

0

dx√
1 + x3

.

The function is defined in the file funct.c:

55The calculation on pp. 10–11 in A. Ralston–P. Rabinowitz [RR] concerns the case when δ = 1/2.
56This calculation of the error assumes that n terms are added on the right-hand side of the above integration

formula, and this sum is multiplied by 2. The number of terms actually added is n + 1, and not all of them are
multiplied by 2.
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1 #include <math.h>

2

3 double funct(x)

4 double x;

5 {
6 double value;

7 value = 1.0/sqrt(1.0+x*x*x);

8 return(value);

9 }
The calling program and Simpson’s rule are contained in the file main.c:

1 #include <stdio.h>

2 #include <math.h>

3

4 double funct(double);

5 double simpson(double (*fnct)(double), double lower,

6 double upper, int n);

7

8 main()

9 {
10 double lower = 0.0, upper = 4.0, x, integr;

11 int i, n;

12 printf("Type n: ");

13 scanf("%d", &n);

14 integr = simpson(&funct, lower,

15 upper,n);

16 printf("The integral is %.12f\n", integr);

17 }
18

19 double simpson(double (*fnct)(double), double lower,

20 double upper, int n)

21 {
22 double x,

23 h, integr = 0.0,

24 flower, fupper,middle,fmiddle;

25 int i;

26 h = (upper - lower)/ 2.0 / ((double) n);

27 x = lower;

28 integr = (*fnct)(x);

29 for(i=0; i < n; i++)

30 {
31 x += h;

32 integr += 4 * (*fnct)(x);

33 x += h;

34 integr += 2 * (*fnct)(x);

35 }
36 integr -= (*fnct)(upper);

37 return integr *= h / 3.0;

38 }
Lines 19–38 contain the function implementing Simpson’s rule. It’s prototype is given in lines 19–20.
The parameters are a pointer to (*fnct), the function to be integrated, the lower limit lower, the
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upper limit upper, and the number n of the pairs of intervals used (i.e., the interval (a, b) is to be
divided into 2n parts). The calculation is fairly straightforward; the only point to be mentioned that
in lines 28, 32, and 34, the function is referred to as (*fnct), the location pointed to by the pointer
fnct. In the calling program, given in lines 8–17, the number n is entered by the user on line 13,
so that the user can experiment with different values of n entered. For example, with n = 40, the
printout is

1 Type n: 40

2 The integral is 1.805473405017

Here, the number 40 on line 1 is typed by the user. With n = 200, the printout is

1 Type n: 200

2 The integral is 1.805473301824

The actual value of the integral is 1.805, 473, 301, 658.

Problems

1. We want to evaluate
∫ 1

0

e−x2

dx

using the composite trapezoidal rule with four decimal precision, i.e., with the absolute value of the
error not exceeding 5 · 10−5. What value of n should one use when dividing the interval [0, 1] into n
parts?

Solution. The error term in the composite trapezoidal formula when integrating f on the interval
[a, b] and dividing the interval into n parts is

− (b− a)3

12n2
f ′′(ξ)

for some ξ ∈ (a, b). We want to use this with a = 0, b = 1, and f(x) = e−x2

. We have

f ′′(x) = (4x2 − 2)e−x2

.

We want to find the maximum of the absolute value of this in the interval [0, 1]. For the third
derivative we have

f ′′′(x) = (12x− 8x2)e−x2

= 4x(3− 2x2)e−x2

> 0

for x ∈ (0, 1). Hence f ′′(x) is increasing on [0, 1]. Thus

−2 = f ′′(0) < f ′′(x) < f ′′(1) = 2e−1 ≈ 0.735, 759

for x ∈ (0, 1). So, noting that a = 0 and b = 1, the absolute value of the error is

(b− a)3

12n2
|f ′′(ξ)| = 1

12n2
|f ′′(ξ)| ≤ 1

12n2
· 2 =

1

6n2
.

In order to ensure that this error is less than 5 · 10−5, we need to have 1/(6n2) < 5 · 10−5, i.e.,

n >

√

105

30
≈ 57.735.

So one needs to make sure that n ≥ 58. Thus one needs to divide the interval [0, 1] into (at least)
58 parts in order to get the result with 4 decimal precision while using the trapezoidal rule. It is
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interesting to compare this with the Simpson rule, which gives the result with 4 decimal precision if
one divides the interval into (at least) 8 parts.

2. We want to evaluate
∫ 1

0

e−x2

dx

using the composite Simpson rule with four decimal precision. What value of n should one use when
dividing the interval [0, 1] into 2n parts?

Solution. The error term in the composite Simpson formula when integrating f on the interval
[a, b] and dividing the interval into 2n parts is

− (b− a)5

2880n4
f (4)(ξ)

for some ξ ∈ (a, b). We want to use this with a = 0, b = 1, and f(x) = e−x2

. We have

f (4)(x) = (16x4 − 48x2 + 12)e−x2

.

We want to find the maximum the absolute value of this in the interval [0, 1]. For the fifth derivative
we have

f (5)(x) = −(32x5 − 160x3 + 120x)e−x2

.

One can easily find the zeros of this, since solving this equation amount to solving a quadratic
equation. We find that the zeros are x ≈ ±0.958572 and x ≈ ±2.02018 and x = 0. Only one of
these is in the interval (0, 1): x ≈ 0.958572. The sixth derivative is

f (6)(x) = (64x6 − 480x4 + 720x2 − 120)e−x2

,

and for x ≈ 0.958572 this is approximately 74.1949, that is, it is positive. Therefore, the fourth
derivative has a local minimum at x ≈ 0.958572. Since the fifth derivative is not zero anywhere else
in the interval (0, 1), this is a place of an absolute minimum of the fourth derivative in [0, 1]. The
fourth derivative at x ≈ 0.958572 is approximately −7.41948. At x = 0 it is 12, and at x = 1 is it is
approximately −7.35759. Thus the absolute maximum of the fourth derivative on the interval [0, 1]
is 12 (assumed at x = 0). Using this in the above error formula, we find that the absolute value of
the error is at most

1

2880n4
· 12.

In order to achieve four decimal precision, this error should be less than 5 · 10−5, that is

1

2880n4
· 12 < 5 · 10−5.

Therefore, we must have

n4 >
12 · 105
5 · 2880 =

250

3
≈ 83.3

This is satisfied with n = 4 (n = 3 comes close, since 34 = 81). That is, when we use the composite
Simpson rule with n = 4 (i.e., when we divide the interval into eight parts), we will obtain the the
result with four decimal precision.
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22. ADAPTIVE INTEGRATION

When numerically approximating the integral of a function, one usually divides the interval of
integration into parts, and on each part one uses simple integration formulas. Often dividing the
interval into equal parts is not the best thing to do, since on certain parts of the interval of integration
the function may be better behaved, requiring a courser subdivision, than in other parts, requiring a
finer subdivision. This is the problem adaptive integration intends to deal with. Adaptive integration
can be used with various simple integration rules, such as the trapezoidal rule and Simpson’s rule.
In the following discussion we consider it with the trapezoidal rule.

Suppose we want to determine the integral of a function f on an interval I with a maximum
absolute error of ǫ. Assume the trapezoidal rule on this interval approximates the integral as T (I).
Then we divide I into two equal parts, I0 and I1, and consider the trapezoidal rule approximations
T (I0) and T (I1) on each of these parts. Since T (I) and T (I0) + T (I1) both approximate

∫

I
f , we

have
T (I) ≈ T (I0) + T (I1).

This equation will, however, not be exact; one would expect that the right-hand side gives a better
approximation, using a finer subdivision of the integral. In fact, one can use the quantity

T (I)−
(

T (I0) + T (I1)
)

.

to estimate the accuracy of this approximation. We will consider it in more detail how this is done.
Writing |I| for the length of the interval I, for the errors of these approximations, we have

E(I) = −|I|3
12

f ′′(ξI),

where ξI ∈ I, and, noting that |I0| = |I1| = |I|/2, we have

E(I0) = − |I|3
8 · 12f

′′(ξI0), E(I0) = − |I|3
8 · 12f

′′(ξI0),

where ξI0 ∈ I0 and ξI1 ∈ I1. Making the assumption that

(1) f ′′(ξ) ≈ f ′′(ξI0) ≈ f ′′(ξI1),

it follows that

E(I0) ≈ E(I1) ≈
E(I)

8
.

Hence, noting that

∫

I

f = T (I) + E(I) = T (I0) + T (I1) + E(I0) + E(I1),

we have

T (I0) + T (I1)− T (I) = E(I)− E(I0)− E(I1) ≈ (8− 1− 1) · E(I0) = 6E(I0).

Hence

E(I0) ≈ E(I1) ≈
1

6
(T (I0) + T (I1)− T (I)).

Thus the error in approximating
∫

I
f by T (I0) + T (I1) is

E(I0) + E(I1) ≈
1

3
(T (I0) + T (I1)− T (I)).
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Thus, if

(2)
1

3
|T (I0) + T (I1)− T (I)| < ǫ.

then we accept the approximation
∫

I

f = T (I0) + T (I1).

If this inequality is not satisfied, then we work with the intervals I0 and I1 separately. Noting that

∫

I

f =

∫

I0

f +

∫

I1

f,

we try to determine the integral
∫

I0
with an allowable error less than ǫ/2. Similarly, we try to

determine
∫

I1
with an allowable error less than ǫ/2. If we are successful, the total error committed

on I will be less than ǫ.
When continuing this procedure, some parts of I may have to be subdivided many times, others

maybe only a few times; in any case, the total error committed on I will be less than ǫ. Of course,
there is no certainty that this will be so, since the assumption (1) may fail, especially if we did
not make sure that we divided the interval into sufficiently many parts. Therefore, an additional
precaution may be that (2) is only accepted as a guarantee that the error is small enough if the
length of I itself is not too large.

A C program implementation of adaptive integration is contained in the file adapt.c. The header
file adapt.h to this file is

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double trapadapt(double (*fnct)(double), double a,

8 double b, double epsilon, double maxh,

9 double minh, double fa, double fb,

10 double *bada, double *badb,

11 int *success);

On line 4, absval(x) to calculate the absolute value of x is defined, on line 6 the declaration of funct,
the function to be integrated (defined in a separate file) is given, and in lines 7–11 the declaration
of the function trapadapt, discussed next, is give. The file adapt.c contains the definition of this
function:

1 #include "adapt.h"

2

3 double trapadapt(double (*fnct)(double), double a,

4 double b, double epsilon, double maxh,

5 double minh, double fa, double fb,

6 double *bada, double *badb,

7 int *success)

8 {
9 double x, integr1, integr2, integr = 0.0,

10 mid, fmid, h, t1, t2;

11 h = b - a;
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12 if ( h >= minh ) {
13 mid = (a + b)/2.0; fmid = (*fnct)(mid);

14 t1 = (fa+fb)*h/2.0;

15 t2 = (fa+2.0*fmid+fb)*h/4;

16 if ( h<=maxh && absval(t2-t1)<= 3.0*epsilon ) {
17 integr = t2;

18 *success = 1;

19 }
20 else {
21 integr1 = trapadapt(fnct, a, mid, epsilon/2.0, maxh,

22 minh, fa, fmid, bada, badb, success);

23 if ( *success ) {
24 integr2 = trapadapt(fnct, mid, b, epsilon/2.0, maxh,

25 minh, fmid, fb, bada, badb, success);

26 }
27 if ( *success ) {
28 integr = integr1+integr2;

29 }
30 }
31 }
32 else {
33 *success = 0; *bada = a; *badb = b;

34 }
35 return integr;

36 }

The function trapadapt has parameters (mentioned in lines 3–7) (*fnct), a pointer to the function
to be integrated, the limits of the integral a and b, the maximum allowable error epsilon on the
interval (a,b), the maximum length max h of a subdivision that need not be subdivided further, the
minimum length minh of a subdivision (if the error is too large with an interval of length minh, the
calculation will be declared a failure), the values fa and fb, of the function at a and b, respectively,
pointers *bada and *badb, to the endpoints of the subinterval on which the calculation failed (the
calling program can read these values, so it can be decided later to use a different method to
determine the integral on the interval where the method failed), and the variable success that is 1
(true) if the method is successful and 0 (false) otherwise. In lines 15 and 16, the trapezoidal sums
on the whole interval (a,b) and its two parts are calculated, and in line 16 it is decided whether the
calculation is successful (when h<=maxh and the the absolute value of the difference t2-t1 estimating
the error is small enough). If this is not the case, the method is recursively called in lines 21–25
for the intervals (a,mid) and (mid,b) with epsilon/2.0 instead of epsilon (since each of these
subintervals allow only half the error of the whole interval. The sum of the two integrals on the
subintervals, calculated in line 28, will be the integral on the interval (a,b). If the calculation is
not successful, the endpoints a and b are placed into the locations *bada and badb on line 33.

The file funct.c contains the definition of the function funct:

1 #include "adapt.h"

2

3 double funct(x)

4 double x;

5 {
6 double value;

7 value = 1.0/sqrt(1.0+x*x*x);

8 return(value);
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9 }
That is, the integral of the function

1√
1 + x3

is being calculated. The main program, given in the file main.c, specifies the limits of the integral
as a = 0 and b = 4:

1 #include "adapt.h"

2

3 main()

4 {
5 double a = 0.0, b = 4.0, x, integr,

6 epsilon=5e-10, maxh=1e-1, minh=1e-5, bada, badb,

7 mid, fa, fb;

8 int success;

9 fa=funct(a); fb=funct(b);

10 integr=trapadapt(&funct, a, b, epsilon, maxh, minh,

11 fa, fb, &bada, &badb, &success);

12 if ( success ) {
13 printf("The integral is %.12f\n", integr);

14 }
15 else {
16

17 printf("The integral has trouble in the interval"

18 "(%.12f, %.12f)\n", bada, badb);

19 }
20 }

The makefile, called makefile, used to compile this program is given in

1 all: adapt

2 adapt : funct.o main.o adapt.o adapt.h

3 gcc -o adapt -s -O4 adapt.o funct.o main.o -lm

4 funct.o : funct.c adapt.h

5 gcc -c -O4 funct.c

6 adapt.o : adapt.c adapt.h

7 gcc -c -O4 adapt.c

8 main.o : main.c adapt.h

9 gcc -c -O4 main.c

10 clean : adapt

11 rm funct.o main.o

To compile the program, one types the command

$ make all

If the program runs well, one may remove the object files main.o, and funct.o by typing

$ make clean

Once the program runs, there is no need for these files, and the file adapt is the only one needed.
The file funct.o may be kept, since it can be reused if a different integral is to be calculated (for
which the files main.c and funct.c may need to be rewritten, but the file adapt.c need not be
changed. The printout of the program is a single line (the 1 at the beginning of the line is a line
number, not part of the printout).

1 The integral is 1.805473301821
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A more precise approximation of the integral is 1.805, 473, 301, 658, 077; i.e, the result is accurate
to nine decimal places, which is in accordance with out choice of the maximum allowable error
ǫ = 5 · 10−10 (i.e., epsilon=5e-10).

Problem

1. We would like to determine the integral

∫ 1

0

3
√

1 + x2 dx

with precision ǫ = 5 · 10−4 using the adaptive trapezoidal rule. Writing f(x) = 3
√
1 + x2, on the

interval [1/8, 2/8] we find that

T =
1/8

2
(f(1/8) + f(2/8)) ≈ 0.126, 599, 701

and

T̄ =
1/16

2
(f(1/8) + 2f(3/16) + f(2/8)) = 0.126, 523, 853.

Do we have to subdivide the interval [1/8, 2/8] further or the result is already precise enough.

Solution. The error allowed on the interval [1/8, 2/8] is ǫ/8 = 6.25 · 10−5. The error can be
estimated as

1

3
(T̄ − T ) ≈ −0.000, 025, 282, 7

This is smaller than the permissible error, so the interval does not need to be further subdivided;
one can accept T̄ as the integral on this interval.

23. ADAPTIVE INTEGRATION WITH SIMPSON’S RULE

After of discussion of an implementation for adaptive integration for the trapezoidal rule, it will
be easy to make the appropriate changes so as to implement adaptive integration with Simpson’s
rule. Suppose we want to determine the integral of a function f on an interval I with a maximum
absolute error of ǫ. Assume Simpson’s rule on this interval approximates the integral as S(I). Then
we divide I into two equal parts, I0 and I1, and consider the Simpson approximations S(I0) and
S(I1) on each of these parts.57 Since S(I) and S(I0) + S(I1) both approximate

∫

I
f , we have

S(I) ≈ S(I0) + S(I1).

As in case of the trapezoidal rule, this equation will not be exact; one would expect that the right-
hand side gives a better approximation, using a finer subdivision of the integral. In fact, one can
use the quantity

S(I)−
(

S(I0) + S(I1)
)

.

to estimate the accuracy of this approximation. We will consider it in more detail how this is done.
Writing |I| for the length of the interval I, for the errors of these approximations, we have

E(I) = − |I|5
2880

f (4)(ξI),

57Of course, in order to calculate S(I), one already has to divide I into two equal parts, I0 and I1. In order to
calculate S(I0) and S(I1), one has to further subdivide each ot these part into two equal parts.
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where ξI ∈ I, and, noting that |I0| = |I1| = |I|/2, we have

E(I0) = − |I|5
25 · 2880f

(4)(ξI0), E(I1) = − |I|5
25 · 2880f

(4)(ξI0),

where ξI0 ∈ I0 and ξI1 ∈ I1. Making the assumption that

(1) f (4)(ξ) ≈ f (4)(ξI0) ≈ f (4)(ξI1),

it follows that

E(I0) ≈ E(I1) ≈
E(I)

25
.

Hence, noting that

∫

I

f = S(I) + E(I) = S(I0) + S(I1) + E(I0) + E(I1),

we have

S(I0) + S(I1)− S(I) = E(I)− E(I0)− E(I1) ≈ (25 − 1− 1) · E(I0) = 30E(I0).

Hence

E(I1) ≈ E(I2) ≈
1

30
(S(I0) + S(I1)− S(I)).

Thus the error in approximating
∫

I
f by S(I0) + S(I1) is

E(I0) + E(I1) ≈
1

15
(S(I0) + S(I1)− S(I)).

Thus, if

(2)
1

15
|S(I0) + S(I1)− S(I)| < ǫ.

then we accept the approximation
∫

I

f = S(I0) + S(I1).

If this inequality is not satisfied, then we work with the intervals I0 and I1 separately. Noting that

∫

I

f =

∫

I0

f +

∫

I1

f,

we try to determine the integral
∫

I0
with an allowable error less than ǫ/2. Similarly, we try to

determine
∫

I1
with an allowable error less than ǫ/2. If we are successful, the total error committed

on I will be less than ǫ.
When continuing this procedure, some parts of I may have to be subdivided many times, others

maybe only a few times; in any case, the total error committed on I will be less than ǫ. Of course,
there is no certainty that this will be so, since the assumption (1) may fail, especially if we did
not make sure that we divided the interval into sufficiently many parts. Therefore, an additional
precaution may be that (2) is only accepted as a guarantee that the error is small enough if the
length of I itself is not too large.

A C program implementation of adaptive integration is contained in the file adapt.c. The header
file adapt.h to this file is
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1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double simpsonadapt(double (*fnct)(double), double a,

8 double b, double mid, double epsilon, double maxh,

9 double minh, double fa, double fb, double fmid,

10 double *bada, double *badb,

11 int *success);

Similarly as in case of the trapezoidal rule, on line 4, absval(x) to calculate the absolute value of x
is defined, on line 6 the declaration of funct, the function to be integrated (defined in a separate file)
is given, and in lines 7–11 the declaration of the function simpsonadapt, discussed next, is given.
The file adapt.c contains the definition of this function:

1 #include "adapt.h"

2

3 double simpsonadapt(double (*fnct)(double), double a,

4 double b, double mid, double epsilon, double maxh,

5 double minh, double fa, double fb, double fmid,

6 double *bada, double *badb,

7 int *success)

8 {
9 double x, integr1, integr2, integr = 0.0,

10 mid1, mid2, fmid1, fmid2, h, s1, s2;

11 h = b - a;

12 if ( h >= minh ) {
13 mid1 = (a + mid)/2.0; fmid1 = (*fnct)(mid1);

14 mid2 = (mid + b)/2.0; fmid2 = (*fnct)(mid2);

15 s1 = (fa+4.0*fmid+fb)*h/6.0;

16 s2 = (fa+4.0*fmid1+2.0*fmid+4.0*fmid2+fb)*h/12.0;

17 if ( h<=maxh && absval(s2-s1)<= 15.0*epsilon ) {
18 integr = s2;

19 *success = 1;

20 }
21 else {
22 integr1 = simpsonadapt(fnct, a, mid, mid1, epsilon/2.0,

23 maxh, minh, fa, fmid, fmid1, bada, badb, success);

24 if ( *success ) {
25 integr2 = simpsonadapt(fnct, mid, b, mid2, epsilon/2.0,

26 maxh, minh, fmid, fb, fmid2, bada, badb, success);

27 }
28 if ( *success ) {
29 integr = integr1+integr2;

30 }
31 }
32 }
33 else {
34 *success = 0; *bada = a; *badb = b;

35 }
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36 return integr;

37 }
The function simpsonadapt has parameters (mentioned in lines 3–7) (*fnct), a pointer to the
function to be integrated, the limits of the integral a and b, the midpoint mid of the interval of
integration (while the midpoint is easy to calculate, the calculation is more efficient if the midpoint is
not recalculated each time; the function simsponadapt will call itself recursively, and both the calling
program and the called program will need the midpoint), the maximum allowable error epsilon on
the interval (a,b), the maximum length max h of a subdivision that need not be subdivided further,
the minimum length minh of a subdivision (if the error is too large with an interval of length minh,
the calculation will be declared a failure), the values fa, fb, fmid of the function at a, b, and mid,
respectively, pointers *bada and *badb to the endpoints of the subinterval on which the calculation
failed (the calling program can read these values, so it can be decided later to use a different method
to determine the integral on the interval where the method failed), and the variable success that is
1 (true) if the method is successful and 0 (false) otherwise. In lines 15 and 16, the Simpson sums on
the whole interval (a,b) and its two parts are calculated, and in line 17 it is decided whether the
calculation is successful (when h<=maxh and the the absolute value of the difference s2-s1 estimating
the error is small enough). If this is not the case, the method is recursively called in lines 22–26
for the intervals (a,mid) and (mid,b) with epsilon/2.0 instead of epsilon (since each of these
subintervals allow only half the error of the whole interval. The sum of the two integrals on the
subintervals, calculated in line 29, will be the integral on the interval (a,b). If the calculation is
not successful, the endpoints a and b are placed into the locations *bada and badb on line 34.

The file funct.c contains the definition of the function funct; this file is the same as in case of
adaptive integration for the trapezoidal rule. That is, the integral of the function

1√
1 + x3

is being calculated. The main program, given in the file main.c, specifies the limits of the integral
as a = 0 and b = 4, as before:

1 #include "adapt.h"

2

3 main()

4 {
5 double a = 0.0, b = 4.0, x, integr,

6 epsilon=5e-10, maxh=1e-1, minh=1e-5, bada, badb,

7 mid, fa, fb, fmid;

8 int success;

9 fa=funct(a); fb=funct(b);

10 mid=(a+b)/2.0; fmid=funct(mid);

11 integr=simpsonadapt(&funct, a, b, mid, epsilon, maxh,

12 minh, fa, fb, fmid, &bada, &badb, &success);

13 if ( success ) {
14 printf("The integral is %.12f\n", integr);

15 }
16 else {
17

18 printf("The integral has trouble in the interval"

19 "(%.12f, %.12f)\n", bada, badb);

20 }
21 }

There are very few changes in the calling program compared to the one used in case of adaptive
integration for the trapezoidal rule; one difference is that now the calling program has to calculate
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the value of the midpoint of the interval (a,b) and has to calculate the value of the function there;
this is done on line 10. The makefile is the same as in case of adaptive integration for the trapezoidal
rule. The printout of the program is a single line (the 1 at the beginning of the line is a line number,
not part of the printout).

1 The integral is 1.805473301724

The first nine digits of the result coincide with those given by adaptive integration with the trape-
zoidal rule.

Problems

1. We would like to evaluate the integral

∫ 4

0

√

1 + x3 dx

with a precision of ǫ = 5 · 10−4 using the adaptive Simpson Rule. Writing f(x) =
√
1 + x3, on the

interval [2, 3] we find that

S[2,3] =
1

6

(

f(2) + 4f

(

2
1

2

)

+ f(3)

)

≈ 4.100, 168, 175.

and

S[2,2 1
2 ]

+ S[2 1
2
,3] =

1

12

(

f(2) + 4f

(

2
1

4

)

+ 2f

(

2
1

2

)

+ 4f

(

2
3

4

)

+ f(3)

)

= 4.100, 102, 756.

Do we have to subdivide the interval [2, 3] further or the result is already precise enough.

Solution. The error allowed on the interval [2, 3] is ǫ/4 = 1.25 · 10−4. The error can be estimated
as

1

15

(

S[2,2 1
2 ]

+ S[2 1
2
,3] − S[2,3]

)

≈ 4.100, 102, 756− 4.100, 168, 175

15
= −4.361, 27 · 10−6.

This is considerably smaller in absolute value than the permissible error, so the interval does not
need to be further subdivided; one can accept S[2,2 1

2 ]
+ S[2 1

2
,3] = 4.100, 102, 756 as the integral on

this interval.

24. THE EULER-MACLAURIN SUMMATION FORMULA

Let a and b be integers, a < b, let N > 0 be an integer, and assume f is a function that is N
times differentiable on the interval [a, b], and f (N) is continuous on (a, b).58 Then Euler-Maclaurin
summation formula states that we have59

(1)

f(a)

2
+

b−1
∑

i=a+1

f(i) +
f(b)

2
=

∫ b

a

f(x) dx+

N
∑

m=2
m is even

Bm

m!

(

f (m−1)(b)− f (m−1)(a)
)

− (−1)N

N !

∫ b

a

PN (x)f (N)(x) dx.

58The continuity of f (N) is needed to justify the integration by parts involving f (N) in the proof of (1) given
later in this section. Insofar as this integration by parts can be justified under weaker assumptions, the continuity
requirement can be relaxed. It is sufficient to assume, for example, that f (N) is Riemann-integrable on [a, b] instead

of assuming that it is continuous on (a, b).
59The notation used will be explained below.
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Here Pm(x) = Bm(x − [x]), were [x] is the integer part of x (i.e., the largest integer not exceeding
x), and the Bernoulli polynomials Bm(x) are defined by the equation60

(2)
zexz

ez − 1
=

∞
∑

m=0

Bm(x)

m!
zm.

In other words, the function
zexz

ez − 1

on the left-hand side, considered as a function of z, can be expanded into a Taylor series at z = 0,
and it turns out that the coefficients Bm(x)/m! of this Taylor series are polynomials of degree m
of x; these coefficients identify the Bernoulli polynomials.61 Finally, the Bernoulli numbers Bm are
defined as Bm(0). Substituting x = 0 in the above series, this shows that the Bernoulli numbers are
defined by the Taylor expansion

(3)
z

ez − 1
=

∞
∑

m=0

Bm

m!
zn.

It turns out that B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 , and B0 = 1, B1 = −1/2; for
odd m > 1 we have Bm = 0, and B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, B10 = 5/66,
B12 = −691/2730, B14 = 7/6, . . . . To see that Bm = 0 for odd m > 1, observe that the function

z

ez − 1
+
z

2
=

1

2
z
ez + 1

ez − 1
=

1

2
(−z)e

−z + 1

e−z − 1

is an even function62 of z, so the odd powers of z are missing from its Taylor expansion at z = 0.
The proof of the Euler-Maclaurin summation formula will be given later in this section.

Writing N = 2M or N = 2M + 1 with an integer M , (1) can be rewritten as

(4)
f(a)

2
+

b−1
∑

i=a+1

f(i) +
f(b)

2
=

∫ b

a

f(x) dx+

M
∑

m=1

B2m

(2m)!

(

f (2m−1)(b)− f (2m−1)(a)
)

+R,

where the remainder term R can be written as

(5) R = − 1

(2M)!

∫ b

a

P2M (x)f (2M)(x) dx

in case M > 0, f is 2M times differentiable on [a, b], and f (2M) is continuous on (a, b), and

(6) R =
1

(2M + 1)!

∫ b

a

P2M+1(x)f
(2M+1)(x) dx

60In the mathematical literature, there a number of different definitions of the Bernoulli polynomials, giving rise to
different, but closely related sets of polynomials. The one given here is the modern version. When reading a statement
involving Bernoulli polynomials in the mathematical literature, one needs to check carefully which definition of these

polynomials is taken.
61The expression

zexz

ez − 1
,

regarded as a function of z, is not defined for z = 0, but taking its value to be 1 for z = 0, it becomes differentiable
any number of times, and its Taylor series at z = 0 will converge for |z| < 2π (this value for the radius of convergence
is a simple consequence of results from complex function theory). That Bm(x) is indeed a polynomial of x will be a

by-product of the proof of formula (1), given later in this section. See footnote 64 on p. 87.
62A function f(t) is called even if f(−t) = f(t). f(t) is called odd if f(−t) = −f(t)
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in case M ≥ 0, f is 2M + 1 times differentiable on [a, b], and f (2M+1) is continuous on (a, b).
By making the substitution t = hx in the integral in (1), and writing xi = a+ ih, one can obtain

a version of the trapezoidal rule with new error terms. When making the substitution t = hx in the
Euler summation formula (1) above, we also change to notation, and write A, B, and F instead of
a, b, and f . We obtain

F (A)

2
+

B−1
∑

i=A+1

F (i) +
F (B)

2
=

∫ Bh

Ah

F (t/h)
1

h
dt+

N
∑

m=2
m is even

Bm

m!

(

F (m−1)(B)− F (m−1)(A)
)

− (−1)N

N !

∫ Bh

Ah

PN (t/h)F (N)(t/h)
1

h
dt.

Write a = Ah, b = Bh, and f(t) = F (t/h), and note that f (k)(t) = h−kF (k)(t/h), i.e., hkf (k)(t) =
F (k)(t/h). Multiplying both sides by h, and writing

T (f, n) =
h

2

(

f(a) + 2

n−1
∑

i=1

f(xi) + f(b)
)

for the trapezoidal sum, we obtain

T (f, n) =

∫ b

a

f(t) dt+

N
∑

m=2
m is even

Bmh
m

m!

(

f (m−1)(b)− f (m−1)(a)
)

− (−1)N

N !

∫ b

a

PN (t/h)hNf (N)(t) dt.

An interesting point about the error term here is that if the function f is periodic with period
b− a, then all the terms in the sum on the right-hand side are zero. In this case, we obtain for the
integral that

∫ b

a

f = T (f, n) +O(hN ).

That is, when integrating a periodic, many times differentiable function along its whole period,
the trapezoidal rule gives a much better error term, than, for example, Simpson’s rule. Further,
Romberg integration (discussed in the next section) does not improve on the trapezoidal rule in this
case. For example, in calculating the integral

∫ 2π

0

esin x dx

one would use the trapezoidal rule, and not Simpson’s rule or Romberg integration.

Proof of the Euler-Maclaurin summation formula. For any integer c with a ≤ c < b
we have

(7)

∫ c+1

c

f(t) dt =

∫ c+1

c

(

t− c− 1

2

)′
f(t) dt

=

(

t− c− 1

2

)

f(t)
∣

∣

∣

t=c+1

t=c
−
∫ c+1

c

(

t− c− 1

2

)

f ′(t) dt

=
1

2
(f(c) + f(c+ 1))−

∫ c+1

c

B1(t− c)f ′(t) dt.
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The second equality here follows by integration by parts, and the third equality holds since B1(x) =
x− 1

2 . According to (2) above we have

∞
∑

m=0

Bm(x)

m!
zm+1 =

z2exz

ez − 1
=

∂

∂x

zexz

ez − 1
=

∞
∑

m=0

B′
m(x)

m!
zm.

Here the first equality is just (2) multiplied by z and with the sides reversed, and the third equality
is obtained by taking the partial derivative of (2) with respect to x.63 Equating the coefficients of
zm+1 on the extreme members of these equations, we obtain that B′

m+1(x) = (m+ 1)Bm(x) for all
m ≥ 0.64 Hence, using integration by parts,

(m+ 1)

∫ c+1

c

Bm(t− c)f (m)(t) dt =

∫ c+1

c

B′
m+1(t− c)f (m)(t) dt

= Bm+1(t− c)f (m)(t)
∣

∣

∣

t=c+1

t=c
−
∫ c+1

c

Bm+1(t− c)f (m+1)(t) dt

= Bm+1(1)f
(m)(c+ 1)−Bm+1(0)f

(m)(c)−
∫ c+1

c

Bm+1(t− c)f (m+1)(t) dt.

Observe that Bm(0) = Bm(1) holds for m > 1. This is because we have

∞
∑

m=0

Bm(1)

m!
zm =

zez

ez − 1
= z +

z

ez − 1
= z +

∞
∑

m=0

Bm(0)

m!
zm.

The first equality here holds according to (2) with x = 1, and the third equation holds according to
(2) with x = 0. Equating the coefficients of powers of z on the extreme members of these equations,
we obtain that indeed Bm+1(0) = Bm+1(1) holds for m ≥ 1. Hence, noting that Bm+1 = Bm+1(0)
by the definition of the Bernoulli numbers, and writing K = m, we obtain for K ≥ 1 that

∫ c+1

c

BK(t− c)f (K)(t) dt

=
1

K + 1

(

BK+1 ·
(

f (K)(c+ 1)− f (K)(c)
)

−
∫ c+1

c

BK+1(t− c)f (K+1)(t) dt

)

.

Using this equation, the formula
∫ c+1

c

f(t) dt =
1

2
(f(c) + f(c+ 1))

−
K
∑

m=2

(−1)m
Bm

(m)!

(

f (m−1)(c+ 1)− f (m−1)(c)
)

+
(−1)K

K!

∫ c+1

c

BK(t− c)f (K)(t) dt.

63While termwise differentiability with respect to x of (2) is permissible, to justify this one needs to show that the
differentiated series is uniformly convergent for x (on finite intervals, for fixed z in with |z| < 2π), and the easiest way

to do this is to use estimates for the coefficients of the Taylor series from complex function theory (i.e., thinking of z
as a complex variable, while keeping x real, so as to stay with single variable complex function theory). An easier
way to justify the last equality is that coefficients of the power series on the right are equal to

1

m!

∂m

∂zm
∂

∂x

zexz

ez − 1

∣

∣

∣

z=0
=

1

m!

∂

∂x

∂m

∂zm
zexz

ez − 1

∣

∣

∣

z=0
.

This equation only uses the interchangeability of mixed partial derivatives. The right-hand side here equals B′
m(x)/m!

according to (2). In fact, one can ignore all convergence issues and treat (2) and (3) as formal Taylor series defining
the coefficients. All our proofs of the properties of Bm and Bm(x) remain valid by considering the Taylor series used

in the proofs as formal Taylor series, without considering whether these series are convergent for any value other than
z = 0.

64This equation shows that B
(m)
m (x) = m!B0(x) = m!, so that Bm(x) is indeed a polynomial of degree m of x.
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can be established for K = 1, 2, . . . , N by induction. Indeed, for K = 1, the formula is equivalent
to (7), and the induction step from K to K +1 follows by expressing the integral on the right-hand
side with the aid of the the equation above. For K = N , this equation is equivalent to (1).

To obtain (1), take this last formula for K = N and sum it for c = a, a + 1, . . . , b − 1. To see
that indeed (1) results this way, one only needs to point out that PN (t) = BN (t− [t]) = BN (t− c)
for t with c ≤ t < c+ 1, and that Bm = 0 for odd m > 1. �

Connection with finite differences. The Euler-Maclaurin summation formula can be ex-
plained in terms of the calculus of finite differences. While this explanation can be developed into a
full-featured proof of the formula, we will not do this here. Let f be a function, let E be the forward
shift operator (with h = 1, see Section 9), that is, Ef(x) = f(x+1), and let D be the differentiation
operator, i.e., Df(x) = f ′(x); finally, let I be the identity operator, that is If(x) = f(x). Then,
expressing f(x+ 1) into a Taylor series expansion at x, we have

f(x+ 1) =
∞
∑

n=0

1

n!
f (n)(x);

of course, this is valid only under some restrictive assumptions on f , but for now we will assume
that this formula is valid. In terms of the operators D and E, this can be written as

Ef =
(

∞
∑

n=0

1

n!
Dn
)

f = eDf,

where the last equality can be taken as the definition of the exponential eD of the operator D in
terms of the Taylor series of the exponential function. Writing F for an antiderivative of f (that is,
F ′ = f), and using the above formula for F instead of f , we obtain

∫ x+1

x

f = F (x+ 1)− F (x) = (eD − I)F (x).

Multiplying both sides by (eD − I)−1 we can write that65

F (x) = (eD − I)−1(F (x+ 1)− F (x)).

Multiplying both sides by D on the left, we obtain

DF (x) = D(eD − I)−1(F (x+ 1)− F (x)).

Noting that

D(eD − I)−1 =

∞
∑

m=0

Bm

m!
Dm

according to (3), the last equation can be written as

DF (x) =

∞
∑

m=0

Bm

m!
Dm(F (x+ 1)− F (x))

In view of the equations DF = F ′ = f , B0 = 1, and B1 = −1/2, this formula can be written as

f(x) = F (x+ 1)− F (x)− 1

2
(f(x+ 1)− f(x)) +

∞
∑

m=2

Bm

m!
(f (m−1)(x+ 1)− f (m−1(x)).

65At this point all these calculations should be taken only as symbolic manipulations – the question whether the
inverse of eD − I is meaningful should be bypassed for now.
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Observing that F (x+ 1)− F (x) =
∫ x+1

x
f , it follows that

(8)
1

2

(

f(x) + f(x+ 1)
)

=

∫ x+1

x

f +

∞
∑

m=2

Bm

m!
(f (m−1)(x+ 1)− f (m−1(x)),

which equivalent the Euler-Maclaurin summation formula if on the right-hand side of (1) we make
N → ∞, and we ignore the last integral on the right-hand side. Unfortunately, this cannot be
done, since the sum on the right-hand side of (1) usually diverges when N → ∞. Nevertheless, this
argument works in case f is a polynomial, since in this case high-order derivatives of f are zero. In
fact, when f is a polynomial, all the arguments above are rigorous, since all the infinite series in
fact turn into finite series. So this argument indeed gives a rigorous proof (of the form (8)) of the
Euler-Maclaurin formula for polynomials.

If one wants to get a proof of the general form if the Euler-Maclaurin summation formula, one may
try to derive formula (1) from formula (8) by finding a polynomial P that approximates f , f ′, . . . ,
f (N ) uniformly on the interval [a, b] by the Weierstrass approximation theorem.66 But then one runs
into technical difficulties as to how to obtain the integral on the right-hand side of (1). This integral
can be considered in a sense a “remainder term” of the infinite series on the right-hand side of (1).
On may probably obtain this integral in a way similar to the way one obtains the integral remainder
term of the Taylor formula.67 However, it is questionable whether this is an avenue worth pursuing.
Namely, a proof of the Taylor formula with integral remainder term can be obtained by repeated
integration by parts, in much the same way as was done in the first proof of the Euler-Maclaurin
formula; in fact, such a proof is in some sense more satisfying than the one we gave for the Taylor
formula in Section 4 using telescoping sums. It is better to think of the above argument leading to
formula (8) as an intuitive justification of the appearance of the Bernoulli numbers, defined by (3),
in the Euler-Maclaurin summation formula.

Zeros of the Bernoulli polynomials. According to (2), we have

zexz

ez − 1
− ze(1−x)z

ez − 1
=

∞
∑

m=0

Bm(x)−Bm(1− x)

m!
zm.

The left-hand side here can also be written as

z(e(x−1/2)z − e(1/2−x)z)

ez/2 − e−z/2
.

It is easy to see that this is an odd function68 of z. Therefore, in its Taylor expansion at z = 0 the
coefficients of even powers of z are zero. Hence Bm(x) = Bm(1 − x) for even m. We saw above,
in the proof of the Euler-Maclaurin summation formula, that we have B′

m(x) = mBm−1(x) for all
m > 0. Hence, for even m > 1, we have

mBm−1(x) = B′
m(x) = −B′

m(1− x) = −mBm−1(1− x).

66The Weierstrass approximation theorem says if f is continuous on [a, b] then for every ǫ > 0 there is a polynomial
P such that |f(x)− P (x)| < ǫ for all x ∈ [a, b].

67The Taylor formula with integral remainder term says can be written as

f(b) =
n
∑

k=0

fk(a)

k!
+

∫ b

a

f (n+1)(x) (b− x)n

n!
dx,

provided fk is exists on [a, b] (if a < b) or [b, a] (if b < a) and f (n+1) is continuous on [a, b] or [b, a]. This can be

proved from (1) in the Lemma in Section 4 by expressing Rn(b, x) for x = a as the integral of its derivative.
68See footnote 62 on p. 85.
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Thus Bm(x) = −Bm(1− x) for odd m > 0. It therefore follows that Bm(1/2) = −Bm(1/2) for odd
m. Hence Bm(1/2) = 0 for odd m. Thus, for odd m > 1, Bm(x) has zeros at x = 0, 1/2, 1; this is
because we saw above that Bm(0) = Bm = 0 for odd m, and then Bm(1) = Bm(1− 1) = Bm(0) = 0
also holds. We are going to show that Bm(x) has no more zeros in the interval [0, 1] for odd m.

Indeed, assume that m > 1 is odd, and Bm(x) has at least two zeros (counted with multiplicity)
in the interval (0, 1). Since Bm(x) is also zero for x = 0 and x = 1, it follows that B′

m(x) = mBm−1

has at least three zeros in the interval (0, 1) by Rolle’s theorem, and B′
m−1(x) = (m−1)Bm−2(x) has

at lest two zeros in (0, 1). If m− 2 = 1 then this is a contradiction, since them, Bm−2(x) = B1(x),
being a linear polynomial, can have at most one zero. If m − 2 > 1, then the argument can be
repeated for m− 2 replacing m. By doing so, in the end, we will reach the contradictory conclusion
that B1(x) has at least two zeros in (0, 1). Hence, indeed, the only zeros of Bm(x) for odd m > 1 in
the interval [0, 1] are x = 0, 1/2, and 1.

Now, if m > 0 is even, then Bm(x) = 1
m+1B

′
m+1(x) must have at least one zero in the interval

(0, 1/2), and another zero in the interval (1/2, 1), by Rolle’s theorem. It cannot have more zeros
in [0, 1], since then mBm−1(x) = B′

m(x) would have at least two zeros in (0, 1) by Rolle’s theorem,
and we know that this is not the case. That is, for m > 0 even, Bm(x) has exactly two zeros in the
interval [0, 1], one in (0, 1/2) and one in (1/2, 1).

Mean-value form of the remainder term. The remainder term (6) to formula (4) can be
written as

R =
1

(2M + 1)!

b−1
∑

c=a

∫ c+1/2

c

P2M+1(x)f
(2M+1)(x) dx

+
1

(2M + 1)!

b−1
∑

c=a

∫ c+1

c+1/2

P2M+1(x)f
(2M+1)(x) dx

Above we saw that the only zeros of Bm(x) for odd m > 1 in the interval [0, 1] are x = 0, 1/2 and 1
(and the only zero of B1(x) is x = 1/2), it follows that P2M+1(x) = B2M+1(x− [x]) does not change
sign on any of the intervals [c, c + 1/2] and [c + 1/2, c + 1] for integer c. Hence the integrals in the
above sums can be estimated by the Mean-Value Theorem discussed in formula (1) in Section 20
(p. 69 – take ξ = x in that formula):

∫ c+1/2

c

P2M+1(x)f
(2M+1)(x) dx = f (2M+1)(ξc)

∫ c+1/2

c

P2M+1(x) dx

= f (2M+1)(ξc)
B2M+2(1/2)−B2M+2(0)

2M + 2
= f (2M+1)(ξc)

B2M+2(1/2)−B2M+2

2M + 2
.

The first equality holds for some ξc ∈ (c, c+ 1/2) by the Mean-Value Theorem quoted. The second
equality holds because B′

m(x) = mBm−1(x) for all m > 0, and the third equality holds since
Bm = Bm(0) by the definition of the Bernoulli numbers. Similarly,

∫ c+1

c+1/2

P2M+1(x)f
(2M+1)(x) dx = f (2M+1)(ηc)

∫ c+1

c+1/2

P2M+1(x) dx

= f (2M+1)(ηc)
B2M+2(1)−B2M+2(1/2)

2M + 2
= −f (2M+1)(ηc)

B2M+2(1/2)−B2M+2

2M + 2
.

The first equality holds for some ηc ∈ (c+1/2, c+1) by the Mean-Value Theorem quoted. The third
equality holds since Bm(1) = Bm(0) = Bm for all m ≥ 0. Hence we have

R =
B2M+2(1/2)−B2M+2

(2M + 2)!

b−1
∑

c=a

(

f (2M+1)(ξc)− f (2M+1)(ηc)
)

,
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where ξc ∈ (c, c+ 1/2) and ηc ∈ (c+ 1/2, c+ 1). Below, we will show that

(9) Bm

(

1

2

)

= (21−m − 1)Bm.

With the aid of this relation, the above expression for R can be simplified as

(10) R = −2− 2−1−2M

(2M + 2)!
B2M+2

b−1
∑

c=a

(

f (2M+1)(ξc)− f (2M+1)(ηc)
)

.

In order that the form (6) be a valid expression for the remainder term in (4), we needed to assume that f (2M+1)

be continuous on (a, b). It may be of some interest to point that that for the validity of (10) one needs to assume only

that f (2M+1)(x) should exist for all x ∈ (a, b). Of course, if one wants to derive (10) under this weaker assumption,

we cannot use (6). Instead, the last integration by parts in the derivation of the Euler-Maclaurin summation formula
needs to be replaced by a Mean-Value Theorem. The formula for integration by parts says that

∫ β

α
f ′g = f(x)g(x)

∣

∣

∣

x=β

x=α
−

∫ β

α
fg′.

In case f does not change sign on (α, β),69 one can write this as

(11)

∫ β

α
f ′g = f(x)g(x)

∣

∣

∣

x=β

x=α
− g′(ξ)

∫ β

α
f

for some ξ ∈ (α, β) by the same Mean-Value Theorem for integrals that we used above. The point is that this last

equation is valid even without the assumption that the integration by parts formula above is valid. In fact, (11) is
valid if f does not change sign on (α, β), f ′ and g are continuous on [α, β], and g′(x) exists for all x ∈ (α, β). That
is, it may happen that fg′ is not integrable on [α, β], in which case the integration by parts formula is certainly not
valid, and yet (11) is still valid. As is clear from the proof of the Euler-Maclaurin summation formula, in deriving (6),

one integrates (5) by parts (in case M > 0; in case M = 0, one uses the integration by parts occurring in (7)). This
integration by parts needs to be replaced by (11) (on the intervals [c, c+1/2], and [c+1/2, c+1] for c with a ≤ c < b)
when deriving (10) with assuming only that f(2M + 1)(x) exists for x ∈ (a, b).

To establish (11) under these weaker assumptions, first assume that f(x) 6= 0 for x ∈ (α, β). choose A such that

∫ β

α
f ′g = f(t)g(t)

∣

∣

∣

t=β

t=α
−A

∫ β

α
f.

Such an A exists since
∫ β
α f 6= 0, given that f is either always positive or always negative on the interval (α, β). Then,

writing

F (x) =

∫ x

α
f ′g − f(t)g(t)

∣

∣

∣

t=x

t=α
+A

∫ x

α
f,

we have F (α) = 0 and F (β) = 0 (the latter by the choice of A). Since F is differentiable on (α, β), by Rolle’s theorem

there is a ξ ∈ (α, β) such that F ′(ξ) = 0. That is,

0 = F ′(ξ) = f ′(ξ)g(ξ)− (f ′(ξ)g(ξ) + f(ξ)g′(ξ)) +Af(ξ) = (A− g′(ξ))f(ξ).

This equation implies that A = g′(ξ), showing that (11) holds.
In case f(x) = 0 for some x ∈ (α, β), the interval (a, b) can be decomposed as a union of (finitely many or infinitely

many) intervals In = [αn, βn] such that any two of these intervals have at most one endpoint in common (i.e., they
have no internal points in common),70 f(x) = 0 at the endpoints of each of these intervals unless these endpoints
equal α or β (when f(x) may or may not be zero), and, for each n, either f(x) 6= 0 for all x ∈ (αn, βn) or f(x) = 0 for

all x ∈ [αn, βn]. Since the formula analogous to (11) has already been established for f and g on each In with some
ξn ∈ (αn, βn) (for those intervals In on which f identically vanishes, (11) is trivially true), we have

∫ β

α
f ′g = f(x)g(x)

∣

∣

∣

x=β

x=α
−

∑

n

g′(ξn)

∫

In

f

69That is, either f(x) ≥ 0 for all x ∈ (α, β), or f(x) ≤ 0 for all x ∈ (α, β).
70Note that In+1 need not be adjacent to In; in fact, possibly there are infinitely many intervals Ik between In

and In+1.
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(the terms f(x)g(x) for x = αn or x = βn with x 6= α and x 6= β on the right-hand side do not appear, since f(x) = 0

for those values of x). Write

S = sup

{

g′(ξ) :

∫

In

f 6= 0

}

and

s = inf

{

g′(ξ) :

∫

In

f 6= 0

}

;

we allow s = −∞ or S = +∞, so that we do not assume that these sets are bounded, but we assume that these sets
are not empty – i.e., we disregard the trivial case when f(x) = 0 for all x ∈ (α, β). Write

H =

∑

n g
′(ξn)

∫

In
f

∫ β
α f

;

as
∫ β
α f =

∑

n

∫

In
f , it is easy to see that s ≤ H ≤ S. In fact, we have s < H < S unless s = S. In any case, there

are i and j such that g′(ξi) ≤ H ≤ g′(ξj). Since a derivative always has the intermediate-value property,71 there is a
ξ ∈ (α, β) such that H = g′(ξ). Then (11) is satisfied with this ξ.

Evaluation of Bm(1/2). Next we will prove formula (9). With t = 2z, we have

z

ez − 1
+

z

ez + 1
=

2zez

e2z − 1
=
tet·(1/2)

et − 1
=

∞
∑

m=0

Bm(1/2)

m!
tm =

∞
∑

m=0

Bm(1/2)

m!
2mzm,

where the third equality holds according to (2). Similarly,

z

ez − 1
− z

ez + 1
=

2z

e2z − 1
=

t

et − 1
=

∞
∑

m=0

Bm

m!
tm =

∞
∑

m=0

Bm

m!
2mzm,

where the third equality holds according to (3). Hence

∞
∑

m=0

2Bm

m!
zm = 2 · z

ez − 1
=

∞
∑

m=0

Bm(1/2) +Bm

m!
2mzm;

the first equality here holds again according to (3), and the second equality can be obtained by
adding the two equations above. Equating coefficients of zm on the two sides, formula (9) follows.

Problem

1. Euler’s constant γ is defined as

γ = lim
n→∞

(

n
∑

i=1

1

i
− log n.

)

Evaluate γ with 10 decimal precision.

Solution. Writing f(x) = 1/x, we have f (m)(x) = (−1)mm!/xm+1. Hence, given positive integers
a and b, according to the Euler-Maclaurin summation formula (4) with remainder term (10) we have

1

2a
+

b−1
∑

c=a+1

1

c
+

1

2b
−
∫ b

a

dx

x
= −

M
∑

m=2

B2m

2m

( 1

b2m
− 1

a2m

)

+R,

71That is, if g is differentiable on [u, v] and H is such that g′(u) ≤ H ≤ g′(v) or g′(u) ≥ H ≥ g′(v), then there is
a ξ in [a, b] such that g′(ξ) = H. This is true even if g′ is not continuous.
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Note the absence of the factorial in the denominator after the sum sign on the right-hand side; this
is because of cancelation with the factorial in f (2m−1)(x); also, the negative sign on the right-hand
side occurs because (−1)2m−1 = −1 occurs in the expression for f (2m−1)(x). Formula (10) for the
remainder term gives

R =
2− 2−1−2M

2M + 2
B2M+2 · S,

where

S =
b−1
∑

c=a

( 1

ξ2M+2
c

− 1

η2M+2
c

)

.

Again the absence of the factorial and of the minus sign (the one that occurs in (10) in the first of
these formulas) is explained by the form of f2M+2. Here ξc ∈ (c, c+1/2) and ηc ∈ (c+1/2, c+1). If
we put ξc = c and ηc = c+1, we get a sum larger than S; if we put ξc = c+1/2 and ηc = c+1/2, we
get a sum smaller than S. These latter sums are easily evaluated since almost everything in them
cancels. Thus we obtain

(12) 0 < S <
1

a2M+2
− 1

b2M+2
.

Hence, for any integer a ≥ 1 we have

γ = lim
n→∞

(

n
∑

i=1

1

i
− log n

)

= lim
n→∞

(

n
∑

i=1

1

i
−
∫ n

1

dx

x

)

=
a−1
∑

i=1

1

i
+

1

2a
−
∫ a

1

dx

x
+ lim

n→∞

( 1

2a
+

n−1
∑

i=a+1

1

i
+

1

2n
−
∫ n

a

dx

x

)

=

a−1
∑

i=1

1

i
+

1

2a
− log a+

M
∑

m=2

B2m

2m
· 1

a2m
+R,

where, by making b→ ∞ in (12) we have

0 < R ≤ 2− 2−1−2M

2M + 2
· B2M+2

a2M+2
or 0 > R ≥ 2− 2−1−2M

2M + 2
· B2M+2

a2M+2

depending on whether B2M+2 is positive or negative.72 For a = 10 and M = 3 this gives

0 > R ≥ 2− 2−7

8
· −1/30

108
≈ −8.301 · 10−11,

which is slightly worse than what is required for ten decimal precision. For a = 10 and M = 4 we
have

0 < R ≤ 2− 2−9

10
· 5/66
1010

≈ 1.514 · 10−12,

and this gives an acceptable result. Using the latter values for a and M , we obtain that

0.577, 215, 664, 900, 80 / γ / 0.577, 215, 664, 902, 31.

To compare this with what one can do without the Euler-Maclaurin summation formula, note
that for the actual value of γ up to 14 decimals we have γ = 0.577, 215, 664, 901, 53, while

n
∑

i=1

1

i
− log n

for n = 10, 000 gives 0.577, 265, 664, 068, 20; for n = 100, 000, it gives 0.577, 220, 664, 893, 20; for
n = 1, 000, 000, it gives 0.577, 216, 164, 901, 45; for n = 10, 000, 000, it gives 0.577, 215, 714, 901, 53.
Even in the last result, the seventh decimal place deviates from the decimal expansion of γ.

72It is known that B2m for m > 0 is positive if m is odd, and it is negative if m is even.
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25. ROMBERG INTEGRATION

Let f be a function on the interval [a, b], and assume that f is at least 2N − 1 times continuously
differentiable for some N > 0. Let n > 0 be an integer, let h = (b − a)/n and xi = a + ki for
0 ≤ i ≤ n, and write T (f, n) for the trapezoidal sum approximating the integral of f on [a, b]:

T (f, n) =
h

2

(

f(a) + 2

n−1
∑

i=1

f(xi) + f(b)
)

The Euler (or Euler-Maclaurin) summation formula, discussed in Section 24, generalizes the trape-
zoidal rule in that it gives a more precise error term. According to this formula, for h close to 0 we
have

(1)

∫ b

a

f = T (f, n) +

N−1
∑

l=1

clh
2l +O(h2N−1),

where the constants cl and the error term O(h2N−1) depend on f .73 This equation allows one to do
Richardson extrapolation on the trapezoidal sum for various values of h.

The organization of this calculation is as follows. One calculates the approximations Sk,j to
∫ b

a
f as follows, where k and j are integers with 0 ≤ j ≤ k. For j = 0, this approximation is the

trapezoidal sum T (f, 2k). Writing hk = (b− a)/2k for k ≥ 0, we have

S0,0 =
h0
2
(f(a) + f(b))

and

(2) Sk,0 =
Sk−1,0

2
+ hk

2k−1

∑

i=1

f(a+ (2i− 1)hk)

for k > 0; this is because the sum expressing Sk,0 reuses all the partition points occurring in the
sum Sk−1,0, so there is no reason to do repeat function evaluations used in calculating According
to (1), we have

∫ b

a

f = Sk,0 +

N−1
∑

l=1

clh
2l
k +O(h2N−1).

The quantity Sk,0 will be the zeroth Richardson extrapolation. In the jth Richardson extrapolation
Sk,j the first j terms h2lk are eliminated:

(3)

∫ b

a

f = Sk,j +

N−1
∑

l=j+1

cj,lh
2l
k +O(h2N−1

k ) (j ≤ k);

we assume here that k ≤ N − 2. For j > 0, one obtains Sk,j from Sk−1,j−1 and Sk,j by eliminating

the coefficient of h2jk . We have

∫ b

a

f = Sk,j−1 + cj−1,jh
2j
k +

N−1
∑

l=j+1

cj−1,lh
2l
k +O(h2N−1

k )

73The Euler summation formula gives the values of these constants and that of the error term explicitly.
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and

∫ b

a

f = Sk−1,j−1 + cj−1,jh
2j
k−1 +

N−1
∑

l=j+1

cj−1,lh
2l
k−1 +O(h2N−1

k−1 )

= Sk−1,j−1 + cj−1,j2
2jh2jk +

N−1
∑

l=j+1

cj−1,l2
2lh2lk + 22N−1O(h2N−1

k )

where we used the equation hk−1 = 2hk. Multiplying the first equation by 4j = 22j and subtracting
the second equation, the coefficient of h2j will be eliminated. I.e.

(4j − 1)

∫ b

a

f = 4jSk,j−1 − Sk−1,j−1 +
N−1
∑

l=j+1

cj−1,l(4
j − 4l)h2lk + (4j + 22N−1)O(h2N−1

k );

note that in the error term, the coefficient is 4j + 22N−1 rather than 4j − 22N−1 since in only a
bound on the absolute value of the error is known.74 Writing

(4) Sk,j =
4jSk,j−1 − Sk−1,j−1

4j − 1

and

cj,l =
4j − 4l

4j − 1
cj−1,l,

we have
∫ b

a

f = Sk,j +

N−1
∑

l=j+1

cj,lh
2l
k +O(h2N−1

k ),

provided we can write
4j + 22N−1

4j − 1
O(h2N−1

k )

as O(h2N−1
k ),75 which agrees with (3).

When using Romberg’s method to calculate an integral, one compares the values Sn−1,n−1 and
Sn,n for a positive integer n. When the absolute value of the difference of these values is less than a
permissible error, one accepts Sn,n as the value of the integral. In selecting n, one usually assumes
that n ≤ 30. Taking a value of n larger than 30 is in general not advisable, since for large n the
method becomes unstable, and error in approximating the integral by Sn,n increases for large n.
This is because the coefficients in the Richardson extrapolation will grow too fast for large n. If one
does not obtain a sufficiently small error for n ≤ 30, one abandons the method and decides that the
integral cannot be calculated with this method.

In the computer implementation of Romberg integration, we will calculate the integral

∫ 1

0

dx

1 + x2
.

74That is, the error in one of the formulas may be positive, and in the other formula it may be negative. Hence,
even though the two formulas are subtracted, the errors may add up.

75This is justified for the single use of (4) in calculating Sk,j from Sk,j−1 and Sk−1,j−1, but it is somewhat
questionable when the process is repeated so as to get Sn,n from S(k, 0) with 0 ≤ k ≤ n. All one can hope is that the

errors do not all add up. This hope is probably justified if the function is smooth enough. In practice, this means that
if the function is not sufficiently smooth, Richardson extrapolation after a certain point may produce no improvement.
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The header file romberg.h is used in all the files implementing the program:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double);

7 double romberg(double (*fnct)(double), double a,

8 double b, double tol, int maxrow, int *success);

This includes declarations form the functions funct and romberg defined soon. The integrand is
defined in the file funct.c:

1 #include "romberg.h"

2

3 double funct(x)

4 double x;

5 {
6 double value;

7 value = 1.0/(1.0+x*x);

8 return(value);

9 }

Romberg integration is defined in the file romberg.c:

1 #include "romberg.h"

2 #define MAXROW 30

3 #define F(x) ((*fnct)(x))

4

5 double romberg(double (*fnct)(double), double a,

6 double b, double tol, int maxrow, int *success)

7 {
8 int j, k, p, state, two_to_kmin1;

9 double olds, news, hcoeff, h, s[MAXROW],

10 four_to_j, sigma;

11 *success=0;

12 if ( maxrow > MAXROW ) {
13 printf("Too many rows");

14 return 0;

15 }
16 k=1; two_to_kmin1=1; h=(b-a)/2.0;

17 news=h*(F(a)+F(b)); s[0]=news;

18 /* state==0: more splitting is needed;

19 state==1: result is within tolerance;

20 state==2: last row reached */

21 for (state=0; state == 0;) {
22 sigma=0.0; hcoeff=-1.0;

23 for (p=1; p <= two_to_kmin1; p++) {
24 hcoeff+=2.0;

25 sigma+=F(a+hcoeff*h);

26 }
27 olds=s[0];

28 /* A new row of the interpolation table is calculated.
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29 There is no need to keep the old row around. */

30 news=olds/2.0+h*sigma; s[0]=news;

31 four_to_j=1.0;

32 for (j=1; j<k; j++) {
33 four_to_j *= 4.0;

34 news=(four_to_j * news-olds)/(four_to_j-1.0);

35 olds=s[j]; s[j]=news;

36 }
37 /* The new diagonal element is calculated and compared

38 to the old diagonal element. If they are close,

39 the result is accepted */

40 four_to_j *= 4.0;

41 news=(four_to_j * news-olds)/(four_to_j-1.0);

42 if ( absval(news-olds) <= tol ) {
43 state = 1;

44 }
45 else if ( k==maxrow ) {
46 state = 2;

47 }
48 else {
49 /* The new diagonal element is entered in the table */

50 s[k++] = news;

51 h /= 2.0;

52 two_to_kmin1 *= 2;

53 }
54 }
55 if ( state == 1 ) { *success = 1; }
56 /* Some diagnostic information is printed out next.

57 This part is best commented out in a production

58 version -- or else the parameters need to be

59 returned to the calling program, and the calling

60 program can decide what to print. */

61 printf ("The number of rows is %d\n", k);

62 printf ("The value of h is %.12f\n", h);

63 printf ("The number of division points is %d\n",

64 2*two_to_kmin1);

65 return news;

66 }

The function prototype romberg, described in lines 5–6, has a pointer to the function (*fnct) to be
integrated. The other parameters are the lower limit a, the upper limit b, the permissible error tol,
the maximum number of rows maxrow allowed, and a pointer to an integer *success that will be true
if the integral was successfully calculated. In the implementation, maxrow is not allowed to be larger
than MAXROW, defined to be 30 in line 2 (because MAXROW number of locations have been reserved
to the array s[] holding a column of the matrix of approximation sums Sk,j). There is an integer
two_to_kmin1 declared in line 8 to hold the current value of 2k−1, and a real four_to_j of type
double to hold the current value 4j is declared in line 10. Further, an integer state describing the
current state of the process, i.e., whether more interval splitting is needed (state==0), or the result
is within the tolerance defined by tol (state==1, or whether no more rows are allowed (state==2).

In line 3, F(x) is defined to be (*fnct)(x); this allows to simplify the writing when the function
pointed to by fnct needs to be evaluated. In line 11, *success assigned 0, and it will stay 0 unless
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the test in line 55 shows that the calculation reached state==1. If on line 12 it turns out that maxrow
is larger than MAXROW, the calculation is terminated unsuccessfully. The actual calculation starts on
line 17 by calculating S0,0, and the main part of the calculation is done in the loop between lines
21 and 54. Lines 21–26 calculate (k, 0) using formula (2) (k is incremented on line 50), and Sk,j is
calculated in lines 31–36 using formula (4). Before the calculation, the array element s[j] contains
Sk−1,j , this is moved to olds, and Sk,j is calculated in news, and the result is moved into s[j],
updating the array s[]. As mentioned above, on line 42 it is tested if the new diagonal element is
close enough to the old diagonal element; a yes answer will finish the calculation. In lines 50–52 the
new diagonal element news is stored in s[k], then k is incremented in the same statement, and the
values of h and two_to_kmin1 are updated.

In line 55, the value of *success is set. The printing statements on lines 61–63 have only
diagnostic purpose, and in the final version of the program they can be commented out (they should
probably still be left there, since they might be needed temporarily when the program is maintained
or updated). Line 65 returns the value of the integral. The calling program is contained in the file
main.c:

1 #include "romberg.h"

2

3 main()

4 {
5 double integr, tol=5e-13;

6 int success;

7 integr = romberg(&funct,0.0,1.0, tol, 26, &success);

8 if ( success ) {
9 printf("The integral is %.12f\n", integr);

10 printf("The calculated value of pi is %.12f\n", 4.0*integr);

11 printf("The actual value of pi is %.12f\n", 4.0*atan2(1,1));

12 printf("The tolerance used is %.12g\n", tol);

13 }
14 else {
15 printf("It is not possible to calculate the integral "

16 "with the\n required precision\n");

17 }
18 }
The tolerance tol is set to be 5 · 10−13 and in line the romberg integration routine is called with

limits 0 and 1, and a maximum 26 rows is allowed. As we mentioned, the integral to be calculated
is

∫ 1

0

dx

1 + x2
.

The value of this integral is well known to be π/4. The result of the calculation is compared to the
value of π obtained as 4 arctan 1 calculated on line 11. The printout of the program is

1 The number of rows is 7

2 The value of h is 0.007812500000

3 The number of division points is 128

4 The integral is 0.785398163397

5 The calculated value of pi is 3.141592653590

6 The actual value of pi is 3.141592653590

7 The tolerance used is 5e-13

This shows that all 12 decimal digits of the result (i.e., four times the integral) agree with the value
of π.
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Problems

1. Write the expression for S3,3 to evaluate the integral

∫ 8

0

f(x) dx

using Romberg integration.

Solution. We have h0 = 8, and

S0,0 =
h0
2
(f(0) + f(8)) = 4(f(0) + f(8)).

Further,

S1,0 = 2(f(0) + 2f(4) + f(8)),

S1,1 =
4S1,0 − S0,0

3
=

4

3
(f(0) + 4f(4) + f(8)),

S2,0 = f(0) + 2f(2) + 2f(4) + 2f(6) + f(8),

S2,1 =
4S2,0 − S1,0

3
=

2

3
(f(0) + 4f(2) + 2f(4) + 4f(6) + f(8))

S2,2 =
16S2,1 − S1,1

15
=

1

45
(28f(0) + 128f(2) + 48f(4) + 128f(6) + 28f(8)),

S3,0 =
1

2
(f(0) + 2f(1) + 2f(2) + 2f(3) + 2f(4) + 2f(4) + 2f(6) + 2f(7) + f(8)),

S3,1 =
4S3,0 − S2,0

3
=

1

3
(f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + 2f(6) + 4f(7) + f(8)),

S3,2 =
1

45
(14f(0) + 64f(1) + 24f(2) + 64f(3) + 28f(4) + 64f(5) + 24f(6) + 64f(7) + 14f(8)),

S3,3 =
64S3,2 − S2,2

63
=

1

2835
(868f(0) + 4096f(1) + 1408f(2) + 4096f(3)

+ 1744f(4) + 4096f(5) + 1408f(6) + 4096f(7) + 868f(8)).

2. We would like to determine the integral

∫ 1

0

√

x3 + x dx

Explain why Romberg integration would not work. Explain why adaptive integration would be a
better choice.

Solution. The integrand behaves badly near x = 0 in that all its derivatives become infinite at
x = 0. So no integration method is likely to work that divides the interval into equal parts. Near
x = 0 one needs to divide the interval into much smaller parts than away from 0 because the
error terms of both the trapezoidal rule and Simpson’s rule becomes infinite at 0. Even adaptive
integration does not work unless one excludes a small neighborhood of x = 0.
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3. Even adaptive integration will have trouble with the integral in the preceding problem on the
interval [0, 1], but one can successfully use the adaptive trapezoidal rule to calculate

∫ 1

10−5

√

x3 + x dx = 1.847, 750, 122, 11

with an error less than 2.5 · 10−10. Explain how one can use Taylor’s formula to approximate the
missing part of the integral

∫ 10−5

0

√

x3 + x dx

with the same error 2.5 · 10, and use this result to find

∫ 1

0

√

x3 + x dx

with an error less than 5 · 10−10.

Solution. We have
√

x3 + x =
√
x
√

1 + x2 =
√
x

(

1 +
x2

2
+O(x4)

)

,

where we took the Taylor expansion of
√
1 + x2 at x = 0. When integrating this on the interval

[0, 10−5], we can ignore x2/2 in the Taylor expansion, since its maximum of the corresponding term√
x · x2/2 = x5/2/2 in the integrand on this interval is 10−25/2 < 10−12, and when we multiply this

by the length of the interval of integration, i.e., 10−5, the result is < 10−17, which is much smaller
that the permissible error of error is < 2.5 · 10−10.76 Thus

∫ 10−5

0

√

x3 + x ≈
∫ 10−5

0

√
x dx =

2

3
10−15/2 = 3.152 · 10−8

Hence
∫ 1

0

√

x3 + x dx ≈ 1.847, 750, 122, 11 + 0.000, 000, 031, 52 = 1.847, 750, 153.63.

4. Briefly explain in what situation would you prefer adaptive integration over Romberg integra-
tion, and conversely, when would you prefer Romberg integration over adaptive integration.

76For the sake of simplicity, we used O(x4) instead of the remainder term of the Taylor formula. An exact proof
showing that the contribution of the remaining terms is too small to matter would need to use the formula for the
remainder term, or some other way of estimating the error. The remainder of the Taylor formula would be

f ′′(ξ)

2
t2

with f(t) =
√
1 + t and t = x2 (it is technically simpler to calculate the Taylor series of

√
1 + t and at t = 0 and then

take t = x2 than to calculate the Taylor series of
√
1 + x2, but the result will of course be the same); it is fairly easy

to see that f ′′(ξ) is very close to 1 when ξ is in the interval [0, 10−10], the interval to which t = x2 belongs when x
belongs to the interval [0, 10−5].
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26. INTEGRALS WITH SINGULARITIES

Improving singularities by integration by parts. On occasion, one needs to evaluate inte-
grals with singularities, such as

I =

∫ π/2

0

sinx dx

x3/2
.

The trouble is that the usual numerical integration methods do not work well in this situation, since
the integrand tends to infinity at x = 0. The situation is even worse for the derivatives of the
integral; for example, the fourth derivative, occurring in the error estimate for Simpson’s rule, tends
to infinity as fast as x−9/2 at x = 0.77

One can improve the situation by integration by parts. Indeed, integration by parts gives78

I =

∫ π/2

0

x−3/2 sinx dx = lim
ǫց0

[

−2x−1/2 sinx

]π/2

x=ǫ

+

∫ π/2

0

2x−1/2 cosx dx

= −
√

8/π +

∫ π/2

0

2x−1/2 cosx dx.

The integral on the right is just as bad as the as the integral on the left, but another integration by
parts will indeed improve the situation:

I = −
√

8/π + 4x1/2 cosx

∣

∣

∣

∣

π/2

x=0

+

∫ π/2

0

4x1/2 sinx dx = −
√

8/π +

∫ π/2

0

4x1/2 sinx dx;

the last equation holds, since this time the contribution of the integrated-out part is zero.
The situation is now better, since the integrand on the right-hand tends to zero as fast as x3/2

when x tends to zero. So, one can say that the integral no longer has a singularity. However,
the fourth derivative at x = 0 still tends to infinity as fast as x−5/2, so Simpson’s rule is still not
applicable; even the trapezoidal rule is not applicable, since the second derivative tends to infinity
at x = 0. Two more integration by parts are needed to make the trapezoidal rule applicable, and
four more integration by parts are needed to make Simpson’s rule applicable.79

Subtraction of singularity. Performing repeated integrations by parts is laborious, and it is
simpler to use another method, called the subtraction of singularity. Using the Taylor expansion

sinx =

∞
∑

n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
+O(x7),

77This is because the integrand tends to infinity at x = 0 as fast as x−1/2, and the fourth derivative of this is
constant times x−9/2.

78In order to deal with the singularity at x = 0, instead of x = 0 at the lower limit we take ǫ tending to 0 from the

right. In the integration part, the factor x−3/2 will be integrated, and the factor sinx will be differentiated. Finally,
since we have

lim
x→0

sinx

x
= 1,

we have

lim
ǫց0

ǫ−1/2 sin ǫ = 0.

79This latter statement is true whether one uses the error term involving the fourth derivative that we obtained
for Simpson’s rule, or whether one uses a less precise error term involving the third derivative for Simpson’s rule.
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convergent on the whole real line, where O(x7) is used to indicate the error when x→ 0, we have

∫ π/2

0

x−3/2 sinx dx =

∫ π/2

0

x−3/2

(

sinx− x+
x3

6
− x5

120

)

dx+

∫ π/2

0

(

x−1/2 − x3/2

6
+
x7/2

120

)

dx.

Here, the first integral can be calculated by Simpson’s rule; indeed, at x = 0, the integrand behaves
as x−3/2 ·O(x7) = O(x11/2), so its fourth derivative behaves as O(x11/2−4) = O(x3/2), so the fourth
derivative tends to zero when x tends to zero.80 The second integral can be calculated directly,
without the need of numerical integration.81

When one wants to evaluate the integral

I =

∫ 2

0

arctanx dx

x3/2
,

repeated integration by parts would still work to prepare the integral for numerical evaluation, but
it would be much more laborious than even in the previous example, since the repeated derivatives
of arctanx look much more complicated than the repeated derivatives of sinx. On the other hand,
subtraction of singularity works fairly simply. Using the Maclaurin expansion82

arctanx =

∞
∑

n=0

(−1)n
x2n+1

2n+ 1
= x− x3

3
+
x5

5
+O(x7),

convergent on the interval (−1, 1] (only conditionally at x = 1), we have

∫ 2

0

x−3/2 arctanx dx =

∫ 2

0

x−3/2

(

arctanx− x+
x3

3
− x5

5

)

dx+

∫ 2

0

(

x−1/2 − x3/2

3
+
x7/2

5

)

dx.

the first integral can be evaluated by Simpson’s rule, and the second one directly, without the use
of numerical methods.83

There are also numerical methods that can deal with singularities, but removing the singularities
by one of the methods outlined above is usually more accurate.

Infinite intervals of integration. There are numerical methods that work for integrals on
infinite intervals, but it is usually more accurate to transform the integral to a finite interval of
integration. For example, the integral

I =

∫ ∞

0

e−x3/2

dx

80One needs to be careful here: just because a function behaves as O(x2) near x = 0, it does not follow that

its derivative behaves as O(x). Consider for example the function f(x) = x2 sin 1
x

when x 6= 0 and f(0) = 0. This
function is differentiable everywhere, but its derivative does not tend to 0 when x → 0. The argument here works

only because we are considering functions of the form f(x) = xαg(x), where α is a real number, and the function g(x)
has a convergent Taylor series near 0. More generally, the argument also works for functions of form f(x) = xαg(xβ)
where α and β are reals, β > 0, and g(x) can be approximated by Taylor polynomial (i.e., by a finite number of terms

of the Taylor series) near 0 – the Taylor series need not even be convergent anywhere.
81Note that the integral

∫ π/2
0 x−1/2 dx is a convergent improper integral.

82i.e., the Taylor expansion at x = 0.
83The fact that the Maclaurin series of arctanx does not converge on the whole interval [0.2] of integration has

no importance here; the only important point is that the Maclaurin converges near x = 0. In fact, one can even
weaken this condition, and consider functions whose Taylor series never converges, but in this case it is still important

that the first few terms of the Taylor series approximate the function well near 0, and the first few derivatives of the
function can similarly be approximated by the appropriate derivatives of the Taylor series.
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can be handled by first splitting the interval of integration as

I = I1 + I2 =

∫ 1

0

e−x3/2

dx+

∫ ∞

1

e−x3/2

dx

While first integral is continuous at x = 0, its derivatives (beginning with the second derivative)
tend to infinity when x→ 0, so we need to prepare this integral for numerical integration. This can
be done by the subtraction of singularity. We have the Maclaurin series

ex =
∞
∑

n=0

xn

n!
= 1 + x+

x2

2
+O(x3),

and so

e−x3/2

= 1− x3/2 +
x3

2
+O(x9/2).

Hence we can write

I1 =

∫ 1

0

e−x3/2

dx =

∫ 1

0

(

e−x3/2 − 1 + x3/2 − x3

2

)

dx+

∫ 1

0

(

1− x3/2 +
x3

2

)

dx.

The first integral on the right-hand side can be handled by Simpson’s rule, and the second integral
can be evaluated directly.

As for the second integral above, we can use the substitution t = 1/x to obtain

I2 =

∫ ∞

1

e−x3/2

dx = −
∫ 0

1

t−2e−t−3/2

dt =

∫ 1

0

t−2e−t−3/2

dt ;

indeed, when substituting, we have x = t−1, so dx = −t−2 dx; the lower limit 1 stays the same,
and the upper limit ∞ moves to 0. The integral on the right-hand side behaves well; in fact, the
integrand and all its derivatives tend to 0 when t ց 0. Hence this integral can be handled even by
Romberg integration (which is more efficient than Simpson’s rule if the integrand behaves nicely).84

27. NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

The initial value problem for the differential equation

y′ = f(x, y)

is to find a function φ such that
φ′(x) = f(x, φ(x))

satisfying a given initial condition φ(x0) = y0 for some given numbers x0 and y0. To simplify the
notation, one often write y(x) instead of φ(x). One usually looks for the solution in a neighborhood
of the point x0. One of the simplest method of approximating the solution is Taylor’s method, which
consists in approximating the solution y = y(x) with its Taylor series at x0:

y(x) ≈
n
∑

k=0

y(k)(x0)

k!
(x− x0)

k.

84For t = 0, the integrand needs to be taken to be 0.
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The coefficient’s here involve higher derivatives of y at x0, but this is easy to calculate using implicit
differentiation (provided that f is differentiable sufficiently many times).

For example, if one wants to solve the differential equation

y′ =
√

x+ y2, y(3) = 1,

one can differentiate to obtain

y′′ =
1 + 2yy′

2
√

x+ y2
=

1 + 2y
√

x+ y2

2
√

x+ y2
=

1

2
√

x+ y2
+ y,

where the second equality was obtained by substituting y′ from the original differential equation.
We can differentiate the right-hand side again to obtain

y′′′ = −1

4
(1 + 2yy′)(x+ y2)−3/2 + y′ = −1

4
(x+ y2)−3/2 − y

2
(x+ y2)−1 + (x+ y2)1/2.

Substituting x = 3, in which case y = 1 according to the initial condition, we obtain

y′(3) = 2, y′′(3) =
5

4
, y′′′(3) =

59

32
.

Hence

y(x) ≈ y(3)+ y′(3)(x− 3)+
y′′(3)

2
(x− 3)2+

y′′′(3)

6
(x− 3)3 = 1+2(x− 3)+

5

8
(x− 3)2+

59

192
(x− 3)3.

One can use this equation to determine y(x) at a point close to x = 3, say at x = 3.1. If one wants
to determine y(4), one might divide the interval (3, 4) into parts, say into ten equal parts, and then
determine y(3.1) first. Then writing a similar equation at x = 3.1, one can determine y(3.2), etc.
Repeating this step ten times, one can obtain an approximation to y(4). One can even estimate the
error of this approximation using the remainder term of Taylor’s formula.

We will include a short discussion of Taylor’s method in general. We have y′ = f(x, y), and using
the (two-variable) chain-rule

y′′ = fx(x, y) + fy(x, y)y
′ = fx(x, y) + fy(x, y)f(x, y) = fx + fyf,

where fx and fy denote the partial derivatives of f . The second equality uses the differential equation
y′ = f(x, y). The calculations are easier to follow if one suppresses the arguments of f (i.e., if one
writes f instead of f(x, y), fx instead of fx(x, y), etc.). Differentiating once more, we have

y′′′ = (fx + fyf)x + (fx + fyf)yy
′ = (fxx + fyxf + fyfx) + (fxy + fyyf + fyfy)y

′

= (fxx + fyxf + fyfx) + (fxy + fyyf + fyfy)f = fxx + 2fxyf + fxfy + fyyf
2 + f2y f,

where for the third equality we used the equation y′ = f , and for the fourth equality we used the
fact that the order the mixed derivatives are taken is irrelevant.85 Thus, writing h = x1 − x0, for h
close to 0 we have

(1) y1 = y0 + hf +
h2

2
(fx + fyf) +

h3

6
(fxx + 2fxyf + fxfy + fyyf

2 + f2y f) +O(h4),

85The equation fxy(x0, y0) = fxy(x0, y0) is valid if, for example, fxy and fxy exist at (x0, y0) and the first
derivatives fx and fy are continuous at (x0, y0).
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where y1 = y(x1), and f and its derivatives are evaluated at (x0, y0) on the right-hand side. This
formula can be continued by calculating the fourth and higher derivatives of y.

One can obtain a general expression for y(n) in terms of differential operators. Namely, assuming
that the function y = y(x) satisfies the above differential equation, that is y′ = f(x, y), then for the
derivative of an arbitrary function g(x, y) we can write

d

dx
g(x, y(x)) =

∂

∂x
g(x, y) +

dy(x)

dx

∂

∂y
g(x, y) =

∂

∂x
g(x, y) + f(x, y)

∂

∂y
g(x, y) =

(

∂

∂x
+ f

∂

∂y

)

g

where, for better readability, arguments are suppressed at some places.86 Since g was an arbitrary
function, in terms of differential operators, this means

d

dx
=

∂

∂x
+ f

∂

∂y
.

Therefore, for n ≥ 1 we have

dny

dx
=

(

d

dx

)(n−1)

f(x, y) =

(

∂

∂x
+ f

∂

∂y

)n−1

f

While this formula can speed up the evaluation of higher-order derivatives of y, it is is not as useful as
one might think at first time. Namely, one cannot use the Binomial Theorem to evaluate the power
of the differential operator on the right-hand side. The proof of the Binomial Theorem expressing
(A+B)n depends on the commutativity AB = BA, and these differential operators do not commute:

∂

∂x

(

f
∂

∂y

)

g = fxgy + fgyx = fxgy + fgxy, while

(

f
∂

∂y

)

∂

∂x
g = fgxy,

Problems

1. Write a third order Taylor approximation at x = 0 for the solution of the differential equation
y′ = x+ y with initial condition y(0) = 2.

Solution. We have y(0) = 2, y′(0) = x + y = 2; the right-hand side was obtained by substituting
x = 0 and y = 2. Differentiating and again substituting x = 0 and y = 2, we obtain

y′′(x) = 1 + y′ = 1 + x+ y = 3.

Differentiating and substituting x = 0 and y = 2, we again obtain

y′′′(x) = 1 + y′ = 1 + x+ y = 3.

86Certain conditions are needed in order that the the chain rule be valid. Namely, for the above formula to be

valid for x = x0 and y0 = y(x0) the function y(x) needs to be differentiable at x0 and g(x, y) needs to be differentiable
at (x0, y0). This latter condition means that there are numbers A and B

g(x0 + h, y0 + h)− g(x0, y0) = Ah+Bk + E(h, k)

where E(h, k) is a function such that

lim
h→0
k→0

E(h, k)

|h|+ |k| = 0.

For the first of these equations to hold, we must have A = gx(x0, y0) and B = gy(x0, y0). Furthermore, a sufficient
condition for the differentiability of g a (x0, y0) is that partial derivatives gx and gy be continuous at (x0, y0).
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y(x) = y(0) + y′(0)x+ y′′(0)
x2

2
+ y′′′(0)

x3

6
+O(x4) = 2 + 2x+ 3

x2

2
+ 3

x3

6
+O(x4)

= 2 + 2x+
3

2
x2 +

1

2
x3 +O(x4)

for x near 0.

2. Write a third order Taylor approximation at x = 0 for the solution of the differential equation
y′ = sinx+ cos y with initial condition y(0) = 1.

Solution. We have y(0) = 1, y′(0) = sin 0 + cos 1 ≈ 0.540, 302

y′′(x) = cosx− y′ sin y = cosx− (sinx+ cos y) sin y.

Substituting x = 0 and y = 1 we obtain y′′(0) ≈ 0.545, 351. Differentiating again, we obtain

y′′′(x) = − sinx− (cosx− y′ sin y) sin y − (sinx+ cos y)y′ cos y

= − sinx− (cosx− (sinx+ cos y) sin y) sin y − (sinx+ cos y)(sinx+ cos y) cos y

− sinx− cosx sin y + sinx sin2 y + cos y sin2 y − sin2 x cos y − 2 sinx cos2 y − cos3 y

Substituting x = 0 and y = 1 we obtain y′′′(x) ≈ −0.616, 626. Thus,

y(x) = 1 + 0.540, 302x+ 0.545, 351
x2

2
− 0.616, 626

x3

6
+O(x4)

= 1 + 0.540, 302x+ 0.272, 676
x2

2
− 0.102, 771

x3

6
+O(x4)

for x near 0.

28. RUNGE-KUTTA METHODS

The difficulty with Taylor’s method is that it involves a substantial amount of symbolic calcula-
tion, a task usually more complicated for computers than direct numerical calculation. Runge-Kutta
methods seek to remedy this weakness of Taylor’s method in that they achieve the same precision
without using any symbolic calculations. Given the differential equation

y = f(x, y), y(x0) = y0,

one seeks to determine the solution y1 = y(x1) at a nearby point x1 = x0 + h in the form

(1) y1 = y0 + hK,

where K is sought in the form

(2) K =

r
∑

i=1

γiKi,

where

(3) K1 = f(x0, y0),
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and

(4) Ki = f
(

x0 + hαi, y0 + h

i−1
∑

j=1

βijKj

)

.

In the last equation, we have α1 = 0, so as to be consistent with equation (3). One seeks to determine
the coefficients γi, αi, and βij in such a way as to achieve a high degree of agreement with Taylor’s
formula

y1 = y(0) + hy′(0) +
h2

2
y′′(0) + . . . .

The method described above (with appropriately chosen coefficients) is called an r-stage Runge-
Kutta method. If an agreement with the Taylor formula up to and including the term hm is
achieved, then m is called the order of the method. For a given m and r, appropriate coefficients
cannot always be found. A necessary (but not sufficient) condition that appropriate coefficients can
be found is m ≤ r (we will not prove this).

The error committed in calculating the true value of y(x1), that is y(x1) − y1 is called the local
truncation error. So the local truncation error of an m order method is O(hm+1). The global
truncation error is the error committed after a number of steps. For example, if one wants to
calculate the solution on an interval (a, b), one might divide this interval into n equal parts and
taking h = (b− a)/n, and taking n steps to calculate the value at b from the known value at a. The
error committed in n steps is about n times the local truncation error. Thus, if the local truncation
error is O(hm+1), then global truncation error is nO(hm+1) = O(hm).87

We will discuss the equations that the requirement of an agreement with the Taylor series method
imposes on the above coefficients. However, if one wants to obtain a Runge-Kutta method along
these lines that are useful in practice, the equations that one needs to solve are quite complicated;
hence we are only going to present the basic principles involved.

In order to describe the equations for the coefficients involved, we need to express the quantities
Ki in terms of the two dimensional Taylor series. According to this

F (x0+h, y0+k) =

n
∑

i=0

1

i!

(

h
∂

∂x
+ k

∂

∂y

)i

F (x, y)

∣

∣

∣

∣x=x0
y=y0

+
1

(n+ 1)!

(

h
∂

∂x
+ k

∂

∂y

)n+1

F (x, y)

∣

∣

∣

∣x=x0+θh
y=y0+θk

.

This formula can easily be derived by writing G(t) = F (x0 + th, y0 + tk), and expressing G(1) in
terms of the Taylor formula for G at t = 0. The remainder term involves the value of G(θ) for some
θ in the interval (0, 1).88 The derivatives after the sum sign can be evaluated by using the Binomial
Theorem.89 For example,

(

h
∂

∂x
+ k

∂

∂y

)3

F =

(

h
∂

∂x

)3

F + 3

(

h
∂

∂x

)2

k
∂

∂y
F + 3h

∂

∂x

(

k
∂

∂y

)2

F +

(

h
∂

∂y

)3

F

= h3
∂3F

∂x3
+ 3h2k

∂3F

∂x2∂y
+ 3hk2

∂3F

∂x∂y2
+ k3

∂3F

∂y3
= h3Fxxx + 3h2kFxxy + 3hk2Fxyy + k3Fyyy.

87This is not strictly true, since the errors do not add up: earlier errors may be magnified in subsequent calculations.

In an unstable method, earlier errors may cause excessive global errors even though the local errors (truncation errors
and round-off errors) may be small; for a stable method this is not supposed to happen. The Runge-Kutta methods
are quite stable.

88It is customary to use θ for an unknown number between (0, 1). Usually, one used ξ in the remainder term of
the single-variable Taylor formula, and θ in the multi-variable Taylor formula. We used the Lagrange remainder term
of the single-variable Taylor formula to obtain the multi-variable remainder term. Other single-variable remainder
terms can be used to obtain different multi-variable remainder terms.

89The proof of the Binomial Theorem relies on the commutativity of multiplication. That is, it relies on the fact
that ∂

∂x
∂
∂y

= ∂
∂y

∂
∂x

. This is valid if the function being differentiated is sufficiently nice, so that the mixed derivatives

do not depend on the order of differentiation.
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Using this formula with n = 2 for Ki above, we have

Ki = f
(

x0 + hαi, y0 + h

i−1
∑

j=1

βijKj

)

= f +
(

fxαi + fy

i−1
∑

j=1

βijKj

)

h

+
1

2

(

fxxα
2
i + 2fxyαi

i−1
∑

j=1

βijKj + fyy

(

i−1
∑

j=1

βijKj

)2)

h2 +O(h3),

where the derivatives are taken at the point (x0, y0), and the symbol O(h3) is considered in a
neighborhood of h = 0. The right-hand side here can be further expanded by considering the Taylor
expansion of the Kj on the right-hand side, using the same formula that we just gave for Ki:

Kj = f +
(

fxαj + fy

j−1
∑

l=1

βjlKl

)

h+O(h2) = f +
(

fxαj + fy

j−1
∑

l=1

βjlf
)

h+O(h2),

where, in the second member of these equalities, the expansion Kl = f +O(h) was taken to obtain
the right-hand side. Substituting this expansion into the expansion of Ki (in the terms multiplied
by h2, we only need to take Kj = f +O(h)), we obtain

Ki = f +

(

fxαi + fy

i−1
∑

j=1

βij

(

f +
(

fxαj + fy

j−1
∑

l=1

βjlf
)

h

)

)

h

+
1

2

(

fxxα
2
i + 2fxyαi

i−1
∑

j=1

βijf + fyy

(i−1
∑

j=1

βijf
)2
)

h2 +O(h3)

= f +
(

fxαi + ffy

i−1
∑

j=1

βij

)

h+

(

fxfy

i−1
∑

j=1

αjβij + ff2y

i−1
∑

j=1

j−1
∑

l=1

βijβjl

+
1

2
fxxα

2
i + ffxyαi

i−1
∑

j=1

βij +
1

2
f2fyy

(

i−1
∑

j=1

βij

)2
)

h2 +O(h3).

Substituting this into (1) and (2), we obtain

y1 = y0 + fh
r
∑

i=1

γi +
(

fx

r
∑

i=1

γiαi + ffy

r
∑

i=1

γi

i−1
∑

j=1

βij

)

h2+

(

fxfy

r
∑

i=1

γi

i−1
∑

j=1

αjβij + ff2y

r
∑

i=1

γi

i−1
∑

j=1

j−1
∑

l=1

βijβjl +
1

2
fxx

r
∑

i=1

γiα
2
i + ffxy

r
∑

i=1

γiαi

i−1
∑

j=1

βij

+
1

2
f2fyy

r
∑

i=1

γi

(

i−1
∑

j=1

βij

)2
)

h3 +O(h4).

To obtain equations for the coefficients, one may compare this equation with equation (1) in Section
27 concerning Taylor’s method on the Numerical solution of Differential Equations. Since the present
equation must hold for every (small) h and for every f , the coefficients of fh, fxh

2, ffyh
2, fxfyh

3,
ff2yh

3, fxxh
3, ffxyh

3, and f2fyyh
3 must agree. We obtain

r
∑

i=1

γi = 1,

r
∑

i=1

γiαi =
1

2
,

r
∑

i=1

γi

i−1
∑

j=1

βij =
1

2
,

r
∑

i=1

γi

i−1
∑

j=1
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∑
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∑
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∑
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3
,

r
∑

i=1

γi

(

i−1
∑

j=1

βij

)2

=
1

3
.
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More equations can be obtained if more terms of the to Taylor expansions are calculated and
compared. In the classical Runge-Kutta method one has

K1 = f(x0, y0),

K2 = f(x0 + h/2, y0 + hK1/2),

K3 = f(x0 + h/2, y0 + hK2/2),

K4 = f(x0 + h, y0 + hK3),

y1 = y0 +
h

6
(K1 + 2K2 + 2K3 +K4).

This is fourth order method.90 The disadvantage of this method is that it is difficult to estimate the
error of the approximation of y1 to the true solution of the differential equation.

One way of estimating the error of a Runge-Kutta approximation is to use the same method with
step size h and step size h/2 and compare the results, but this involves too many function evaluations.
A better way is to use two Runge-Kutta approximations with the same step size, one method of
order m and another of order m + 1. The higher order method then calculates the approximation
with much greater precision, so the difference of the two approximations can be taken as the error.
If the error is too large, one should use a smaller step size. Using two different methods normally
still involves too much calculation. However, there are pairs of Runge-Kutta methods where most
of the calculations used in making the lower order step can be re-used form making the higher order
step. In the Runge-Kutta-Fehlberg method, one has a fourth-order method combined with a fifth
order method. In the fourth order method, one puts

K1 = f(x0, y0),

K2 = f(x0 + h/4, y0 + hK1/4),

K3 = f(x0 + 3h/8, y0 + h(3K1 + 9K2)/32),

K4 = f(x0 + 12h/13, y0 + h(1932K1 − 7200K2 + 7296K3)/2197),

K5 = f(x0 + h, y0 + h(439K1/216− 8K2 + 3680K3/513− 845K4/4104)),

y1 = y0 + h(25K1/216 + 1408K3/2565 + 2197K4/4104−K5/5).

Here y1 is the approximation given by the method to the correct value of y(x1), where x1 = x0 + h.
For the fifth-order method one needs to do only one more function evaluation91

K6 = f(x0 + h/2, y0 + h(−8K1/27 + 2K2 − 3544k3/2565 + 1859K4/4104− 11K5/40)),

ȳ1 = y0 + h(16K1/135 + 6656K3/12825 + 28561K4/56430− 9K5/50 + 2K6/55),

where we wrote ȳ1 for the approximation given by the method to the correct value of y(x1). For the
local truncation error of the former method we have y(x1)− y1 = O(h5), while for that of the latter
method we have y(x1)− ȳ1 = O(h6). Since the latter is much smaller than the former, one can take
ȳ1 − y1 as a good estimate for the y(x1)− y1. This gives the following estimate for the error

E = h(K1/360− 128K3/4275− 2197K4/75240 + k5/50 + 2K6/55).

90This means, in particular, that the equations for the coefficients we listed above are not sufficient to derive this
method. The above equations reflect only agreement with the Taylor expansion of y(x) with error O(h4), and we
would need agreement with error of O(h5) to derive a fourth-order method.

91In formula (8.52) on p. 282 in [AH], the denominator in the term involving K4 on the right-hand side of the
equation for y1 is in error. They erroneously give this term as 28561K4/56437.
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In a practice, one uses the fourth order method with this estimate of the error.92

When looking for the solution of a differential equation on an interval (a, b) (i.e., given an initial
condition y(a) = c, one is looking for y(b)), one starts out with an initial step size h, and if the local
truncation error is too large, one halves the step size, i.e., takes h/2 as the new value of h (perhaps
one needs to do this a number of times). If at one point one finds that the local truncation error is
too small, then one doubles the step size.

Next we discuss a computer implementation of the Runge-Kutta-Fehlberg method with step size
control. The declarations and the included resources are contained in the file rk45.h, where rk45

refers to Runge-Kutta 4th and 5th order:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double x, double y);

7 double rk45(double (*fnct)(double,double), double x0,

8 double y0, double x1, double epsilon, double *calling_h,

9 double min_h, int *countsucc,

10 int *countfail, int *success);

In this file, the definition of the abbreviation absval(x) to calculate the absolute value of x is given
on line 4. Line 6 declares the function funct, which stands for the function f in the differential
equation y′ = f(x, y). On line 7, the function rk45 is declared to perform the Runge-Kutta-Fehlberg
method with step size control. The function itself is described in the file rk45.c:

1 #include "rk45.h"

2 #define F(x,y) ((*fnct)(x,y))

3

4 double rk45(double (*fnct)(double,double), double x0,

5 double y0, double x1, double epsilon, double *calling_h,

6 double min_h, int *countsucc,

7 int *countfail, int *success)

8 {
9 /* This program implements the Runge-Kutta_Fehlberg

10 method to solve an ordinary differential equation */

11 const double assumedzero=1e-20;

12 double k1,k2,k3,k4,k5,k6,err,err1,x,y=y0,h=*calling_h,

13 epsilonover32=epsilon/32.;

14 int state, shortrange=0;

15 /* state==0: stepping

16 state==1: h is too small

17 state==2: x1 is reached */

18 for ( state=0; !state ;) {
19 k1=F(x,y);

20 k2=F(x+h/4.,y+h*k1/4.);

21 k3=F(x+3.*h/8.,y+h*(3.*k1+9.*k2)/32.);

22 k4=F(x+12.*h/13.,y+h*(1932.*k1-7200.*k2+7296.*k3)/2197.);

23 k5=F(x+h,y+h*(439.*k1/216.-8.*k2+3680.*k3/513.

92One might think that it is better to use the fifth-order method, since it is more accurate than the fourth-order
method. However, no error estimate is available for the fifth-order method. While it is true that the error of the fifth

could be estimated by the above formula for E, but combining the fifth order method with the error estimate for the
fourth order method would lead to numerical instabilities.
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24 -845.*k4/4104.));

25 k6=F(x+h/2.,y+h*(-8.*k1/27.+2.*k2-3544.*k3/2565.

26 +1859.*k4/4104.-11.*k5/40.));

27 err1=h*(k1/360.-128.*k3/4275.-2197.*k4/75240.

28 +k5/50.+2*k6/55.);

29 err=absval(err1);

30 if ( err>h*epsilon ) {
31 h /= 2.;

32 if ( h<min_h ) { state=1; }
33 (*countfail)++;

34 }
35 else {
36 (*countsucc)++;

37 x += h;

38 y +=h*(25.*k1/216.+1408.*k3/2565.+2197.*k4/4104.-k5/5.);

39 if ( absval(x1-x) <= assumedzero ) state=2;

40 else {
41 if ( err <= h*epsilonover32 ) h *= 2.;

42 if ( h > x1-x ) shortrange=1;

43 if ( shortrange ) {
44 *calling_h=h; h=x1-x;

45 }
46 }
47

48 }
49 }
50 if ( !shortrange ) *calling_h=h;

51 if ( state==2 ) {
52 *success=1;

53 return y;

54 }
55 else *success=0;

56 return 0.0;

57 }
The definition of the function rk45 starts on line 4. Its first parameter is (*fnct), pointer to the
function f in the differential equation y′ = f(x, y) to be solved, x0, the starting point, y0, the initial
value of the solution, x1, the point where the solution is sought (the interval (x0,x1) will be divided
into smaller parts), epsilon, the global error allowed at x1, a pointer calling_h to the step size
the function uses (the starting value *calling_h of the location pointed to the by calling_h is the
initial step size specified by the calling program; when the process finished, this location will contain
the value of the step size that was used last). The parameter min_h contains the smallest permissible
step size (if the step size needed to achieve the required accuracy needs to be smaller, the process is
abandoned; the location pointed to by the pointer countsucc counts the number of successful steps
(i.e., when the result of the calculated for the given step is accepted), while countfail points to
the location containing the number of failed steps (i.e., where the step needs to be repeated with
a smaller step size. The location pointed to by success will contain 1 (true) if the value of the
solution at x1 was successfully calculated, and 0 (false) if the calculation was not successful. The
function rk45 returns the calculated value of the solution at x1.

In lines 15–17 the comments describe the meaning of the variable state: it will be 0 if there are
more steps to be calculated, it will be 1 is the step size needed to achieve the required accuracy
would be too small), Lines 18–48 contain a look that is performed if state is 1 (i.e., stepping),
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when successive steps of the method are applied. Inside this loop, in lines 19–25, the quantities k1
through k6 (corresponding to K1 through K6) are evaluated;93 in these calculations, F(x,y) stands
for (*fnct)(x,y) according to the definition on line 2, to simplify the notation. In line 27, the error
of the fourth-oder method is evaluated, and in line 29 its absolute value is taken. If on line 30 it is
found that the local error is too large (i.e., larger that h*epsilon, corresponding to hǫ), then the
step size is halved. If the value of h thereby becomes less than min_h, on line 32 the integer state is
changed to 1, and the count of failures is incremented on line 33. Otherwise the count of successes
is incremented on line 36, that of x is incremented by h on the next line, and y, the value of y(x)
at the next step, is calculated on line 38. If the new value of x is too close to x1 (the endpoint of
the interval on which the solution is calculated), state is changed to 2, indicating that x1 has been
reached, and the calculation is finished (on line 51, based on the value of state).

If on line 41 it is found that the error is too small, error step size is doubled. The criterion used
for considering the error too small is that it is smaller than epsilonover32, corresponding to ǫ/32
(cf. line 13, where epsilonover32 is initialized). The reason is that a fourth order method is used,
so the local truncation error is proportional to h5, so doubling the step size will result in a 32-fold
increase of the error.94

If x is close to x1 than the current step size h, the integer shortrange is changed to 1 on line 42.
The next and last step to be taken will be x1-x instead of the current step size h, but the current
value of h is preserved at the location calling_h on line 44, so that the calling program can take
this value from this location. If the function rk45 is called again to continue the calculation, this
value of h can be used for further calculations as a starting value.

The loop ends on line 48, and in line 48, if the last step taken was not too short (i.e., shortrange
is 0; shortrange was initialized to be 0 on line 14, but this value may have been changed on line 43),
the last used value of h is loaded into the location calling_h (if the last step taken was too short,
this location will contain the value of h before the short step was taken; this value was assigned on
line 44).

If the loop ended with state equaling 2, assigned on line 39 (rather than 1, assigned on line
32), the variable *success is assigned 1 (true) on line 52, and the value y of the solution at x1 is
returned. Otherwise, *success is assigned 0, and the value 0 is returned on line 56.

The file funct.c contains the definition of the function f(x, y).

1 #include "rk45.h"

2

3 double funct(double x,double y)

4 {
5 const assumedzero=1e-20;

6 double value;

7 if ( absval(x+1.0)<=assumedzero ) {
8 value=0.0;

9 }
10 else {
11 value=-(x+1.0)*sin(x)+y/(x+1.0);

93One might think that instead of giving the coefficients as common fractions in these calculations, one should
calculate these fractions as floating point numbers, and put these floating point numbers in the program. The reason
for this would be that these fractions should be calculated only once, and not every time the loop is executed. However,
any optimizing compiler would take care of this, and in fact these fractions would be evaluated only once, at compile

time.
94This maybe trying to control the size of the error too tightly: if the error is only slightly smaller than ǫ/32,

doubling the step size will make the error only slightly smaller than ǫ; that is, in a few steps the error might become
larger than ǫ, and the step size would then be halved. This might result in thrashing, i.e., frequent halving and

doubling of the step size. Therefore it might be reasonable to give some additional leeway, and only consider the error
too small if it is less than ǫ/64. We will consider the effect of this on an example.
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12 }
13 return(value);

14 }
This file defines

f(x, y) = −(x+ 1) sinx+
y

x+ 1
.

The calling program is contained in the file main.c:

1 #include "rk45.h"

2 double sol(double x);

3

4 main()

5 {
6 double min_h=1e-5, epsilon=5e-10,

7 x0=0.0,x1,xn=10.0,y0=1.0,y1,h,h0,yx;

8 int i, n=10, success, countsucc=0,countfail=0, status;

9 /* status==0: failed;

10 status==1: integrating;

11 status==2: reached the end of the interval; */

12 status=1;

13 printf("Solving the differential equation "

14 "y’=-(x+1)sin x+y/(x+1):\n");

15 printf(" x y "

16 " exact solution error\n\n");

17 yx=sol(x0);

18 printf("%6.3f %20.16f %20.16f %20.16f\n",

19 x0, y0, yx, y0-yx);

20 h0=(xn-x0)/((double) n); h=h0;

21 for (i=1; status==1; i++) {
22 x1=x0+h0;

23 y1=rk45(&funct, x0, y0, x1, epsilon, &h,

24 min_h, &countsucc, &countfail, &success);

25 if ( success ) {
26 x0=x1; y0=y1;

27 yx=sol(x0);

28 printf("%6.3f %20.16f %20.16f %20.16f\n",

29 x0, y0, yx, yx-y0);

30 if ( i>=n ) status=2;

31 }
32 else {
33 status=0;

34 printf("No more values could be calculated.\n");

35 }
36 }
37 printf("\n" "Parameters\n");

38 printf("epsilon: "

39 " "

40 "%.16f\n", epsilon);

41 printf("smallest step size allowed:"

42 " "

43 "%.16f\n", min_h);

44 printf("number of successful steps: %8d\n", countsucc);
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45 printf("number of failed steps: %8d\n", countfail);

46 }
47

48 double sol(double x) {
49 /* This function is the exact solution of the

50 differential equation being solved, to compare

51 with the numerical solution */

52 return (x+1.0)*cos(x);

53 }
This program will solve the differential equation y′ = f(x, y) with the above choice of f(x, y) with

the initial condition y(0) = 1. The exact solution of this equation with the given initial condition is

(5) y(x) = (x+ 1) cosx.

Indeed, differentiating this, we obtain

(6) y′(x) = cosx− (x+ 1) sinx.

According to the above equation, we have

cosx =
y(x)

x+ 1
.

Replacing cosx in (6) with the right-hand side, we obtain the differential equation we are solving.
The exact solution using equation (5) is calculated in lines 48–53 as sol(x), so that the calculated

solution can be compared with the exact solution. The calculated solution and the exact solution
is printed out at the points x = 1, 2, 3, . . . , 10. This is accomplished by setting up a loop in lines
21–35. Inside the loop, the function rk45, discussed above, is called with initial values x0 and ending
values x1 = x + 1 with x0 = 0, 1, . . . , 10. On line 38, the value of x, the calculated value ȳ(x) of
y(x), the exact value of y(x), and the error y(x) − ȳ(x) is printed out. Finally, in lines 37–46, the
value of ǫ, h, the smallest step size allowed, the number of successful steps, and the number of failed
steps is allowed. On line 6, the smallest step size is specified as 10−10 and ǫ is given as 10−5 (the
way the program was written, ǫ means the error allowed on an interval of length 1). The printout
of the program is

1 Solving the differential equation y’=-(x+1)sin x+y/(x+1):

2 x y exact solution error

3

4 0.000 1.0000000000000000 1.0000000000000000 0.0000000000000000

5 1.000 1.0806046116088004 1.0806046117362795 0.0000000001274790

6 2.000 -1.2484405098784015 -1.2484405096414271 0.0000000002369743

7 3.000 -3.9599699865316182 -3.9599699864017817 0.0000000001298364

8 4.000 -3.2682181044399328 -3.2682181043180596 0.0000000001218732

9 5.000 1.7019731125069812 1.7019731127793576 0.0000000002723763

10 6.000 6.7211920060799493 6.7211920065525623 0.0000000004726129

11 7.000 6.0312180342683925 6.0312180347464368 0.0000000004780446

12 8.000 -1.3095003046372715 -1.3095003042775217 0.0000000003597498

13 9.000 -9.1113026190614956 -9.1113026188467696 0.0000000002147257

14 10.000 -9.2297868201511246 -9.2297868198409763 0.0000000003101476

15

16 Parameters

17 epsilon: 0.0000000005000000
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18 smallest step size allowed: 0.0000100000000000

19 number of successful steps: 353

20 number of failed steps: 10

If one makes a slight change in the file rk45.c by replacing the definition of the variable
epsilonover32=epsilon/32. given in line 13 with epsilonover32=epsilon/64., the printout
changes only slightly:

1 Solving the differential equation y’=-(x+1)sin x+y/(x+1):

2 x y exact solution error

3

4 0.000 1.0000000000000000 1.0000000000000000 0.0000000000000000

5 1.000 1.0806046116088004 1.0806046117362795 0.0000000001274790

6 2.000 -1.2484405098375091 -1.2484405096414271 0.0000000001960819

7 3.000 -3.9599699864770947 -3.9599699864017817 0.0000000000753129

8 4.000 -3.2682181043739900 -3.2682181043180596 0.0000000000559304

9 5.000 1.7019731125861131 1.7019731127793576 0.0000000001932445

10 6.000 6.7211920061722683 6.7211920065525623 0.0000000003802938

11 7.000 6.0312180343918813 6.0312180347464368 0.0000000003545558

12 8.000 -1.3095003044983455 -1.3095003042775217 0.0000000002208238

13 9.000 -9.1113026189071356 -9.1113026188467696 0.0000000000603657

14 10.000 -9.2297868199575586 -9.2297868198409763 0.0000000001165816

15

16 Parameters

17 epsilon: 0.0000000005000000

18 smallest step size allowed: 0.0000100000000000

19 number of successful steps: 361

20 number of failed steps: 10

Problem

1. Consider the differential equation y′ = f(x, y) with initial condition y(x0) = y0. Show that,
with x1 = x0 + h, the solution at x1 can be obtained with an error O(h3) by the formula

y1 = y0 + hf

(

x0 +
h

2
, y0 +

h

2
f(x0, y0)

)

.

In other words, this formula describes a Runge-Kutta method of order 2.95

Solution. Writing f , fx, fy for f and its derivatives at (x0, y0), we have

f

(

x0 +
h

2
, y0 +

h

2
f(x0, y0)

)

= f +
h

2
fx +

h

2
f · fy +O(h2).

according to Taylor’s formula in two variables. Substituting this into the above formula for y1, we
obtain

y1 = y0 + hf +
h2

2
(fx + ffy) +O(h3).

This agrees with the Taylor expansion of y1 (given in the preceding section) with error O(h3),
showing that this is indeed a correct Runge-Kutta method of order 2.

95This method is called the modified Euler method. The Euler method simply takes y1 = y0 + hf(x0, y0).
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29. PREDICTOR-CORRECTOR METHODS

Consider the differential equation y′ = f(x, y), and assume that its solution y = y(x) is known at
the points xi = x0 + ih for i = 0, 1, 2, 3. Write yi = y(xi).

96 We would like to calculate y4. Clearly,

(1) y4 = y3 +

∫ x4

x3

f(x, y(x)) dx.

We intend to evaluate the integral on the right-hand side by approximating f(x, y(x)) with an
interpolation polynomial. We will consider two different interpolation polynomial for this: first, we
will use the polynomial P (x) interpolating at the points x0, x1, x2, x3, and, second we will use
the polynomial Q(x) interpolating at the points x1, x2, x3, x4. The interpolation by Q(x) will give
a better approximation, because interpolation inside an interval determined by the nodes is more
accurate than interpolation outside this interval.97 On the other hand, interpolation by Q(x) will
involve the unknown value y4. This will not be a big problem, since y4 will occur on both sides of
the equation, and it can be determined by solving an equation.

Write f̄(x) = f(x, y(x)), and write fi = f(xi, yi). To simplify the calculation assume that x2 = 0;
in this case x0 = −2h, x1 = −h, x3 = h, x4 = 2h. It will help us to make the calculations that
follow more transparent to also use the notation f̄i = f̄(ih). Note, that, this will mean that

(2) fi = f̄i−2

Writing EP for the error of the Newton interpolation polynomial P interpolating f̄ at x0, x1, x2,
x3 we have

f̄(x) = P (x) + EP (x) = f̄ [0] + f̄ [0,−h]x+ f̄ [0,−h, h]x(x+ h) + f̄ [0,−h, h,−2h]x(x+ h)(x− h)

+ f̄ [0,−h, h,−2h, x]x(x+ h)(x− h)(x+ 2h) = f̄0 +
f̄0 − f̄−1

h
x

+
f̄1 − 2f̄0 + f̄−1

2h2
(x2 + xh) +

f̄1 − 3f̄0 + 3f̄−1 − f̄−2

6h3
(x3 − h2x)

+
f̄ (4)(ξx)

4!
(x4 + 2hx3 − h2x2 − 2h3x)

for some ξx ∈ (x0, x4) = (−2h, 2h) (assuming that x ∈ (x3, x4)).
98 Integrating this, we obtain

∫ 2h

h

f̄ = f̄0h+
f̄0 − f̄−1

h
· 3h

2

2
+
f̄1 − 2f̄0 + f̄−1

2h2
· 23h

3

12
+
f̄1 − 3f̄0 + 3f̄−1 − f̄−2

6h3
· 3h

4

8

+
f̄ (4)(ξ)

4!
· 251
30

h5 =
h

24
(55f̄1 − 59f̄0 + 37f̄−1 − 9f̄−2) + f̄ (4)(ξ)

251

720
h5

=
h

24
(55f3 − 59f2 + 37f1 − 9f0) + f̄ (4)(ξ)

251

720
h5

96More or fewer points could be considered, but we want to confine our attention to a case where we can derive
formulas of considerable importance in practice.

97In fact, for P (x), the interval determined by the interpolation points is (x0, x3), and so x in the interval (x3, x4)
of integration is outside the interval of interpolation, while, for Q(x), the interval determined by the interpolation
points is (x1, x4), and so x is in the interval (x3, x4) of integration is inside the interval of interpolation.

98To ease the calculation of differences, one may note that

f [xi, xi+1, . . . , xi+k] =
1

k!hk
∆kfi.

according to (1) in Section 10 on Newton Interpolation With Equidistant Points, and

∆nf(x) =
n
∑

i=0

(n

i

)

(−1)n−if(x+ ih).

according to a formula in Section 7 on Finite Differences.
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for some ξ ∈ (x0, x) ⊂ (x0, x4); for the last equality we used (2). In calculating the remainder term,
note that the polynomial

x4 + 2hx3 − h2x2 − 2h3x = x(x+ h)(x− h)(x+ 2h)

is positive on the interval (h, 2h), and so we can use the Mean-Value Theorem for Integrals given
in formula (1) in Section 20 on Simple Numerical Integration Formulas.99 Recalling that f̄(x) =
f(x, y(x)) and substituting this into (1), we obtain

(3) y4 = y3 +
h

24
(55f3 − 59f2 + 37f1 − 9f0) + f̄ (4)(ξ)

251

720
h5

for some ξ ∈ (x0, x4). This is the Adams-Bashforth predictor formula.
Similarly as above writing EQ for the error of the Newton interpolation polynomialQ interpolating

f̄ at x1, x2, x3, x4, we have

f̄(x) = Q(x) + EQ(x) = f̄ [0] + f̄ [0,−h]x+ f̄ [0,−h, h]x(x+ h) + f̄ [0,−h, h, 2h]x(x+ h)(x− h)

+ f̄ [0,−h, h, 2h, x]x(x+ h)(x− h)(x− 2h) = f̄0 +
f̄0 − f̄−1

h
x

+
f̄1 − 2f̄0 + f̄−1

2h2
(x2 + xh) +

f̄2 − 3f̄1 + 3f̄0 − f̄−1

6h3
(x3 − h2x)

+
f̄ (4)(ηx)

4!
(x4 − 2hx3 − h2x2 + 2h3x)

for some ηx ∈ (x1, x4) = (−2h, 2h) (assuming that x ∈ (x3, x4)). Integrating this, we obtain

∫ 2h

h

f̄ = f̄0h+
f̄0 − f̄−1

h
· 3h

2

2
+
f̄1 − 2f̄0 + f̄−1

2h2
· 23h

3

12
+
f̄2 − 3f̄1 + 3f̄0 − f̄−1

6h3
· 3h

4

8

+
f̄ (4)(η)

4!
· 19
30
h5 =

h

24
(9f̄2 + 19f̄1 − 5f̄0 + 9f̄−1)− f̄ (4)(η)

19

720
h5

=
h

24
(9f4 + 19f3 − 5f2 + 9f1)− f̄ (4)(η)

19

720
h5

for some η ∈ (x1, x4), where (2) was used to obtain the last equality. In calculating the remainder
term, note that the polynomial

x4 − 2hx3 − h2x2 + 2h3x = x(x+ h)(x− h)(x− 2h)

is negative on the interval (h, 2h), and so we can again use the Mean-Value Theorem for Integrals
given in formula (1) in the Section 20 on Simple Numerical Integration Formulas. Recalling that
f̄(x) = f(x, y(x)) and substituting this into (1), we obtain

(4) y4 = y3 +
h

24
(9f4 + 19f3 − 5f2 + 9f1)− f̄ (4)(η)

19

720
h5

for some η ∈ (x1, x4). This is the Adams-Moulton corrector formula.

99What we need here is a slight extension of that result. In discussing that formula, we assumed that ξx belongs
to the interval of integration, which is not the case at present. The same argument can be extended to the situation
when ξx belongs to some other, arbitrary interval, since the only thing that was used in the argument was that the

derivative of a function satisfies the Intermediate-Value Theorem. Thus, the Mean-Value Theorem in question can be
extended to cover the present situation.
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In a practical method for solving differential equations, one uses the corrector formula (4) as an
equation for y4 (since y4 occurs on both sides). One solves this equation by fixed-point iteration,
but one only does one step of fixed point iteration, with a starting value obtained by the predictor
formula (3). We will explain below how exactly this is done, but first we need to discuss the error
estimates for these formulas. Write ypred for the value calculated for y4 by the predictor formula (i.e.,
ypred equals the right-hand side of (3) except for the error term), and ycorr of the value calculated
for y4 by the corrector formula (using ypred to calculated f4. That is, write

(5)

ypred = y3 +
h

24
(55f3 − 59f2 + 37f1 − 9f0),

fpred = f(x4, ypred),

ycorr = y3 +
h

24
(9fpred + 19f3 − 5f2 + 9f1).

In order to estimate the error, we make the assumption that

(6) f̄ (4)(η) ≈ f̄ (4)(ξ) and y4 ≈ ycorr − f̄ (4)(η)
19

720
h5

holds.

The reason the latter equation is not exact is that we used fpred to calculate ycorr, rather than f4, as on the
right-hand side of (4). For this reason,

y4 − ycorr =
9h

24
(f4 − fpred)− f̄ (4)(η)

19

720
h5 =

9h

24
fy(x4, λ)(y4 − ypred)− f̄ (4)(η)

19

720
h5

=
9h

24
fy(x4, λ)f̄

(4)(ξ)
251

720
h5 − f̄ (4)(η)

19

720
h5 = −f̄ (4)(η) 19

720
h5 + fy(x4, λ)f̄

(4)(ξ)
251

1920
h6

where the second equation follows with λ between y4 and ypred from the Mean-Value Theorem for the function f(x4, y)
considered as a function of the single variable y only, and the third equation uses the error term given in (3). For

small h, the second term on the right-hand side is much smaller than the first term, so we obtain the second formula
in (6).

Using these estimates, we obtain

ycorr − ypred = (y4 − ypred)− (y4 − ycorr) ≈ f̄ (4)(η)

(

251

720
+

19

720

)

h5 = f̄ (4)(η)
270

720
h5,

where (3) and (5) were used to express y4−ypred, and the second formula in (6) was used to estimate
y4 − ycorr. Hence

y4 − ycorr ≈ −f̄ (4)(η) 19

720
h5 = − 19

270
· f̄ (4)(η)270

720
h5 ≈ − 19

270
(ycorr − ypred)

The left-hand side is the error Ecorr of the corrector formula. That is,

(7) Ecorr ≈ − 19

270
(ycorr − ypred) ≈ − 1

14
(ycorr − ypred).

For the last approximate equation, note that 19/270 ≈ 0.070, 370, 4 and 1/14 ≈ 0.071, 428, 6.100

100There seems to be hardly any practical difference whether one uses the value 19/270 or 1/14. The latter value

is easier for humans to remember; for computers, this is not an issue. The computer evaluates these fractions only
once, at compile time. Nevertheless, we will use the latter value in the computer program below.
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The method combining formulas (5) and (7) above for ypred, ycorr, and Ecorr is called the Adams-
Bashforth-Moulton predictor-corrector method. Since the formulas rely on four previous values
values for yi, the method is used in combination with another method, such as the Runge-Kutta-
Fehlberg method, that can supply these values. The corrector formula (using fixed point iteration to
solve the equation for y4) is used only once; if the error is not small enough after one iteration, it is
better to decrease the step size than to do more iteration. After the Runge-Kutta-Fehlberg method
supplies the initial values, the Adams-Bashforth-Moulton method can work on its own until the step
size needs to be changed (decreased because the error is too large or increased because the error is
too small – to speed up the calculation). When the step size is changed, the Runge-Kutta-Fehlberg
method can again be invoked to supply new starting-valued with the changed step size.

Next we will discuss a computer implementation of this method. We will use the method solve
the same differential equation

f(x, y) = −(x+ 1) sinx+
y

x+ 1
;

the file funct.c defining this function is identical to the file with the same name considered for the
Runge-Kutta-Fehlberg method. The header file abm.h contains the header file for a number of files
used in the implementation of this method:

1 #include <stdio.h>

2 #include <math.h>

3

4 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

5

6 double funct(double x, double y);

7 double abmrkf(double (*fnct)(double,double), double x0,

8 double y0, double x1, double epsilon, double *h,

9 double min_h, int *countabsucc, int *countabfail,

10 int *countrksucc, int *countrkfail, int *success);

11 double abmstep(double (*fnct)(double,double), double x4,

12 double y3, double f0, double f1, double f2, double f3,

13 double h, double *error);

14 double rkfstep(double (*fnct)(double,double), double x0,

15 double y0, double *x1, double h, double *k1addr,

16 double *error);

This file contains the declarations of the functions needed for the program; these declarations will
be discussed in detail below. One step of the Runge-Kutta-Fehlberg method is implemented in the
file

1 #include "abm.h"

2 #define F(x,y) ((*fnct)(x,y))

3 #define K1 (*k1addr)

4

5 double rkfstep(double (*fnct)(double,double), double x0,

6 double y0, double *x1, double h, double *k1addr,

7 double *error)

8 {
9 /* This program implements the Runge-Kutta_Fehlberg

10 method to solve an ordinary differential equation */

11 double k2, k3, k4, k5, k6, y1;

12 K1=F(x0,y0);

13 k2=F(x0+h/4.,y0+h*K1/4.);
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14 k3=F(x0+3.*h/8.,y0+h*(3.*K1+9.*k2)/32.);

15 k4=F(x0+12.*h/13.,y0+h*(1932.*K1-7200.*k2+7296.*k3)/2197.);

16 k5=F(x0+h,y0+h*(439.*K1/216.-8.*k2+3680.*k3/513.

17 -845.*k4/4104.));

18 k6=F(x0+h/2.,y0+h*(-8.*K1/27.+2.*k2-3544.*k3/2565.

19 +1859.*k4/4104.-11.*k5/40.));

20 *error=absval(h*(K1/360.-128.*k3/4275.-2197.*k4/75240.

21 +k5/50.+2*k6/55.));

22 *x1=x0+h;

23 y1=y0+h*(25.*K1/216.+1408.*k3/2565.+2197.*k4/4104.-k5/5.);

24 return y1;

25 }
The implementation of the Runge-Kutta-Fehlberg method has been discussed earlier. This file only
implements a single step of the method, and the step size control will be performed in the calling
program. The parameters of this function are the pointer funct describing the function f(x, y) in
the differential equation to be solved, x0 for the starting point, y0 for the initial value of the solution
at that point, *x1 is end point of the step where the solution is calculated (this value is calculated in
here, and the calling program can read it from the location x1, the step size h (so *x1=x0+h), k1addr
for the address of the quantity K1(x0, y0) (this is calculated here, and the calling program can get
it from this location; K0 can be reused even if the step size is changed), and the *error of the step
(readable by the calling program). To simplify the notation, in lines 2 and 3 the symbols F(x,y)
and K1 are defined. Lines 11–23 perform the calculation the same way as was already discussed
above on account of the Runge-Kutta-Fehlberg method. On line 24, the value y1 of the solution is
returned to the calling program.

One step of the Adam-Bashforth-Moulton method is implemented in the file abmstep.c:

1 #include "abm.h"

2 #define F(x,y) ((*fnct)(x,y))

3

4 double abmstep(double (*fnct)(double,double), double x4,

5 double y3, double f0, double f1, double f2, double f3,

6 double h, double *error)

7 {
8 double predy4, predf4, y4;

9 predy4=y3+h*(55.*f3-59.*f2+37.*f1-9.*f0)/24.;

10 predf4=F(x4,predy4);

11 y4=y3+h*(9.*predf4+19.*f3-5.*f2+f1)/24.;

12 *error=absval(y4-predy4)*1./14.;

13 return y4;

14 }
The function abmstep is quite simple. Its parameters are a pointer fnct representing the function
f(x, y), x4, f1, f2, f3, h, corresponding to x4, f1, f2, f3, and h, respectively, and the pointer
error to the location containing the error as determined by formula (7) on line 12. The file abm.c

implements step size control for the method:

1 #include "abm.h"

2 #define F(x,y) ((*fnct)(x,y))

3 #define H (*h)

4

5 double abmrkf(double (*fnct)(double,double), double x0,

6 double y0, double x1, double epsilon, double *h,

7 double min_h, int *countabsucc, int *countabfail,
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8 int *countrksucc, int *countrkfail, int *success)

9 {
10 /* This solves an ordinary differential equation

11 using the Adams-Bashforth-Moulton predictor corrector

12 method. Automatic step size control is incorporated.

13 The starting values or the initial values when

14 the step size is changed are supplied by the

15 Runge-Kutta-Fehlberg method. The main problem

16 in coupling these two methods is to ensure that

17 most of the steps are performed by the predictor

18 corrector method and not by the Runge-Kutta method.

19 This is a difficult problem; the main steps to

20 ensure this were: 1) the Runge-Kutta method is

21 used only to decrease the step size, and never to

22 increase it; 2) the predictor corrector method is

23 allowed to increase the step size only if it was

24 found on 8 consecutive occasions that the step size

25 is too small. */

26 const double assumedzero=1e-20;

27 double error,

28 x[5], y[5], f[4], working_h,

29 epsilonover64=epsilon/64.;

30 int i=0, upscalecount=0, iserror_ok, state, shortrange=0, j;

31 /* state==0: stepping

32 state==1: h is too small

33 state==2: x1 is reached */

34 /* iserror_ok==0: error is too small

35 iserror_ok==1: error is OK

36 iserror_ok==2: error is too large */

37 /* using Runge-Kutta-Fehlberg to generate starting values: */

38 x[0]=x0; y[0]=y0;

39 for ( state=0; !state ;) {
40 if ( i==3 ) {
41 f[3]=F(x[3],y[3]);

42 x[4]=x[3]+H;

43 y[4]=abmstep(fnct,x[4],y[3],f[0],f[1],f[2],f[3],

44 H,&error);

45 iserror_ok=1;

46 if ( error <= H*epsilonover64 ) iserror_ok=0;

47 if ( error > H*epsilon ) iserror_ok=2;

48 if ( iserror_ok < 2 ) {
49 (*countabsucc)++;

50 for (j=0; j<4; j++) {
51 x[j]=x[j+1];

52 y[j]=y[j+1];

53 }
54 for (j=0; j<3; j++) {
55 f[j]=f[j+1];

56 }
57 }
58 else (*countabfail)++;
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59 }
60 else {
61 y[i+1]=rkfstep(fnct,x[i],y[i],&x[i+1],

62 H,&f[i],&error);

63 if ( error > H*epsilon ) {
64 iserror_ok=2;

65 (*countrkfail)++;

66 }
67 else {
68 iserror_ok=1;

69 i++;

70 (*countrksucc)++;

71 }
72 }
73 if ( iserror_ok==2 ) {
74 H /= 2.;

75 if ( H < min_h ) state=1;

76 x[0]=x[i]; y[0]=y[i]; i=0;

77 }
78 else {
79 if ( absval(x1-x[i]) <= assumedzero ) state=2;

80 else {
81 if ( iserror_ok==0 ) {
82 upscalecount++;

83 if ( upscalecount==8 ) {
84 H *= 2.;

85 x[0]=x[i]; y[0]=y[i]; i=0;

86 }
87 }
88 else upscalecount=0;

89 if ( H > x1-x[i] ) {
90 shortrange=1;

91 working_h=H; H=x1-x[i];

92 x[0]=x[i]; y[0]=y[i]; i=0;

93 }
94 else shortrange=0;

95 }
96 }
97 }
98 if ( shortrange ) H=working_h;

99 if ( state==2 ) {
100 *success=1;

101 return y[i];

102 }
103 else {
104 *success=0;

105 return 0.0;

106 }
107 }

The function abmrkf has its parameters arranged in a similar way to the parameters of the function
rk45 in the file rk45.c discussed above, in the section on Runge-Kutta methods. In fact, the
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function abmrkf here and the earlier function rk45 has many features in common. The parameters
of abmrkf are a pointer fnct to the function representing f(x, y), the starting point x0, the initial
value y0 at this point, the point x1 where the solution is desired (this point is reached as a result
of many steps, so its meaning is very different from the meaning of x1, reached in a single step,
in the functions rkfstep and abmstep), the global error epsilon allowed on an interval of length
1, a pointer h to the value of h, the smallest step size min_h allowed, a pointer countabsucc to
the number of successful Adams-Bashforth-Moulton steps, a pointer countabfail to the number of
failed Adams-Bashforth-Moulton steps, a pointer countrksucc to the number of successful Runge-
Kutta-Fehlberg steps, a pointer countrkfail to the number of failed Runge-Kutta-Fehlberg steps,
and a pointer to an integer *success, which is 1 is the determination of the value of the solution at
x1 is successful, and 0 is it is unsuccessful. The function returns the value of the solution at y1 if
successful (returns 0.0 otherwise).

Meaning of the integer state is explained in the comments in lines 31–33 (0 if the method is
stepping, 1 is the value of h is smaller than the allowed step size, and 2 if the point x1 is reached.
The meaning of the integer iserror_ok is explained in the comments in lines 34–36 (0 if the error is
too small, 1 is the error is OK, and 2 if the error is too large. The loop in lines 39–97 is performed as
long as useful calculations can be done, i.e. until the calculation is finished (the point x1 is reached)
or when the calculation cannot be continued (since h would have to be smaller than allowed). The
test on line 40 i==0 is evaluated true when enough starting values have been obtained to do an
Adams-Bashforth-Moulton step, and in line 40 the program doing this is called. To read these lines,
note the definitions in lines 2–3 defining F(x,y) and H. If the error is this step is smaller than or
equal to hǫ/64 (the parameter epsilonover64 has value ǫ/64) the error is too small (iserror_ok
is set to 0), and if the error is larger than hǫ, the error is too large (iserror_ok is set to 2); if the
error is not too large, the variable the variable *countabsucc incremented on line 49, and the arrays
x[], y[], and f[] are updated in lines 50–56. On line 58, *countabfail is implemented because
the error was found too large (through the failure of the test on line 48).

On line 61, a Runge-Kutta-Felberg step is taken (because the test on line 40 failed, i.e., showed
that there are not enough values available to take an Adams-Bashforth-Moulton step), and in lines
64–66 the integer iserror_ok is set to 2, and *countrkfail is incremented in case the error is found
to be too large on line 63, otherwise iserror_ok is set to 1, and *countrksucc is incremented in lines
68–70. The variable i is incremented on line 69 to indicate that the successful Runge-Kutta-Fehlberg
step made an additional starting value available. In line 73 it is tested if the error is too large; this
may have happened either in a Runge-Kutta-Fehlberg step or an Adams-Bashforth-Moulton step.
The step size must be decreased if this is the case, and this is done in line 74. In line 76, i is set
to 0 to indicate that only 1 (i.e., i + 1) starting value is available (if the step size changes, earlier
starting values become useless.101)

If the step size does not need to be changed in lines 73–77, on line 79 it is tested if we are close
enough to target point x1 (we should of course not test exact equality with floating point numbers),
or whether more steps need to be taken. If the latter is the case, on line 81 it is tested if the error
is too small. If so, the step size may need to be increased. Only an Adams-Bashforth-Moulton step
can increase the step size (in lines 64 and 68 we saw that the Runge-Kutta-Fehlberg method cannot
set iserror_ok to 0). The step size will be increased only if it is found on eight occasions in a row
that the error is too small; the number of successive occurrences of a too small error is counted by
the variable upscalecount. On the eighth occurrence, the step size is doubled on line 84, and i is
set to 0 to indicate that there is only one (i.e., i+ 1) available starting value.

In line 89, it is tested if the current step size to larger than the step needs to be taken to reach x1;

101With more expensive book keeping, some of the old starting values could still be used even if the step size is
halved. If the step size is doubled, then it is possible that there are still four starting values available among the
already calculated values, but to keep track of them is more expensive also in this case. Such a more expensive book

keeping hardly seems justified unless a function evaluation is enormously costly. As will appear from the printout of
the present program, it seems that the method is tuned in a way that a change in step size is needed only rarely.
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if so, the variable shortrange is set to 1, and the step size is changed on line 91 to the size of the
actual step that needs to be taken. The current value of h is preserved in the variable working_h

so that the program can communicate this value of h to the calling program. On line 92, i is set
to be zero to ensure that the next (and last) step is a Runge-Kutta-Fehlberg step. In line 98, the
working value of h is restored in case the last step was a short step, so that the calling program can
read this value in the location h (recall that H stands for *h, as indicated on line 3). In line 99 the
variable state is tested to see whether the determination of y1 was successful; if so, the calculated
value is returned to the calling program on line 101.

The main program contained in the file main.c is very similar to the file by the same name
discussed on account of the Runge-Kutta-Fehlberg method in the preceding section:

1 #include "abm.h"

2 double sol(double x);

3

4 main()

5 {
6 double min_h=1e-5, epsilon=5e-10,

7 x0=0.0,x1,xn=10.0,y0=1.0,y1,h,h0,yx;

8 int i, n=10, success, countabsucc=0,countabfail=0,

9 countrksucc=0,countrkfail=0, status;

10 /* status==0: failed;

11 status==1: integrating;

12 status==2: reached the end of the interval; */

13 status=1;

14 printf("Solving the differential equation "

15 "y’=-(x+1)sin x+y/(x+1):\n");

16 printf(" x y "

17 " exact solution error\n\n");

18 yx=sol(x0);

19 printf("%6.3f %20.16f %20.16f %20.16f\n",

20 x0, y0, yx, y0-yx);

21 h0=(xn-x0)/((double) n); h=h0;

22 for (i=1; i<=n ; i++) {
23 x1=x0+h0;

24 y1=abmrkf(&funct, x0, y0, x1, epsilon, &h,

25 min_h, &countabsucc, &countabfail,

26 &countrksucc, &countrkfail, &success);

27 if ( success ) {
28 x0=x1; y0=y1;

29 yx=sol(x0);

30 printf("%6.3f %20.16f %20.16f %20.16f\n",

31 x0, y0, yx, y0-yx);

32 }
33 else {
34 printf("No more values could be calculated.\n");

35 break;

36 }
37 }
38 printf("\n" "Parameters\n");

39 printf("epsilon: "

40 " "

41 "%.16f\n", epsilon);
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42 printf("smallest step size allowed:"

43 " "

44 "%.16f\n", min_h);

45 printf("number of ABM successful steps: %8d\n", countabsucc);

46 printf("number of ABM failed steps: %8d\n", countabfail);

47 printf("number of RK successful steps: %8d\n", countrksucc);

48 printf("number of RK failed steps: %8d\n", countrkfail);

49 }
50

51 double sol(double x) {
52 /* This function is the exact solution of the

53 differential equation being solved, to compare

54 with the numerical solution */

55 return (x+1.0)*cos(x);

56 }
The only difference between this file and the file main.c discussed on account of the Runge-Kutta-
Felberg method, that here the separate step counts are printed out for Runge-Kutta-Fehlberg steps
and Adams-Bashforth-Moulton steps in lines 45–48. The printout of this program is as follows:

1 Solving the differential equation y’=-(x+1)sin x+y/(x+1):

2 x y exact solution error

3

4 0.000 1.0000000000000000 1.0000000000000000 0.0000000000000000

5 1.000 1.0806046121476161 1.0806046117362795 0.0000000004113366

6 2.000 -1.2484405092421744 -1.2484405096414271 0.0000000003992527

7 3.000 -3.9599699859316626 -3.9599699864017817 0.0000000004701192

8 4.000 -3.2682181037536910 -3.2682181043180596 0.0000000005643685

9 5.000 1.7019731136560623 1.7019731127793576 0.0000000008767047

10 6.000 6.7211920076259482 6.7211920065525623 0.0000000010733860

11 7.000 6.0312180359864973 6.0312180347464368 0.0000000012400602

12 8.000 -1.3095003030395211 -1.3095003042775217 0.0000000012380006

13 9.000 -9.1113026175358165 -9.1113026188467696 0.0000000013109534

14 10.000 -9.2297868184153185 -9.2297868198409763 0.0000000014256585

15

16 Parameters

17 epsilon: 0.0000000005000000

18 smallest step size allowed: 0.0000100000000000

19 number of ABM successful steps: 2033

20 number of ABM failed steps: 4

21 number of RK successful steps: 52

22 number of RK failed steps: 6

Problem

1. For a certain predictor-corrector method, the error of the predicted value y1 is 1
3h

3Y ′′′(ξ1),
where Y (x) is the true solution of the equation, and the error of the corrected value ȳ1 is
− 1

12h
3Y ′′′(ξ2), where ξ1 and ξ2 are some unknown numbers near where the solution is being calcu-

lated. Estimate the error in terms of the difference ȳ1 − y1.

Solution. We have

Y (x1)− y1 =
1

3
h3Y ′′′(ξ1),
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and

Y (x1)− ȳ1 = − 1

12
h3Y ′′′(ξ2).

Hence, assuming Y ′′′(ξ1) ≈ Y ′′′(ξ2),

ȳ1 − y1 = (Y (x1)− y1)− (Y (x1)− ȳ1) ≈
1

3
h3Y ′′′(ξ2)−

(

− 1

12

)

h3Y ′′′(ξ2) =
5

12
h3Y ′′′(ξ2).

Therefore

Y (x1)− ȳ1 = − 1

12
h3Y ′′′(ξ2) = −1

5
· 5

12
h3Y ′′′(ξ2) ≈ −1

5
(ȳ1 − y1).

2. For a certain predictor-corrector method, the error of the predicted value y1 is − 14
45h

5Y (5)(ξ1),

where Y (x) is the true solution of the equation, and the error of the corrected value ȳ1 is
1
90h

5Y (5)(ξ2),
where ξ1 and ξ2 are some unknown number near where the solution is being calculated. Estimate
the error in terms of the difference ȳ1 − y1.

Solution. Write y(x1) for the correct value of y(x) at x1. Assume that Y (5)(ξ1) ≈ Y (5)(ξ2). We
then have

y(x1)− y1 = −14

45
h5Y (5)(ξ1),

and

y(x1)− ȳ1 =
1

90
h5Y (5)(ξ2).

Hence

ȳ1 − y1 = (y(x1)− y1)− (y(x1)− ȳ1) ≈ −14

45
h5Y (5)(ξ2)−

1

90
h5Y (5)(ξ2) = −29

90
h5Y (5)(ξ2).

Therefore

y(x1)− ȳ1 =
1

90
h5Y (5)(ξ2) = − 1

29
·
(

−29

90

)

h5Y (5)(ξ2) ≈ − 1

29
(ȳ1 − y1).

30. RECURRENCE EQUATIONS

An equation of form

(1)
m
∑

k=0

akyn+k = 0 (a0 6= 0, am 6= 0, m > 0)

is called a recurrence equation, more precisely, a homogeneous recurrence equation. (If the right-hand
side is replaced with some function of n that is not identically zero, then what he get is called an
inhomogeneous recurrence equation.102 In this section, we will only discuss homogeneous recurrence
equations.) Here ak for integers k with 0 ≤ k ≤ m are given numbers, and we seek solutions yn
such that these equations are satisfied for all nonnegative integers n. m is called the order of this

102A recurrence equation can often be written in terms of the difference operators introduced in Section 9 on Finite
Differences. In this case, a recurrence equation is also called a difference equation.
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equation. The assumptions a0 6= 0 and am 6= 0 are reasonable in the sense that if either of these
assumptions fail, the equation can be replaced with a lower order equation. It will be advantageous
to work with complex numbers; i.e., the numbers ak and yn will be allowed to be complex. It is
convenient to consider a solution of this equation as a vector

y = 〈y0, y1, y2, . . . 〉
with infinitely many components. These vectors can be added componentwise, that is

〈y0, y1, y2, . . . 〉+ 〈z0, z1, z2, . . . 〉 = 〈y0 + z0, y1 + z1, y2 + z2, . . . 〉,
and can be multiplied by scalars, that is

α〈y0, y1, y2, . . . 〉 = 〈αy0, αy1, αy2, . . . 〉.
The solution vectors form an m-dimensional vector space. First, they form a vector space, since if
y and z are solutions then αy + βz is also a solution. It is also clear that the dimension of this
vector space is m since each solution is determined if we specify the number yi for each integer i with
0 ≤ i ≤ m − 1 (indeed, yn for n ≥ m is then determined by the recurrence equation, as am 6= 0),
and these numbers yi can be specified arbitrarily.

Write

(2) P (ζ) =

m
∑

k=0

akζ
k.

The polynomial P (ζ) is called the characteristic polynomial of the recurrence equation (1), and the
polynomial equation P (ζ) = 0 is called its characteristic equation. Here ζ is a complex variable.103

The forward shift operator E on functions of n is defined by writing Ef(n) = f(n + 1); the
forward shift operator was introduced in Section 9 on page 28. The difference there was that the
variable used was x, and x was a real variable, whereas here n is a nonnegative integer variable.104

The powers of the operator E can be defined as they were in Section 9; in addition, we can also
use the identity operator I. Polynomials of the operator E will be called difference operators.105

yn will be considered as a function of n, and the operator E on yn will act according to the equation
Eyn = yn+1.

106 The recurrence equation (1) can be written in terms of the operator E as

(3)
(

m
∑

k=0

akE
k
)

yn = 0.

By solving the characteristic equation, the characteristic polynomial can be factored as the prod-
uct of m linear factors; assuming that λj is a zero107 of multiplicity mj of the characteristic poly-
nomial for j with 1 ≤ j ≤ N (the λj ’s are assumed to be pairwise distinct), we have

m
∑

k=0

akζ
k = am

N
∏

j=1

(ζ − λj)
mj , where

N
∑

j=1

mj = m;

103Or an indeterminate, from an alternative viewpoint. An indeterminate is a symbolic variable used in defining

a polynomial ring, and is not tu be interpreted as representing a number.
104The forward shift operator is always associated with a variable; if more than one variable were associated with

forward shift operators, the notation should indicate the variable in question as well, for example Ex would shift the
variable x forward, while Ey would shift the variable y, etc.

105This is because these operators can also be expressed in terms of of the forward difference operator ∆ described
in Section 9.

106It would be formally more correct, but less convenient, to say that E acts on vectors 〈y0, y1, y2, . . . 〉, and

E〈y0, y1, y2, . . . 〉 = 〈y1, y2, y3, . . . 〉.

107A zero of a polynomial is a root of the equation obtained by equating the polynomial to zero.
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the second equation here just says that the above polynomial equation (of degree m) has m roots,
counting multiplicities. The difference operator in recurrence equation (3) has a corresponding
factorization:

m
∑

k=0

akE
k = am

N
∏

j=1

(E − λj)
mj ;

here E − λj could also have been written as E − λjI, but the identity operator is often omitted
when is has a number coefficient. This is because the rules of algebra involving polynomials of the
variable ζ and polynomials of the forward shift operator E are the same.108

The degree of a polynomial P (n) of n will be denoted by degP (n); the constant polynomial that
is not identically zero will have degree zero, and the identically zero polynomial will have degree −1.
Then we have

Lemma. Let λ and η be nonzero complex numbers, and let P (n) be a polynomial of n that is not
identically zero. Then

(E − λ)P (n)ηn = Q(n)ηn,

where Q(n) is another polynomial of n such that degQ(n) = degP (n) if λ 6= η and degQ(n) =
degP (n)− 1 if λ = η.

Proof. Given an integer k ≥ 0, we have

(E − λ)nkηn = (n+ 1)kηn+1 − λnkηn =
k
∑

j=0

(

k

j

)

njηn+1 − λnkηn

=



(η − λ)nk + η
k−1
∑

j=0

(

k

j

)

nj



 ηn;

the second equality was obtained by using the Binomial Theorem. This equation says it all; if λ = η
then the term involving nk will cancel, and if λ 6= η then this term will not cancel. In the former
case, the operator lowers the degree of nk in the term nkηn by one. (In this case, if nk is the term

of the highest degree of the polynomial P (n), then the resulting term η
(

k
1

)

nk−1ηn will not cancel
against the terms resulting from lower degree terms of P (n), since the degrees of those terms will
also be lowered.) The proof is complete. �

Linear independence of certain functions. Functions here mean functions on nonnegative
integers; instead of the word “function” we could have used the word “sequence.” The lemma just
established has several important corollaries.

Corollary (Linear Independence). Let r ≥ 1 be an integer. Let fk(n) = Pk(n)λ
n
k be func-

tions of n for k with 1 ≤ k ≤ r, where Pk(n) is a polynomial of n that is not identically zero, and
λk is a nonzero complex number, such that if 1 ≤ k < l ≤ r then either λk 6= λl, or if λk = λl then
degPk(n) 6= degPl(n). Then the functions fk are linearly independent.

Proof. Assume, on the contrary, that we have

r
∑

k=1

ckPk(n)λ
n
k ≡ 0,

108In particular, given complex numbers λ and η the operators E − λ and E − η commute; that is

(E − λ)(E − η) = (E − η)(E − λ).

Note that E does not commute with expressions involving n. For example, nEn2 = n(n+1)2, and n2En = n2(n+1).
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where not all the complex coefficients ck are zero (≡ here means that equality holds identically; in
the present case this means that equality holds for every nonnegative integer n). We will show that
this equation cannot hold. To this end, without loss of generality, we may assume that none of the
coefficients are zero, since the terms with zero coefficients can simply be discarded. Further, we may
assume that among the terms Pk(n)λ

n
k the polynomial P1(n) is the one that has the highest degree

(other polynomials Pk(n) with nonzero ck for λk 6= λ1 may have the same degree, but not higher).
Let d be the degree of P1(x). Then

(E − λ1)
d
(

∏

k:2≤k≤r,

λk 6=λ1

(E − λk)
d+1
)

r
∑

k=1

ckPk(n)λ
n
k = cλn1 ,

with a nonzero c. The product is taken for all k for which λk is different from λ1.
109 The reason for

this equation is that the difference operator (E−λk)d+1 annihilates the term Pk(n)λ
n
k when λk 6= λ1

according to the Lemma above, (since degPk(n) ≤ d). These operators will not change the degree of
the polynomial in the term P1(n)λ

n
1 according to the same Lemma (because λk 6= λ1). The operator

(E − λ1)
d will annihilate the term Pk(n)λ

n
k in case λk = λ1 and k 6= 1 (since degPk(n) < d in this

case, according to our assumptions). Finally, the operator (E−λ1)d lowers the degree of P1(n) by d
in the term P1(n)λ

n
1 according to the Lemma (while none of the other operators change the degree of

P1(n) in this term, as we mentioned). Hence, after the application of the above difference operators,
the resulting function will be cλn1 with c 6= 0; this confirms the above equation. So, applying the
difference operator to both sides of the equation expressing linear dependency, we obtain that

cλn1 ≡ 0,

while c 6= 0. This is a contradiction since λ1 6= 0 according to assumptions, showing that the
functions in question are linearly independent. �

The solution of the recurrence equation.

Corollary (Solution of the Homogeneous Equation). Assuming

m
∑

k=0

akζ
k = am

N
∏

j=1

(ζ − λj)
mj , where

N
∑

j=1

mj = m,

and the λj’s are pairwise distinct, the functions nrλnj for r and j with 0 ≤ r < mj and 1 ≤ j ≤ N
represent m linearly independent solutions of the difference equation

(

m
∑

k=0

akE
k
)

yn = 0.

Proof. The linear independence of the functions claimed to be representing the solutions have
been established in the first Corollary. Since a recurrence equation of order m can have at most m
linearly independent solutions, these functions will represent a complete set of linearly independent
solutions. To see that each of these functions is a solution, it is enough to note according to the
equation

m
∑

k=0

akE
k = an

N
∏

j=1

(E − λj)
mj

109This arrangement is of course highly redundant, because if λk = λl, there is no need to take both of the factors
(E − λk)

d+1 and (E − λl)
d+1, but such redundancy is harmless and it serves to simplify the notation.
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that, in view of the Lemma above, the difference operator

(E − λj)
mj

annihilates the function nrλnj for r < mj . �

Thus we exhibited m linearly independent solutions of equation (1). If follows that any solution
of (1) is a linear combination of these solutions.

Problems

1. The Fibonacci numbers yn, n = 0, 1, 2, . . . are defined by the equations y0 = 0, y1 = 1 and
yn+2 = yn + yn+1 for every integer n ≥ 0. Write a formula expressing yn.

Solution. The characteristic equation of the recurrence equation yn+2 = yn + yn+1 is ζ2 = 1 + ζ.
The solutions of this equation are

ζ1 =
1 +

√
5

2
and ζ2 =

1−
√
5

2
.

Thus, the general solution of the above recurrence equation is

yn = C1

(

1 +
√
5

2

)n

+ C2

(

1−
√
5

2

)n

.

The initial conditions y0 = 0 and y1 = 1 lead to the equations

C1 + C2 = 0

and

C1
1 +

√
5

2
+ C2

1−
√
5

2
= 1.

It is easy to solve these equations. Multiplying the first equation by 1/2 and subtracting it from the
second equation, we obtain √

5

2
(C1 − C2) = 1,

that is

C1 − C2 =
2√
5
,

Adding the first equation to this, we obtain 2C1 = 2/
√
5, or else C1 = 1/

√
5. Substituting this into

the first equation, we obtain C2 = −1/
√
5. With these values for C1 and C2, the formula for yn

gives

yn =
1√
5

(

1 +
√
5

2

)n

− 1√
5

(

1−
√
5

2

)n

.

2. Write a difference operator that annihilates all but the first term in the expression

c1n
3 · 3n + c2n

4 · 2n + c3n
2 · 5n,

while it reduces the first term to c · 3n, where c is a nonzero constant (it is assumed that c1 6= 0).
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Solution. The difference operator
(E − 3)3

will lower the degree of the polynomial in the first term to 0 (i.e., it will change the term into c · 3n
with a nonzero c), while it will not change the degrees of the other polynomials. The difference
operator

(E − 2)5

will annihilate the second term, while it will not change the degrees of the polynomials in the other
terms. Finally, the difference operator

(E − 5)3

will annihilate the third term, while it will not change the degrees of the polynomials Hence the
product of these differential operators,

(E − 3)3(E − 2)5(E − 5)3

will change the first term into c · 3n with a nonzero c, while it will annihilate the second and the
third terms.

This argument can be used to show that if

c1n
3 · 3n + c2n

4 · 2n + c3n
2 · 5n ≡ 0,

then we must have c1 = 0. Similar arguments can be used to show that we must also have c2 = 0
and c3 = 0; hence the terms n3 · 3n, n4 · 2n, and n2 · 5n are linearly independent.

31. NUMERICAL INSTABILITY

Numerical instability is the phenomenon when small errors committed early in the calculation
cause excessively large errors later. An example for a numerically unstable method for solving the
differential equation y′ = f(x, y) is Milne’s method. Let xn = x0+nh with some x0 and some h > 0.
Write yn for the calculated solution of the above equation at xn, and put fn = f(xn, yn). Writing
ȳn+1 for the predicted value of y at xn+1, Milne’s method has the predictor

ȳn+1 = yn−3 +
4h

3
(2fn − fn−1 + 2fn−2).

Setting f̄n+1 = f(xn+1, ȳn+1), the corrector equation is

yn+1 = yn−1 +
h

3
(f̄n+1 + 4fn + fn−1).

The predictor equation does not play too much role in out analysis of the method, since it only
provides a starting value for the corrector equation. For the discussion that follows, instead of
considering what happens during one application of the corrector equation, we will consider the
behavior of the method when the equation

(1) yn+1 = yn−1 +
h

3
(fn+1 + 4fn + fn−1).

is solved exactly, where we use fn+1 rather than f̄n+1 on the right-hand side to indicate this is an
equation for yn. Of course, this equation just expresses the use of Simpson’s method in calculating
the integral in the equation

yn+1 = yn−1 +

∫ xn+1

xn−1

f(x, y(x)) dx.
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We will consider what happens when equation (1) is used to solve the differential equation y′ = −Ky
for some positive constant K. That is, we will put

f(x, y) = −Ky.

Equation (1) then becomes

(2) yn+1 = yn−1 −
hK

3
(yn+1 + 4yn + yn−1).

The characteristic equation of this recurrence equation is

ζ2 = 1− hK

3
(ζ2 + 4ζ + 1),

that is
(3 + hK)ζ2 + 4hKζ − (3− hK) = 0.

The solutions of this equation are

Z1 =
−2hK +

√
3h2K2 + 9

3 + hK
and Z2 =

−2hK −
√
3h2K2 + 9

3 + hK
.

We will approximate these with error O(h2) by using the Taylor series for them at h = 0. Rather
than directly calculating the Taylor series for Z1 and Z2, an easier way to do this may be to use the
Taylor expansions

1

3 + hK
=

1

3
· 1

1− (−hK/3) =
1

3
(1 + (−hK/3) +O(h2)) =

1

3
(1−Kh/3 +O(h2))

and
√

3h2K2 + 9 = 3
√

1 + h2K2/3 = 3(1 +O(h2)),

and substituting these into the expressions for Z1 and Z2. We obtain

Z1 = 1−Kh+O(h2) and Z2 = −1− Kh

3
+O(h2).

Hence the general solution of equation (2) is

yn = c1Z
n
1 + c2Z

n
2 = c1(1−Kh+O(h2))n + c2(−1)n(1 +Kh/3 +O(h2))n.

Suppose we are trying to solve the differential equation y′ = −y (that is, we are taking K = 1) with
initial condition x0 = 0, y0 = 1, and, seeking the solution for some x > 0, we use h = x/n for some
large n. Noting that

(

1 +
u

n
+O

(

1

n2

))n

= eu +O

(

1

n

)

,

as n→ ∞,110 and using this with u = −x and u = x/3, we obtain that

yn = c1e
−x + c2(−1)nex/3 +O

(

1

n

)

.

110Using the Taylor expansion log(1 + t) = t + O(t2) as t → 0 (here log t denotes the natural logarithm of t), we
have

n log

(

1 +
u

n
+O

(

1

n2

))

= u+O

(

1

n

)

for fixed u when n→ ∞. Take the exponential of both sides and note that

eu+O(1/n) = eu · eO(1/n) = eu · (1 +O(1/n)) = eu + eu ·O(1/n).

Finally, eu ·O(1/n) = O(1/n) for fixed u.
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The values of c1 and c2 are determined with the aid of the initial conditions. The choice c1 = 1 and
c2 = 0 correctly gives the solution y(x) = e−x when n → ∞. If, on the other hand, one only has
c1 ≈ 1 and c2 ≈ 0 then, for large enough x, the term c2(−1)nex/3 will have much larger absolute
value than the term c1e

−x, and the calculated solution will be nowhere near the actual solution of
the equation.

The solution c1e
−x is called the main solution, while solution c2(−1)nex/3 is called the parasitic

solution of the recurrence equation (2). In a practical calculation one will not be able to suppress
the parasitic solution (by ensuring that c2 = 0). Because of normal roundoff errors, the parasitic
solution will arise during the calculation even if the choice of initial conditions ensure that c2 = 0
at the beginning.111

32. GAUSSIAN ELIMINATION

Consider the following system of linear equations

3x1 + 6x2 − 2x3 + 2x4 = −22

−3x1 − 4x2 + 6x3 − 4x4 = 34

6x1 + 16x2 + x3 + x4 = −33

−6x1 − 18x2 − 2x3 − 2x4 = 36

Writing aij for the coefficient of xj in the ith equation and bi for the right-hand side of the ith
equation, this system can be written as

(1)
n
∑

j=1

aijxj = bi (1 ≤ i ≤ n)

with n = 4. To solve this system of equation, we write mi1 = ai1/a11, and subtract mi1 times the
first equation from the ith equation for i = 2, 3, and 4. We have m21 = −1, m31 = 2, and m41 = −2.
The following equations will result (the first equation is written down unchanged):

3x1 + 6x2 − 2x3 + 2x4 = −22

2x2 + 4x3 − 2x4 = 12

4x2 + 5x3 − 3x4 = 11

−6x2 − 6x3 + 2x4 = − 8

Write a
(2)
ij for the coefficient of xj in the ith equation. We will continue the above process: writing

mi2 = a
(2)
i2 /a

(2)
22 and subtract mi2 times the second equation from the ith equation for i = 3 and

i = 4. We have m32 = 2 and m42 = −3. We obtain the equations

3x1 + 6x2 − 2x3 + 2x4 = −22

2x2 + 4x3 − 2x4 = 12

−3x3 + x4 = −13

6x3 − 4x4 = 28

111In order to start the method, one needs initial conditions for y0 and y1. In so far as one obtains y1 by some
approximate solution of the differential equation, it is likely that there will be some truncation error in the calculation,
so one will not have c2 = 0. In fact, even if one enters the correct solution y(x1) as the value of y1, the parasitic
solution will not be suppressed, since the correct solution of the differential equation will not be the same as the main

solution of the recurrence equation, since the latter only approximates the solution of the differential equation. That
is, the situation is hopeless even without roundoff errors.
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Write a
(3)
ij for the coefficient of xj in the ith equation. Write m43 = a

(3)
43 /a

(3)
33 , and subtract m43

times the third equation from the fourth equation. We have m43 = −2, and the following equations
result:

3x1 + 6x2 − 2x3 + 2x4 = −22

2x2 + 4x3 − 2x4 = 12

−3x3 + x4 = −13

−2x4 = 2

The above method of solving is called Gaussian elimination, named after the German mathematician
Carl Friedrich Gauss. The last system of equation is called triangular because of the shape formed

by the nonzero coefficients That is, writing a4ij for the coefficient of xj and b
(4)
i for the write hand

side in the ith equation in the last system of equations, we have a
(4)
ij = 0 for j < i.

The resulting equations are easy to solve. From the fourth equation we obtain

x4 =
b
(4)
4

a
(4)
44

=
2

−2
= −1.

Using this value of x4, we can determine x3 from the third equation

x3 =
b
(4)
3 − a

(4)
34 x4

a
(4)
33

=
−13− 1 · (−1)

−3
= 4.

Next, using the value of x3 and x4, we can determine the value of x2 from the second equation:

x2 =
b
(4)
2 − a

(4)
23 x3 − a

(4)
24 x4

a
(4)
22

=
12− 4 · 4− (−2) · (−1)

2
= −3.

Finally, using the values of x2, x3, and x4, we can determine x1 from the first equation:

x1 =
b
(4)
1 − a

(4)
12 x2 − a

(4)
13 x3 − a

(4)
14 x4

a
(4)
11

=
−22− 6 · (−3)− (−2) · 4− 2 · (−1)

3
= 2.

This way is of solving a triangular system of equations is called back substitution.
In a general description of the method of solving equations (1), one starts with the coefficients

akj of the equations. Taking a
(1)
kj = akj , one defines the coefficients mki when 1 ≤ i < k < n and

a
(i)
kj when 1 ≤ k ≤ n, 1 ≤ j ≤ n, and 1 ≤ i ≤ k as follows: when it is the turn to use the ith equation

to eliminate the coefficients of xi in the kth equation for i < k ≤ n, one defines

(2) mki = a
(i)
ki /a

(i)
ii

(assuming that a
(i)
ii 6= 0), and one defines the new value of akj as

(3) a
(i+1)
kj = a

(i)
kj −mkia

(i)
ij (1 ≤ i < k ≤ n, 1 ≤ j ≤ n);

note that for i = j this gives a
(i+1)
ki = 0, showing that xi is eliminated from the kth equation for

k > i. It is now easy to see by induction on i from (3) that a
(i)
kj = 0 if j < i ≤ k. The final value of

the coefficient aij in these calculation will be a
(i)
ij . We put

(4) anewij
def
= a

(i)
ij .
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According to (4), equation (3) can be rewritten as

a
(i+1)
kj = a

(i)
kj −mkia

new
ij for i < k.

By a repeated application of this formula, we obtain from (4) that

(5) anewkj = akj −
k−1
∑

i=1

mkia
new
ij .

Write mkk = 1 and mki = 0 for k < i; then the last equation can also be written as

akj =
n
∑

i=1

mkia
new
ij .

One can also express these equations in matrix form. Writing

A = (aij), L = (mij), and U = (anewij )

for the n× n matrices with the indicated elements, the last equation in matrix form can be written
as

A = LU.

This is called the LU-factorization of A. The name L is used because the matrix it designates is
a lower-triangular matrix, i.e., a matrix whose elements above the main diagonal are zero, and the
letter U is used because the matrix it denotes is an upper-triangular matrix, i.e., a matrix whose
elements below the main diagonal are zero.

Equation (1) can be written in the form

Ax = b,

where x is the column vector of unknowns, and b is the column vector of the right-hand sides, i.e.,

x = (x1, x2, . . . , xn)
T and b = (b1, b2, . . . , bn)

T ,

where T in superscript stands for transpose.112 As A = LU , this equation can now be solved as

x = U−1L−1b

Multiplication by the inverse matrices U−1 and L−1 is easy to calculate. Writing

bnew = (bnew1 , bnew2 , . . . , bnewn )
def
= L−1b

the elements bnewi are calculated analogously to the way the coefficients anewij are calculated in
formula (5):

bnewi = bi −
i−1
∑

l=1

milb
new
l .

This formula is called forward substitution. In the numerical example above, we calculated the right-
hand sides simultaneously with the coefficients in the LU-factorization. Often, one wants to solve
systems of equations with the same left-hand side but different right-hand sides; for this reason, it
is usually advantageous to separate the calculation of the left-hand side from that of the right-hand
side. The solution of the equation then can be written in the form x = U−1bnew. Multiplication by
the inverse of U can be calculated with the aid of back-substitution, already mentioned above:

xi =
bnewi −∑n

j=i+1 a
new
ij xj

anewii

.

112Writing column vectors takes up too much space in text, and so it is easier to describe a column vector as the
transpose of a row vector. In general, the transpose of an m× n matrix A = (aij) is an n×m matrix B = (bij) with

bij = aji for any i, j with 1 ≤ i ≤ n and 1 ≤ j ≤ m. A row vector can be considered a 1× n matrix, while a column
vector, an n× 1 matrix. Hence a column vector can be written as the transpose of a row vector.
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Pivoting. In equation (2), it was assumed that a
(i)
ii 6= 0. This may, of course, not be the case,

and one cannot proceed further along the lines described. One gets into trouble even if aii is only
close to zero, and not actually equal to zero. To deal with this problem, one interjects the following
step. Instead of using the ith equation in continuing the calculations, one looks for the number with

with the largest absolute value among the coefficients a
(i)
ki for k ≥ i. If this coefficient is a

(i)
ri then

one interchanges the ith equation and the rth equation before continuing the calculation. It may

happen that we have a
(i)
ki = 0 for all k ≥ i; in this case, however, the system of equations is not

uniquely solvable.

That is, the system of equations is either unsolvable or it has infinitely many solutions. To see this, assume that
the system formed by i+ 1st through the nth equations at this stage of the process is solvable for xk with i < k ≤ n
(these are the only unknowns occurring in the latter equations). In this case we can chose xi arbitrarily, and then

we can solve the system for the unknowns xi−1, xi−2, . . . , x1 by back substitution. If on the other hand, the system
formed by i + 1st through the nth equations at this stage of the process is not solvable for xk with i < k ≤ n, then
the original system of equations in not solvable, either.

This method of interchanging of equations is called partial pivoting, and the new element moved
in the position of aii is called the pivot element.

Instead of partial pivoting, one can use what is called full pivoting. In full pivoting one looks for the coefficient

with the larges absolute value among all the coefficients a
(i)
kj for k ≥ i and j ≥ i, and moves this element into the

position of the element aii by interchanging rows and columns of the coefficient matrix. (The interchange of rows
corresponds to interchanging equations, and the interchange of columns corresponds to interchanging unknowns.) In
practice, full pivoting is rarely done because it is much more complicated to implement than partial pivoting, and

there is in practice no significant advantage of full pivoting over partial pivoting. Partial pivoting can lead one astray
in the system of equations

.000, 01x1 + .000, 001x2 = − .000, 02

.000, 02x1 − 10 x2 = 3

Interchanging the two equations in this case would be a mistake. In fact, dividing each equation by the coefficient of
the maximum absolute value on its left-hand side we obtain an equivalent system of equations.

x1 + .1x2 = −2

−.000, 002x1 + x2 = − .3

Using partial pivoting with this system of equations, one would not interchange the equations. The point is that the

working of partial pivoting may be distorted if the equations are “differently scaled.” If this is the case, it may be
simpler to rescale each equation by dividing through with the coefficient with the maximum absolute value on its
left-hand side.

In fact, even the working of full pivoting is affected by the equations being “differently scaled.” Indeed, with the
former system, one would use the coefficient −10 of x2 in the second equation as pivot element, whereas with the

latter, rescaled system, one would use the coefficient 1 of x1 in the first equation as pivot element. However, both of
these are good choices, and full pivoting can work well without rescaling the equations.

In a theoretical discussion of partial pivoting, it is helpful to imagine that all row interchanges
happen in advance, and then one carries out Gaussian elimination on the obtained system of equa-
tions without making further interchanges.113 A sequence of interchanges of rows of a matrix results
in a permutation of the rows of a matrix. Such a permutation can be described in terms of a
permutation matrix P = (pij). A permutation matrix can be characterized by saying that each row
and each column has exactly one element equal to 1, with the rest of the elements being equal to 0.

113Of course, in practice this cannot be done, but in a theoretical discussion of algorithms one often considers
oracles. An oracle is a piece of information, unobtainable in practice, that determines a step to be taken in a algorithm.
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If pij = 1 in an n× n permutation matrix then, given an n× n matrix A, in the matrix PA the ith
row of the matrix PA will be the jth row of the matrix A, as one can easily check by the equation

(PA)il =

n
∑

k=1

pikakl = ajl,

where (PA)il denotes the element in the ith row and lth column of the matrix PA.
Given a system of equations Ax = b, Let P is the permutation matrix describing the row

interchanges performed during the solution of the equations. Write A′ = PA. Then one obtains
an LU-factorization of the matrix A′, i.e., one finds a representation A′ = LU where L is a lower
triangular matrix, and U is an upper triangular matrix, with the additional assumption that the
elements in the main diagonal of the matrix L all equal to 1. That is, one can write PA = LU , or

A = P−1LU.

It is easy to see that the inverse of a permutation matrix is its transpose; that is, finding the inverse
of a permutation matrix presents no problems in practice.

Suppose pij = 1 in the permutation matrix P . Writing A′ = PA, then the ith row of the matrix A′ will be the

jth row of the matrix A. Writing A′′ = PTA′ then (PT )ji = 1; so the jth row of the matrix A′′ will be the i row of

the matrix A′. Therefore, the matrix A′′ is the same as the matrix A. Hence PTP = I, where I is the n× n identity
matrix. Similarly, we have PPT = (PT )TPT = I, so PT is the inverse of P .

This last step is perhaps unnecessary, since if a matrix B has a left inverse, then it is nonsingular, and if it is
nonsingular, then it must also have a right inverse. If Q is a left inverse, and R is a right inverse of a matrix B, then
QB = BR = I, so Q = QI = Q(BR) = (QB)R = IR = R, i.e., the left and right inverses must agree. But this
argument is more complicated than the above argument involving the double transpose.

When one performs Gaussian elimination on the matrix A with partial pivoting, one in effect
obtains a permuted LU-factorization A = P−1LU of the matrix A. Given the equation

Ax = b,

one can then find the solution in the form

x = U−1L−1Pb.

Calculating the vector Pb amounts to making the same interchanges in the components of the vector
b that were made to the rows of the matrix A. We explained above that multiplying by L−1 can be
calculated by forward substitution, and multiplying by U−1 can be calculated by back substitution.

The inverse of the matrix A can be written as U−1L−1P . However, one usually does not want
to evaluate the inverse matrix; that is, if one needs to calculate A−1B for some matrix B, then one
calculates the matrices PB, L−1(PB), and U−1(L−1PB) rather than first evaluating A−1 and then
evaluating A−1B.

Iterative improvement. In a practical calculation, the elements of the matrices L and U in the
factorization A = P−1LU can only be approximately determined. Therefore the solution obtained
as

x(0) = U−1L−1Pb.

will only be approximate. Writing
δb(1) = b−Ax(0),

one can then obtain an approximate solution of the equation

Aδx(1) = δb(1)
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as
δx(1) = U−1L−1Pδb(1).

One can then expect that

x(1) = x(0) + δx(1)

is a better approximation of the true solution of the equation Ax = b than vector x(1) is. This
calculation is called (one step of) iterative improvement. One can perform this step repeatedly to
obtain a better approximation to the solution. The calculation of δb(1) above should be done with
double or extended precision; since the vectors b and Ax(0) are close to each other, using extended
precision helps one to avoid the loss of significant digits. The rest of the calculation can be done
with the usual (single or double) precision.114

Computer implementation. We use the header file gauss.h in the computer implementation
of Gaussian elimination:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6

7 void swap_pivot_row(double **a, int col, int n);

8 void LUfactor(double **a, int n, int *success);

9 void LUsolve(double **a, int n, double *b);

10 void backsubst(double **c, int n, double *b, double *x,

11 double *deltab);

12 int improve(double **a, int n, double **c, double *b,

13 double *x, double tol, int maxits, int *success);

14 double **allocmatrix(int n);

15 double *allocvector(int n);

Lines 5-15 contain the declarations of functions used in the program. These declarations will be
explained later, when discussing the respective functions. The file alloc.c contains the routines
allocating memory for the vectors and matrices used in the programs:

1 #include "gauss.h"

2

3 double **allocmatrix(int n)

4 /* Allocate matrix. The following code segment allocates

5 a contiguous block of pointers for the whole matrix.

6 There is no real advantage for this here, because with

7 pivoting, rows will be interchanged. So memory for rows

8 could be allowcated separately. On the other hand, even

9 the largest matrix for which Gaussian elimination

10 is feasible occupies a relatively modest amount of

11 memory, there does not seem to be any disadvantage

12 in asking for a contiguous block. */

13 {
14 int i;

15 double **a;

114Most or all the programs in these notes use data type double for floating point numbers. This is already double

precision, single precision being represented by data type float. Extended precision in this case can be represented
by data type long double. Indeed, long double is used in the program below to calculate δb(1).
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16 a=(double **) malloc((size_t)((n+1)*sizeof(double*)));

17 if (!a) {
18 printf("Allocation failure 1 in matrix\n");

19 exit(1);

20 }
21 /* Allocate the whole matrix: */

22 a[1]=(double *) malloc((size_t)(n*(n+1)*sizeof(double)));

23 if (!a[1]) {
24 printf("Allocation failure 2 in matrix\n");

25 exit(1);

26 }
27 /* Initialize the pointers pointing to each row: */

28 for (i=2; i<=n;i++) a[i]=a[i-1]+n+1;

29 /* Save the beginning of the matrix in a[0]; the

30 rows will be interchanged, the values of a[i]

31 for 1<=i<=n may change: */

32 a[0]=a[1];

33 return a;

34 }
35

36 double *allocvector(int n)

37 {
38 double *b;

39 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

40 if (!b) {
41 printf("Allocation failure 1 in vector\n");

42 exit(1);

43 }
44 return b;

45 }

We will first discuss the function allocvector in lines 36–45. A vector of reals (of type double)
will be represented a by a block of n+ 1 reals pointed to by a pointer (called b on line 38); here n
is the number of unknowns and also the number of equations we are dealing with. The elements of
this matrix can be referred to as b[i] for 0 ≤ i ≤ n (they can also be referred to as *(b+i)). In line
40, it is tested whether !b is true, i.e., whether b is the NULL pointer, indicating that the memory
was not successfully allocated.

In lines 3–34 the function allocmatrix first allocates a block of n+1 pointers to reals (of the type
double) on line 16, and then a block of n(n+1) reals is allocated, and the address of the beginning
of this block is placed in the pointer a[1]. Then the pointers a[i] are initialized for 2 ≤ i ≤ n on
line 28 in such a way that each pointer a[i] will point to a block of n + 1 reals; these reals can
be invoked as a[i][j] for 0 ≤ j ≤ n; the element a[i][0] will have special uses (at times it will
contain the right-hand side of the equation, at other times it will contain the solution vector), and
the element a[i][j] for 1 ≤ i, j ≤ n will refer to the matrix element aij . Thus a[i] can be said
to refer to row i of the matrix; the interchange of row i and j can be handled by simply switching
the values of a[i] and a[j]. On line 32, the pointer a[0] is given the value of a[1]; thus a[0] will
also point to the beginning of the block of n(n+ 1) reals. This is important when deallocating this
block: the value of a[0] will not change, while that of a[1] may change when interchanging rows.

The file lufactor.c contains the functions doing the LU-factorization of the matrix A:

1 #include "gauss.h"

2
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3 void swap_pivot_row(double **a, int col, int n)

4 /* Scans the elements a[col][i] for col<=i<=n to find the

5 element c[col][pivi] with the largest absolute value,

6 and then the rows a[col] and a[pivi] are interchanged. */

7 {
8 double maxel, *rowptr;

9 int i,pivi;

10 maxel=absval(a[col][col]); pivi=col;

11 for (i=col+1;i<=n;i++) {
12 if ( absval(a[i][col])>maxel ) {
13 maxel=absval(a[i][col]); pivi=i;

14 }
15 }
16 if ( pivi !=col ) {
17 rowptr=a[col]; a[col]=a[pivi]; a[pivi]=rowptr;

18 }
19 }
20

21 void LUfactor(double **a, int n, int *success)

22 /* Uses partial pivoting */

23 {
24 const double assumedzero=1e-20;

25 double pivot, mult;

26 int i, j, k;

27 for (j=1;j<n;j++) {
28 swap_pivot_row(a, j, n); pivot=a[j][j];

29 if ( absval(pivot)<=assumedzero ) {
30 *success=0; return;

31 }
32 else *success=1;

33 for (i=j+1; i<=n; i++) {
34 mult = a[i][j] /= pivot;

35 for (k=j+1;k<=n;k++) a[i][k]-=mult*a[j][k];

36 }
37 }
38 }

In lines 3–19, the function swap_pivot_row is defined. The parameters of this function is the matrix
**a (described as a pointer of pointers to double, as explained above), the column col and the size
of the matrix n. In line 10, absval finds the absolute value of a number (as defined in line 5 of the
file gauss.h above). In lines 10–14 the element of the largest absolute value in or below the main
diagonal of column col found, and if this element is a[pivi][col] (pivi refers to pivoting i, rows
col and pivi are interchanged in lines 16–18. The interchange is performed simply by exchanging
the values of the pointers a[col] and a[pivi]. In the end, one can find out what interchanges have
been made simply by examining the values of the pointers a[i] for i with 1 ≤ i ≤ n.

In lines 21–38 to function LUfactor performs LU-factorization with partial pivoting of the matrix
given as parameter **a. The other parameters of this function are the size of the matrix n, and a
pointer to the integer *success; this will become true if LU-factorization was successfully performed.
The outer loop in lines 27–37 first places the pivot element in the main diagonal in line 28 by
interchanging appropriate rows. If no appropriate pivot element if found, the value of the variable
*success is changed to 0 (false) on line 30. In the loop in lines 33–45, row i of the matrix for
j = 1 ≤ i ≤ n is updated: In line 34, the element mij is calculated; mij will be stored in location
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a[i][j], that is, as element aij of the matrix; recall that i > j at this point. That is, for i > j, the
element aij will be replaced by the element mij of the matrix L. For i ≤ j, the element anewij of the
matrix U will replace the matrix element aij . The zero matrix elements (mij for i < j) and anewij

for i > 0) do not need to be stored. The elements mii are equal to 1, and these do not need to be
stored, either. Finally, in line 35, an appropriate multiple of row i is subtracted from row j, and the
inner loop ends on line 36.

The file lusolve.c contains the function needed to solve the equation once the LU-factorization
is given, and those needed for iterative improvement.

1 #include "gauss.h"

2

3 void LUsolve(double **a, int n, double *b)

4 {
5 int i, j;

6 /* We want to solve P^-1 LUx=b. First we calculate c=Pb.

7 The elements of c[i] will be stored in a[i][0], not used

8 in representing the matrix. */

9 for (i=1;i<=n;i++) a[i][0]=b[1+(a[i]-a[0])/(n+1)];

10 /* Here is why we preserved the beginning of the matrix

11 in a[0]. The quantity 1+(a[i]-a[1])/(n+1) gives

12 the original row index of what ended up as row i

13 after the interchanges. Next we calculate y=Ux=L^-1 c.

14 y will be stored the same place c was stored:

15 y[i] will be a[i][0]. */

16 for (i=2;i<=n;i++)

17 for (j=1;j<i;j++) a[i][0] -= a[i][j]*a[j][0];

18 /* Finally, we calculate x=U^-1 y. We will put x in

19 the same place as y: x[i]=a[i][0]. */

20 a[n][0] /= a[n][n];

21 for (i=n-1;i>=1;i--) {
22 for (j=i+1;j<=n;j++) a[i][0] -= a[i][j]*a[j][0];

23 a[i][0] /= a[i][i];

24 }
25 }
26

27 void backsubst(double **c, int n, double *b, double *x,

28 double *deltab)

29 {
30 long double longdelta;

31 int i,j;

32 for (i=1;i<=n;i++) {
33 longdelta=b[i];

34 for (j=1;j<=n;j++) longdelta -= c[i][j]*x[j];

35 deltab[i]=longdelta;

36 }
37 }
38

39 int improve(double **a, int n, double **c, double *b,

40 double *x, double tol, int maxits, int *success)

41 {
42 const double assumedzero=1e-20;
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43 int i, j;

44 double maxx, maxdeltax, *deltab, rel_error;

45 deltab=allocvector(n);

46 for (i=1;i<=n;i++) {
47 x[i]=0.; deltab[i]=b[i];

48 }
49 *success=0;

50 /* If the process is successful, *success will be

51 changed to 1. */

52 for (j=1; j==1 || (j<=maxits);j++) {
53 LUsolve(a, n, deltab);

54 maxx=0.; maxdeltax=0.;

55 for (i=1;i<=n;i++) {
56 x[i] += a[i][0];

57 if ( absval(x[i])>maxx ) maxx=absval(x[i]);

58 if ( absval(a[i][0])>maxdeltax ) maxdeltax=absval(a[i][0]);

59 }
60 rel_error=maxdeltax/(maxx+assumedzero);

61 if ( j==2 && rel_error > 0.5 ) {
62 printf("Iterative refinement will not converge\n");

63 break;

64 /* Cannot return from here since memory must be freed */

65 }
66 if ( rel_error <= tol ) {
67 *success=1;

68 break;

69 }
70 backsubst(c, n, b, x, deltab);

71 }
72 free(deltab);

73 return j;

74 }
The function LUsolve is given in lines 3–25. The parameters for this function are the matrix **a,
the size n of this matrix, and the vector *b of the right-hand side of the equation. When this function
is called, the matrix **a should contain the LU-factorization of the original coefficient matrix; i.e.,
in the lower half, the matrix L is stored, while in the upper half the matrix U is stored; the details
were explained above. In line 9, the elements of the vector *b are permuted the way the rows of the
matrix were permuted, and they are placed in column zero of the matrix **a; this column is not used
to store matrix elements. The comment in lines 10–14 explains how this permutation is preserved in
the values of the pointers a[i]. In lines 16–17, the vector L−1Pb is calculated (by doing the same
transformation to the elements of the vector *b as was done to the rows of the matrix); the elements
of this vector will replace the elements of the vector Pb in column zero of the matrix **a. Finally,
backward substitution is performed in lines 20–24. Again, column zero of the matrix is used to store
the solution vector x of the system of equations; when the value of xi is placed in location a[i][0],
this location is no longer needed to store the corresponding element of the vector b (or, rather, the
vector L−1Pb, since this vector replaced the elements of the vector Pb originally placed here).

In line 27 the function backsubst substitutes the solutions of the system of equation into the
original equation; the coefficients of the original equation are stored in the matrix **c (the original
coefficient matrix needed to be copied to another location, since this matrix was overwritten when
LU-factorization was performed). The other parameters of the function backsubst are the size
of the matrix n, the right-hand side *b of the equation, the solution vector *x of the equation,
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and *deltab, the difference the actual right-hand side and the one calculated by substituting the
solutions into the equation; that is the vector δb obtained as δb = b − Aδx. The important point
here is that the the components of this vector are calculated with extended precision; that is, the
identifier longdelta is declared long double on line 30, and this the values obtained during the
calculation of the components of the vector δb are accumulated in longdelta.

Iterative improvement is performed by the function improve in lines 39–74. The parameters of
this function are **a, which at this time holds the LU-factorization on the coefficient matrix, the size
of the matrix n, the original coefficient matrix **c, the original right-hand side *b, a vector *x for
the solution vector (eventually returned to the calling program), the maximum allowed number of
iterations maxits, and the integer *success indicating success or failure of iterative improvement. In
line 42, the constant assumedzero is defined to be 10−20, to use to test when floating point numbers
are too close to usefully distinguish. In line 45, the function allocvector (discussed above) is called
to allocate memory to the vector deltab, which stands for δb; on line 72, this memory is freed.
In lines 46–48, the vector x is initially set to 0, while δb made equal to b, the original right-hand
side of the equation. In line 49, *success is given the value 0 (false), and it will be explicitly
changed to 1 later if iterative improvement is successful. The loop in lines 52–71 does repeated
iterative improvement. Whatever the value of maxits, the maximum number of iterations, this loop
is performed at least once, to calculate the solution of the system of equations; iterative improvement
is done for values of j > 1. On line 54, LUsolve is called to solve the system of equations with δb
as right-hand side (which is b for j = 1), and then, in lines 55-59 the new value of the vector x

(the current solution) is calculated: The function LU-solve stored δx, the solution of the equation
Aδx = δb in column zero of the matrix A on line 53. On line 56, the new value x+δx is given to the
vector x. Then the l∞ norm115 maxx= ‖x‖ of the vector x, and the l∞ norm maxdeltax ‖δx‖ of δx
is calculated. In line 61, the relative error of the solution is calculated. This is done by taking the
ratio ‖δx‖/‖x‖, but the constant assumedzero is added to the denominator to avoid a floating-point
exception caused by dividing by 0. In lines 61 it is checked whether the initial relative error (for
j = 2, when the first values of x and δx have been calculated116) is greater than 1/2. If it is, the
relative error is too large, iterative improvement is unlikely to be useful, and it is abandoned.117 If
the relative error is less than tol, the integer *success is given value 1 to indicate the success of
the calculation, and the loop in lines 52–73 is terminated. In line 72, the memory used for the vector
δb is freed, and the number of steps used for iterative improvement is returned on line 73.

1 #include "gauss.h"

2

3 main()

4 {
5 /* This program reads in the coefficient matrix

6 of a system of linear equations. The first

7 entry is the required tolerance, and the

8 second entry is n, the number of unknowns.

9 The rest of the entries are the coefficients

10 and the right-hand sides; there must be n(n+1)

11 of these. The second entry must be an unsigned

12 integer, the other entries can be integers or

13 reals. */

14 double **a, *b, *x, **c, tol, temp;

15 int i, j, n, readerror=0, success;

115The l∞ norm of a vector is the maximum of the absolute values of its components. The l∞ norm of a vector v
is usually denoted as ‖v‖∞; when it is clear from the context what type of norm is taken, one may simply write ‖v‖
instead.

116For j = 1 at this point both x and δx are equal to the initial solution of the equation Ax = b
117The inequality ‖δx/x‖ > 1/2 means roughly that even the first significant binary digit of ‖x‖ is wrong.
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16 char s[25];

17 FILE *coefffile;

18 coefffile=fopen("coeffs", "r");

19 fscanf(coefffile, "%s", s);

20 tol=strtod(s,NULL);

21 printf("Tolerance for relative L-infinity"

22 " error used: %s\n", s);

23 fscanf(coefffile, "%u", &n);

24 /* Create pointers to point to the rows of the matrix: */

25 a=allocmatrix(n);

26 /* Allocate right-hand side */

27 b=allocvector(n);

28 for (i=1;i<=n;i++) {
29 if ( readerror ) break;

30 for (j=1;j<=n+1;j++) {
31 if (fscanf(coefffile, "%s", s)==EOF) {
32 readerror=1;

33 printf("Not enough coefficients\n");

34 printf("i=%u j=%u\n", i, j);

35 break;

36 }
37 if ( j<=n ) {
38 a[i][j]=strtod(s,NULL);

39 }
40 else b[i]=strtod(s,NULL);

41 }
42 }
43 fclose(coefffile);

44 if ( readerror ) printf("Not enough data\n");

45 else {
46 /* duplicate coefficient matrix */

47 c=allocmatrix(n);

48 for (i=1;i<=n;i++)

49 for (j=1;j<=n;j++) c[i][j]=a[i][j];

50 /* allocate vector for iterative improvement of solution */

51 x=allocvector(n);

52 LUfactor(a, n, &success);

53 /* Call improve here */

54 if ( success ) j=improve(a,n,c,b,x,tol,100,&success);

55 if ( success ) {
56 printf("%u iterations were used to find"

57 " the solution.\n", j);

58 printf("The solution is:\n");

59 for (i=1;i<=n;i++)

60 printf("x[%3i]=%16.12f\n",i,x[i]);

61 }
62 else

63 printf("The solution could not be determined\n");

64 /* must free c[0], c, and x inside this else statement,

65 since if this statement is not entered, space is not

66 reserved for x and c */
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67 free(c[0]);

68 free(c);

69 free(x);

70 }
71 /* We must free a[0] and not a[1], since a[1] may

72 have been changed. */

73 free(a[0]);

74 /* free matrix */

75 free(a);

76 free(b);

77 }
The file main.c has the program reading the input data: the tolerance tol, value of n, the coefficient
matrix, and the right-hand side of the equation, and then calls the programs to solve the equation.
The input data are contained in the file coeffs: the first entry is tol, the second one is n, and
then coefficients and the right-hand sides of the equations. The data can be separated by any kind
of white space (i.e. spaces, newlines, tabs; it is helpful to write an equation an its right-hand side
on a single line, but this is not required). On line 18, the file coeffs is opened, and tol is read in
lines 19–20 (it is read as a character string on line 18, and it is converted to double on line 20). On
line 25, memory is reserved for the coefficient matrix, and on line 27, this is done for the right-hand
side vector of the equation. the coefficient matrix and the right-hand side is read in the loop in lines
28–42 (as character strings, then converted to double and placed in the correct location in lines 38
and 40). The integer readerror indicates whether there is a sufficient number of input data in the
file coeffs. In line 43, the file coeffs is closed.

If on line 44 one finds that there was a reading error, there is not much one can do other than
print that there are “not enough data.” Otherwise, on line 47 one allocates space for a copy **c

of the coefficient matrix, and and in lines 48–49 the coefficient matrix is duplicated. In line 51,
memory is allocated for the solution vector *x. On line 52, the function LUfactor is called, and if
LU-factorization is successful, then improve is called to perform iterative improvement on line 54;
note that the parameter 100 indicates that at most 100 steps of iterative improvement are allowed.
If this is done successfully, the solution is printed out in lines 55–61, otherwise a message saying that
“the solution could not be determined” is printed on line 63. On line 67–69, memory reserved for
**c and *x is freed. This must be done before the end of the current else statement, since memory
for these variables was reserved in the current block. Finally, in lines 73–76, memory allocated for
the matrix **a and the vector *b is freed.

The above program was called with the following input file coeffs:

1 8.308315e-17

2 10

3 2 3 5 -2 5 3 -4 -2 1 2 -3

4 1 4 -2 -1 3 -2 1 3 4 1 2

5 3 -1 2 1 3 -1 2 3 2 -1 -1

6 9 -2 -1 -1 4 2 3 -1 1 4 8

7 -1 2 -1 2 -1 3 -1 -3 -4 2 -3

8 -4 -5 2 3 1 1 2 3 -1 -1 -4

9 -1 -4 -2 3 4 1 2 -4 -3 -8 3

10 -9 -4 -3 -1 9 -2 -2 -3 4 8 2

11 -1 -2 9 8 -7 -8 2 -4 3 1 5

12 8 -7 7 0 3 -5 3 -2 4 9 7

Note that the first column of numbers 1–12 here are line numbers, as usual, and not part of the
file. Line 1 contains the tolerance; after some experimentation, tolerance was set nearly as low as
possible without causing iterative improvement to fail. Line 2 contains the value of n, and each of
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the rest of the lines contain the coefficients of one of the ten equations and its right-hand side. With
this input file, we obtain the following output:

1 Tolerance for relative L-infinity error used: 8.308315e-17

2 3 iterations were used to find the solution.

3 The solution is:

4 x[ 1]= -0.270477452322

5 x[ 2]= 0.126721910153

6 x[ 3]= 0.014536223326

7 x[ 4]= -1.039356801309

8 x[ 5]= -0.542881432027

9 x[ 6]= 0.900056527510

10 x[ 7]= 2.429714763221

11 x[ 8]= -1.669529286724

12 x[ 9]= 1.731205614034

13 x[ 10]= -0.163886551028

Problems

1. Find the LU-factorization of the matrix

A =





2 3 1
4 8 5
6 13 12



 .

Do not make any row interchanges.

Solution. Writing A = (aij) and L = (lij), we have l21 = a21/a11 = 4/2 = 2 and we have

l31 = a31/a11 = 6/2 = 3. We obtain the matrix A(2) by subtracting l21 = 2 times the first row from
the second row, and l21 = 3 times the first row from the third row:

A(2) =





2 3 1
0 2 3
0 4 9



 .

Writing A(2) = a
(2)
ij , we have l32 = a

(2)
32 /a

(2)
22 = 4/2 = 2. We obtain the matrix U = A(3) by

subtracting the l32 = 2 times the second row from the third row in he matrix A(2):

U = A(3) =





2 3 1
0 2 3
0 0 3



 .

The matrix L can be written by noting that the elements of L in the main diagonal are all 1’s, i.e.,
lii = 1 for i = 1, 2, 3, and the elements in the upper triangle of L are zero, i.e., lij = 0 whenever
1 ≤ i < j ≤ 3. The values of the remaining elements of L (l21 = 2, l31 = 3, and l32 = 2) have been
given above. That is, we have

L =





1 0 0
2 1 0
3 2 1



 .

2. Find the LU-factorization of the matrix

A =





3 2 1
9 7 5
6 6 9



 .
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Do not make any row interchanges.

Solution. Writing A = (aij) and L = (lij), we have l21 = a21/a11 = 9/3 = 3 and we have

l31 = a31/a11 = 6/3 = 2. We obtain the matrix A(2) by subtracting l21 = 3 times the first row from
the second row, and l31 = 2 times the first row from the third row:

A(2) =





3 2 1
0 1 2
0 2 7



 .

Writing A(2) = a
(2)
ij , we have l32 = a

(2)
32 /a

(2)
22 = 2/1 = 2. We obtain the matrix U = A(3) by

subtracting the l32 times the second row from the third row in he matrix A(2):

U = A(3) =





3 2 1
0 1 2
0 0 3



 .

The matrix L can be written by noting that the elements of L in the main diagonal are all 1’s, i.e.,
lii = 1 for i = 1, 2, 3, and the elements in the upper triangle of L are zero, i.e., lij = 0 whenever
1 ≤ i < j ≤ 3. The values of the remaining elements of L (l21 = 2, l31 = 3, and l32 = 2) have been
given above. That is, we have

L =





1 0 0
3 1 0
2 2 1



 .

3. Solve the equation





1 0 0
3 1 0
2 3 1









3 1 1
0 4 1
0 0 2









x1
x2
x3



 =





10
37
47



 .

Solution. Write the above equation as LUx = b, and write y = Ux. Then this equation can be
written as Ly = b, that is





1 0 0
3 1 0
2 3 1









y1
y2
y3



 =





10
37
47



 .

This equation can be written as

y1 =10

3y1 + y2 =37

2y1 + 3y2 + y3 =47

The solution of these equations is straightforward (the method for solving them is called forward
substitution). From the first equation, we have y1 = 10. Then, from the second equation we have
y2 = 37−y1 = 37−3·10 = 7. Finally, from the third equation y3 = 47−2y1−3y2 = 47−2·10−3·7 = 6.
That is, y = (10, 7, 6)T . Thus, the equation Ux = y can be written as





3 1 1
0 4 1
0 0 2









x1
x2
x3



 =





10
7
6



 ,
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or else

3x1 + x2 + x3 =10

4x2 + x3 =7

2x3 =6

This can easily be solved by what is called back substitution. From the third equation, we have
x3 = 6/2 = 3. Substituting this into the second equation, we have

x2 =
7− x3

4
=

7− 3

4
= 1.

Finally, substituting these into the second equation, we obtain

x1 =
10− x2 − x3

3
=

10− 3− 1

3
= 2.

That is, we have
x = (2, 1, 3)T .

4. Solve the equation




1 0 0
2 1 0
1 3 1









2 1 2
0 1 2
0 0 1









x1
x2
x3



 =





11
27
28



 .

Solution. Write the above equation as LUx = b, and write y = Ux. Then this equation can be
written as Ly = b, that is





1 0 0
2 1 0
1 3 1









y1
y2
y3



 =





11
27
28



 .

This equation can be written as

y1 =11

2y1 + y2 =27

y1 + 3y2 + y3 =28

The solution of these equations is straightforward (the method for solving them is called forward
substitution). From the first equation, we have y1 = 11. Then, from the second equation we have
y2 = 27−2y1 = 27−2·11 = 5. Finally, from the third equation y3 = 28−y1−3y2 = 28−·11−3·5 = 2.
That is, y = (11, 5, 2)T . Thus, the equation Ux = y can be written as





2 1 2
0 1 2
0 0 1









x1
x2
x3



 =





11
5
2



 ,

or else

2x1 + x2 + 2x3 =11

x2 + 2x3 =5

x3 =2
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This can easily be solved by what is called back substitution. From the third equation, we have
x3 = 2. Substituting this into the second equation, we have

x2 = 5− 2x3 = 5− 4 = 1.

Finally, substituting these into the second equation, we obtain

x1 =
11− x2 − 2x3

2
=

11− 1− 4

2
= 3.

That is, we have

x = (3, 1, 2)T .

5. Given

A = LU =





1 0 0
2 1 0
1 3 1









2 6 4
0 4 8
0 0 3



 ,

write A as L′U ′ such that L′ is a lower triangular matrix and U ′ is an upper triangular matrix such
that the elements in the main diagonal of U ′ are all 1’s.

Solution. Write D for the diagonal matrix whose diagonal elements are the same as those of U .
That is,

D =





2 0 0
0 4 0
0 0 3



 .

We have A = LU = (LD)(D−1U). Note that the inverse of a diagonal matrix is a diagonal matrix
formed by the reciprocal of the elements in the diagonal:

D−1 =





1/2 0 0
0 1/4 0
0 0 1/3



 .

Now, we have

LD =





1 0 0
2 1 0
1 3 1









2 0 0
0 4 0
0 0 3



 =





2 0 0
4 4 0
2 12 3



 .

Furthermore,

D−1U =





1/2 0 0
0 1/4 0
0 0 1/3









2 6 4
0 4 8
0 0 3



 =





1 3 2
0 1 2
0 0 1



 .

Thus,

A =





2 0 0
4 4 0
2 12 3









1 3 2
0 1 2
0 0 1



 .

6. Briefly explain how iterative improvement works.
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Solution. In iterative improvement, one takes the calculated solution x(0) of the equation Ax = b,
and then one calculates the difference

δb(1) = b−Ax(0).

The inner products used in the calculation of the components of this vector should be accumulated
in a location with double or extended precision; only one scalar variable needs to be declared for
this (e.g., one can use double in C if one uses float for the rest of the calculation, or one can
use long double if one uses double for the rest of the calculation). One then solves the equation
Aδx(1) = δb(1), and takes x(1) = x(0) + δx(1) as an improved approximation of the solution of the
equation. This process can be repeated, by calculating

δb(2) = b−Ax(1),

and then solving the equation Aδx(2) = δb(2), and so on.

33. THE DOOLITTLE AND CROUT ALGORITHMS. EQUILIBRATION

The Doolittle algorithm. The Doolittle algorithm is a slight modification of Gaussian elimi-
nation. In Gaussian elimination, one starts with the system of equations Ax = b, where A = (aij)
is an n × n matrix, and x = (x1, x2, . . . , xn)

T and b = (b1, b2, . . . , bn)
T are column vectors. Then

one determines a factoring LU of the matrix A, where U is an upper triangular matrix and L is a
lower triangular unit matrix, i.e., a lower triangular matrix with all 1s in the diagonal. (Similarly,
an upper triangular matrix with all 1s in the diagonal will be called an upper triangular unit ma-
trix.) One determines the elements of the matrices U and L row by row, at the ith step for making

a
(i+1)
kj = 0 for k > i of the elements of the matrix A(i+1) (see equation (3) of the section on Gaussian

elimination).
One can change the order of calculations by doing the calculations column by column. That is,

instead of calculating the elements of the matrices A(1), A(2), . . . , A(n), one can directly calculate
the elements of the matrix L = A(new) by doing the calculations in different order. Namely, first one
calculates the first column of L and the first row U , column of L and the second row of U , and so
on, by using the formulas derived above. In particular, one takes

u1s = a1s for s ≥ 1,

and

ls1 =
as1
u11

for s > 1.

For i > 1 one calculates

(1) uis = ais −
i−1
∑

k=1

likuks for s ≥ i,

and

(2) lsi =
asi −

∑i−1
k=1 lskuki
uii

for s > i.
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If one uses the last two formulas for i = 2, 3, . . . , in turn, the elements on the right-hand side have
already been calculated by the time one needs them.118

The point of doing the calculations in this order is that one can use a location with extended
precision to calculate the partial sums of the right-hand sides of the formulas for uis an lis, in the
same way as this was done in the function backsubst in the implementation of iterative improvement
in the file lusolve.c of the section of Gaussian elimination.

One gets into trouble with this calculation when one wants to implement partial pivoting, since
when calculating uss, one may have to interchange the equations first, to see which row will give the
largest absolute value of uss. The way to get around this is to tentatively interchange row s with
each of the rows s+ 1, s+ 2, . . . , and keep the interchange that gives the largest absolute value for
uss. The downside of this is that uss needs to be calculated for each of the tentative interchanges,
and later the results of all these calculations will be discarded except the one involving the actual
interchange made. This waste is avoided in the

Crout algorithm. We will describe the Crout algorithm with partial pivoting and implicit
equilibration. Partial pivoting does not work well if the equations are “differently scaled,” that is,
if the coefficients in some of the equations have sizes very different from the coefficients in some
other equations. To avoid this, before doing any (variant of) Gaussian elimination, one may want to
rescale the equations by dividing each equation by its coefficient of maximum absolute value. Doing
this is called equilibration. This, however, is very costly, since it involves n2 divisions. Instead of
doing equilibration, one can simulate its effects by doing what is called implicit equilibration by first
calculating

(3) di = max{|aij | : 1 ≤ j ≤ n} for i with 1 ≤ i ≤ n.

We will describe how to simulate equilibration in the context of the Crout algorithm. In the Crout
algorithm, one factors the matrix A as P−1L′U ′, where P is a permutation matrix, L′ is a lower trian-
gular matrix, and U ′ is an upper triangular unit matrix, as opposed to the factorization A=P−1LU
obtained in Gaussian elimination, where L is an lower triangular unit matrix, and U is an upper tri-
angular matrix. Given the factorization A = P−1LU , one can obtain the factorization A = P−1L′U ′

as was done in Problem 5 of the section on Gaussian elimination, but the point here is to obtain the
latter factorization directly. The equations can be obtained by combining the equations of Gaussian
elimination with the method used in Problem 5 just mentioned.

As the first step, we put
l′s1 = as1 for s ≥ 1,

and pick the pivot row as the row s for which

∣

∣

∣

∣

l′s1
ds

∣

∣

∣

∣

for s ≥ 1

is largest, and then interchange row 1 and s. Then change the notation appropriately to reflect this
row interchange (so that elements the new first row, for example, are again denoted by a1s), and
write

u′1s =
a1s
l′11

for s > 1.

For i > 1, write

(4) l′si = asi −
i−1
∑

k=1

l′sku
′
ki for s ≥ i.

118The starting equations above are just equations (1) and (2) with i = 1, when these equations contain an empty
sum. So there was no need to state the starting equations; perhaps stating them makes the explanation clearer.
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Then select the row s such that
∣

∣

∣

∣

l′si
ds

∣

∣

∣

∣

for s ≥ i

is the largest as the pivot row. Interchange row s and row i, and change the notation to reflect the
row interchange. Then calculate

(5) u′is =
ais −

∑i−1
k=1 l

′
iku

′
ks

l′ii
for s > i.

The elements whose calculation is not indicated here are not stored (these are the above diagonal
elements of the matrix L′ and the below diagonal elements of U ′, all of these being 0, and the
diagonal elements of U ′, all of these being 1).119

The main point of the Crout algorithm is that finding the pivot row does not involve tentative
calculations, as it would in the Doolittle algorithm. If one does not want to do implicit equilibration,
then instead of (3) one takes di = 1 for all i. Equations (4) and (5) allow one first to store the partial
products in a location with extended precision, and then to transfer the value to the appropriate
location in the coefficient matrix (at this point, some precision is lost, but the reason to use extended
precision was to control the accumulation of roundoff errors in the calculation of the matrix element
in question).

So, what is the real reason that partial pivoting works smoothly in the Crout algorithm, but
requires extra calculations in the Doolittle algorithm? To understand this, one needs to take another
look at Problem 5 in the section on Gaussian elimination. It is seen in this problem that when one
converts an LU factorization LU with L being an lower diagonal unit matrix into and a factorization
L′U ′ with U ′ an upper diagonal unit matrix that the diagonal elements of L′ are the same as those
of U . When doing Gaussian elimination, these diagonal elements are the elements that turned out to
be pivot elements. At the ith step, the pivot element is chosen from among the elements of column
i of the matrix A(i) on or below the diagonal, and only the pivot element among these occurs in
the matrix U obtained at the end of Gaussian elimination, the other elements were changed in the
continued course of the algorithms. On the other hand, these elements are the same as the elements
of the ith column of the matrix L′ on or below the diagonal; these elements are calculated at the ith
step of the Crout algorithm, and are available when one needs to determine the pivot row. In the
Doolittle algorithm, these elements are never available, since only the final elements of the matrix
are calculated naturally, so only the element actually chosen as pivot element is calculated naturally.
The other elements of the ith column at the ith step need to be calculated tentatively to find the
pivot element, and then these calculations will be discarded after the pivot element is found.

34. DETERMINANTS

Cyclic permutations. A permutation is a one-to-one mapping of a set onto itself. A cyclic
permutation, or a cycle, or a k-cycle, where k ≥ 2 is an integer, is a permutation σ where for some
elements i1, i2, . . . , ik, we have σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) = ik, σ(ik) = i1. A standard
notation for this permutation is σ = (i1i2 . . . ik). One often considers this σ as being a permutation
of some set M that includes the set {i1, i2, . . . , ik} such that σ(i) = i for any element of M that
is not in this set. The two-cycle (ii) is the identity mapping. Such a two-cycle is not a proper
two-cycle, a proper two-cycle being a two-cycle (ij) for i and j distinct. A proper two-cycle is also
called a transposition.

119Similarly as above in case of the Doolittle algorithm, the starting equations are just equations (4) and (5) with
i = 1.



34. Determinants 153

Lemma. Every permutation of a finite set can be written as a product of transpositions.

Proof. It is enough to consider permutations of the set Mn
def
= {1, 2, . . . , n}. We will use

induction on n. The Lemma is certainly true for n = 1, in which case every permutation of Mn

(the identity mapping being the only permutation) can be written as a product of zero number of
transpositions (the empty product of mappings will be considered to be the identity mapping). Let
σ be a permutation of the set Mn, and assume σ(n) = i. Then

(in)σ(n) = n

(since i = σ(n) and (in)(i) = n). So the permutation ρ = (in)σ restricted to the set Mn−1 is a
permutation of this latter set. By induction, it can be written as a product τ1 . . . τm of transpositions,
and so

σ = (in)−1ρ = (in)ρ = (in)τ1 . . . τm,

where for the second equality, one needs to note that, clearly, the inverse (in)−1 of (in) is (in)
itself. �

One can use the idea of the proof of the above Lemma, or else one can use direct calculation, to
show that if i, j, and k are distinct elements then

(ijk) = (ik)(ij).

For example, (ij)(j) = i and (ik)(i) = k, and so (ik)(ij)(j) = k, which agrees with the equation
(ijk)(j) = k.

Even and odd permutations. We start with the following

Lemma. The identity mapping cannot be written as a product of an odd number of transpositions.

Proof. We will assume that the underlying set of the permutations is Mn, and we will use
induction on n. For n = 1 the statement is certainly true; namely, there are no transpositions on
M1, so the identity mapping can be represented only as a product of a zero number of transpositions.
According to the last displayed equation, if i, j, and n are distinct elements of Mn, we have (nij) =
(nj)(ni), and we also have (nij) = (ijn) = (in)(ij) = (ni)(ij), and so

(nj)(ni) = (ni)(ij).

Moreover, in a similar way, (nij) = (jni) = (ji)(jn) = (ij)(nj). Comparing this with one of the
expressions equal to (nij) above we obtain

(ij)(nj) = (ni)(ij).

Further, we clearly have
(ni)(ni) = ι,

where ι (the Greek letter iota) stands for the identity mapping (often represented by the empty
product. Finally, if i, j, k, n are distinct, then we have

(ij)(nk) = (nk)(ij).

Using these four displayed equation, all transpositions containing n in the product can be moved
all the way to the left in such a way that in the end either no transposition will contain n, or at
most one transposition containing n will remain all the way to the left. Each application of these
identities changes the number of transpositions in the product by an even number; in fact, the third
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of these identities decreases the the number of transpositions by two, and the others do no change
the number of transpositions.

A product σ = (ni)τ1 . . . τm, where i is distinct from n, and the transpositions τ1, . . . τm do not
contain n cannot be the identity mapping (since σ(n) = i), so the only possibility that remains is
that we end up with a product of transpositions representing the identity mapping where none of
the transpositions contain n. Then we can remove n from the underlying set; since, by the induction
hypothesis, the identity mapping on Mn−1 can only be represented as a product of an even number
of transpositions, we must have started with an even number of transpositions to begin with.

Corollary. A permutation cannot be written as a product both of an even number of transpo-
sitions and of an odd number of transpositions.

Proof. Assume that for a permutation σ we have σ = τ1 . . . τk and σ = ρ1 . . . ρl where k is even,
l is odd, and τ1, . . . , τk, and ρ1, . . . , ρl, are transpositions. The the identity mapping can be written
as a product

ι = σσ−1 = τ1 . . . τk(ρ1 . . . ρl)
−1 = τ1 . . . τk(ρl)

−1 . . . (ρ1)
−1 = τ1 . . . τkρl . . . ρ1.

Since the right-hand side contains an odd number of transpositions, this is impossible according to
the last Lemma. �

A permutation that can be written as a product of an even number of transpositions is called an
even permutation, and a permutation that can be written as a product of an odd number of trans-
positions is called an odd permutation. The function sgn (sign, or Latin signum) on permutations
of a finite set is defined as sgn(σ) = 1 if σ is an even permutation, and sgn(σ) = −1 if σ is an
odd permutation, Often, it is expedient to extend the signum function to mappings of a finite set
into itself that are not permutations (i.e, that are not one-to-one) by putting sgn(σ) = 0 if σ is not
one-to-one.

The distributive rule. Let (aij) be an n×m matrix. Then

n
∏

i=1

m
∑

j=1

aij =
∑

σ

n
∏

i=1

aiσ(i),

where σ runs over all mappings of the set Mn = {1, 2, . . . , n} into the set Mn = {1, 2, . . . ,m}.
The left-hand side represent a product of sums. The right-hand side multiplies out this product by
taking one term out of each of these sums, and adding up all the products that can be so formed.
The equality of these two sides is obtained by the distributivity of multiplication over addition. For
example, for m = n = 2, the above equation says that

(a11 + a12)(a21 + a22) = a1σ1(1)a2σ1(2) + a1σ2(1)a2σ2(2) + a1σ3(1)a2σ3(2) + a1σ4(1)a2σ4(2),

where σ1(1) = 1, σ1(2) = 1, σ2(1) = 1, σ2(2) = 2, σ3(1) = 2, σ3(2) = 1, σ4(1) = 2, σ4(2) = 2. We
will use this rule with m = n below.

Determinants. The determinant detA of an n× n matrix A = (aij) is defined as

detA =
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i),

where σ runs over all mappings (not necessarily one-to-one) of the set Mn = {1, 2, . . . , n} into itself.
The above formula is called the Leibniz formula for determinants. Sometimes one writes det(A)
instead of detA. Since sgn(σ) = 0 unless σ is a permutation, one may say instead that σ runs
through all permutations of the set of the set Mn = {1, 2, . . . , n}. However, for some considerations
(e.g., for the application of the distributive rule above) it may be expedient to say that σ runs
through all mappings, rather than just permutations.
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Multiplications of determinants. The product of two determinants of the same size is the
determinant of the product matrix; that is:

Lemma. Let A = (aij) and B = (bij) be two n× n matrices. Then

det(AB) = det(A) det(B).

Proof. With σ and ρ running over all permutations of Mn, we have

det(A) det(B) =
∑

σ,ρ

sgn(σ) sgn(ρ)

( n
∏

i=1

aiσ(i)

)( n
∏

i=1

biρ(i)

)

=
∑

σ,ρ

sgn(ρ) sgn(σ)

( n
∏

i=1

aiσ(i)

)( n
∏

i=1

bσ(i)ρσ(i)

)

=
∑

σ,ρ

sgn(ρσ)

n
∏

i=1

aiσ(i)bσ(i)ρσ(i)

On the right-hand side of the second equality, the product
∏n

i=1 bσ(i)ρσ(i) is just a rearrangement

of the product
∏n

i=1 biρ(i), since σ is a one-to-one mapping. The third equality takes into account
that sgn(ρ) sgn(σ) = sgn(ρσ) (since, if ρ can be written as the product of k transpositions and σ as
the product of l transpositions, ρσ can be written as the product of k + l transpositions). Writing
ρσ = π, the permutations π and σ uniquely determine ρ, so the right-hand side above can be written
as

∑

σ,π

sgn(π)
n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

σ

∑

π

sgn(π)
n
∏

i=1

aiσ(i)bσ(i)π(i).

Here σ and π run over all permutations of Mn. Now we want to change our point of view in that
we want to allow σ to run over all mappings of Mn into itself on the right-hand side, while we still
restrict π to permutations.120 To show that this is possible, we will show that the inner sum is zero
whenever σ is not a permutation. In fact, assume that for some distinct k and l in Mn we have
σ(k) = σ(l). Then, denoting by (kl) the transposition of k and l, the permutation π(kl) will run
over all permutations of Mn as π runs over all permutations of Mn. Hence, the first equality next
is obvious:

∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

π

sgn(π(kl))

n
∏

i=1

aiσ(i)bσ(i)π(kl)(i)

= −
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(kl)(i) = −
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i).

The second equality expresses the fact that sgn(π(kl)) = − sgn(π), and the third equality expresses
the fact that σ(k) = σ(l), and the equation just reflects the interchange of the factors corresponding
to i = k and i = l in the product. Rearranging this equation, it follows that

2
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) = 0,

and so
∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) = 0,

120One might ask why did we not extend the range of σ to all mappings earlier, when this would have been easy

since we had sgn(σ) in the expression, which is zero if σ is not one-to-one. The answer is that we wanted to make
sure that π = ρσ is a permutation, and if σ is not one-to-one then π = ρσ is not one-to-one, either.
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as we wanted to show.121

Therefore, in the last sum expressing det(A) det(B) one can allow σ to run over all mappings of
Mn into itself, and not just over permutations (while π will still run over all permutations). We
have

det(A) det(B) =
∑

σ

∑

π

sgn(π)

n
∏

i=1

aiσ(i)bσ(i)π(i) =
∑

π

sgn(π)
∑

σ

n
∏

i=1

aiσ(i)bσ(i)π(i)

=
∑

π

sgn(π)

n
∏

i=1

n
∑

k=1

aikbkπ(i) = det

( n
∑

k=1

aikbkj

)

i,j

= det(AB);

the third equality follows by the distributive rule mentioned above (with m = n), and the last
equality holds in view of the definition of the product matrix AB. �

Simple properties of determinants. For a matrix A, detA = detAT , where AT denotes the
transpose of A. Indeed, if A = (aij) then, with σ running over all permutations of Mn, we have

detAT =
∑

σ

sgn(σ)

n
∏

i=1

aσ(i)i =
∑

σ

sgn(σ)

n
∏

i=1

aiσ−1(i) =
∑

σ

sgn(σ−1)

n
∏

i=1

aiσ−1(i)

=
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i) = detA;

here the second equality represents a change in the order in of the factors in the product, the third
equality is based on the equality sgn(σ) = sgn(σ−1), and the fourth equality is obtained by replacing
σ−1 with σ, since σ−1 runs over all permutations of Mn, just as σ does.

If one interchanges two columns of a determinant, the value determinant gets multiplied by −1.
Formally, if k, l ∈Mn are distinct, then det(aij)i,j = − det(ai (kl)(j))i,j , where, as usual, (kj) denotes
a transposition. Indeed, with σ running over all permutations of Mn, we have

det(ai (kl)(j))i,j =
∑

σ

sgn(σ)

n
∏

i=1

ai σ(kl)(i) = −
∑

σ

sgn(σ(kl))

n
∏

i=1

ai σ(kl)(i)

= −
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i) = − detA;

the second equality holds, since sgn(σ(kl)) = − sgn(σ), and the third equality is obtained by replacing
σ(kl) by σ, since σ(kl) runs over all permutations of Mn, just as σ does. Of course, since detAT =
detA, a similar statement can be made when one interchanges rows.

If two columns of A are identical, then detA = 0. Indeed, by interchanging the identical columns,
one can conclude that detA = − detA.122

If we multiply a row of a determinant by a number c, then the determinant gets multiplied by c.
Formally: if A = (aij) B = (bij), and for some k ∈ Mn and some number c, we have bij = aij if

121The theory of determinants can be developed for arbitrary rings. For rings of characteristic 2 (in which one can
have a+ a = 0 while a 6= 0 – in fact, a+ a = 0 holds for every a), the last step in the argument is not correct. Is is,
however, easy to change the argument in a way that it will also work for rings of characteristic 2. To this end, one

needs to split up the summation for π into two parts such that in the first part π runs over all even permutations;
then π(kl) will run over all odd permutations, and then one needs to show that these two parts of the sum cancel
each other.

122This argument does not work for rings of characteristic 2. In order to establish the result for this case as

well, one needs to split up the sum representing the determinant into sums containing even and odd permutations,
respectively, as pointed out in the previous footnote.
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i 6= k and we have bkj = cakj then detB = c detA. This is easy to verify by factoring out c from
each of the products in the defining equation of the determinant detB.

If two determinants are identical except for one row, then the determinant formed by adding the
elements in the different rows, while keeping the rest of the elements unchanged, the two determinants
get added. Formally, if A = (aij) B = (bij), and for some k ∈ Mn we have bij = aij if i 6= k,and
C = (cij), where we have cij = aij if i 6= k,and and ckj = akj + bkj , then detC = detA + detB.
This is again easy to verify from the defining equation of determinants.

If one adds the multiple of a row to another row in a determinant, then the value of the determinant
does not change. To see this, note that adding c times row l to row k to a determinant amounts to
adding to the determinant c times a second determinant in which rows k and l are identical; since
this second determinant is zero, nothing will change.

Expansion of a determinant by a row. Given an n× n matrix A = (aij), denote by A(i, j)
the (n− 1)× (n− 1) matrix obtained by deleting the ith row and jth column of the matrix.

Lemma. If a11 is the only (possibly) nonzero element of the first row of A, then

detA = a11 detA(1, 1).

By “(possibly) nonzero” we mean that the Lemma of course applies also in the case when we even
have a11 = 0.

Proof. With σ running over all permutations of Mn and ρ running over all permutations of
{2, . . . , n}, we have

detA =
∑

σ

sgn(σ)

n
∏

i=1

aiσ(i) =
∑

σ:σ(1)=1

sgn(σ)

n
∏

i=1

aiσ(i)

=
∑

σ:σ(1)=1

a11 sgn(σ)
n
∏

i=2

aiσ(i) = a11
∑

ρ

sgn(ρ)
n
∏

i=2

aiρ(i) = a11 detA(1, 1);

for the second equality, note that the product on the left-hand side of the second equality is zero
unless σ(1) = 1. For the fourth equality, note that if ρ is the restriction to the set {2, . . . , n} of a
permutation σ of Mn with σ(1) = 1, then sgn(ρ) = sgn(σ).

Corollary. . If for some k, l ∈ Mn, akl is the only (possibly) nonzero element in the kth row
of A, then detA = (−1)k+lakl detA(k, l).

Proof. The result can be obtained from the last Lemma by moving the element akl into the top
left corner (i.e., into position (1, 1)) of the matrix A. However, when doing this, it will not work
to interchange the kth row of the matrix A with the first row, since this will change the order of
rows in the submatrix corresponding to the element. In order not to disturb the order of rows in
the submatrix A(k, l), one always needs to interchange adjacent rows. Thus, one can move the kth
row into the position of the first row by first interchanging rows k and k − 1, then rows k − 1 and
k−2, then rows k−2 and k−3, etc. After bringing the element akl into the first row, one can make
similar column interchanges. While doing so, one makes altogether k − 1 + l − 1 row and column
interchanges, hence the factor (−1)k+l = (−1)(k−1)+(l−1) in the formula to be proved.

The following theorem describes the expansion of a determinant by a row. It is usually attributed
to Pierre-Simon Laplace (1749–1827), but it was known to Gottfried Wilhelm Leibniz (1646–1716),
who invented determinants of order greater than two.
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Theorem. For any integer k ∈Mn we have

detA =

n
∑

j=1

(−1)i+jaij detA(i, j).

Proof. Let the matrix Bj be the matrix that agrees with A except for row k, and in row k all
elements are zero except that the element in position (k, j) is akj . In view of the last Corollary, the
equation to be proved can be written as

detA =

n
∑

j=1

detBj ;

this equation can be established by the (repeated) use of the addition rule of determinants.

The number Aij
def
= (−1)i+j detA(i, j) is often called the cofactor of the entry aij of the matrix

A; then the above equation can be written as

detA =

n
∑

j=1

aijAij .

Since detA = detAT , one can obtain a similar expansion of a determinant by a column:

detA =
n
∑

i=1

aijAij .

The expansion
n
∑

i=1

aikAij .

for some j and k with 1 ≤ j, k ≤ n represent the expansion of a determinant by the jth column
that has the elements aik in this column instead of the elements aij . If j = k then this is in fact the
determinant of the matrix A; if j 6= k then this represent a determinant whose jth and kth columns
are identical, and one of the simple properties of determinants says that such a determinant is 0.
Therefore

n
∑

i=1

aikAij = δjk detA,

where δjk is Kronecker’s delta, defined as δjk = 1 if j = k and δjk = 0 if j 6= k. This equation can
also be written as

n
∑

i=1

aik
Aij

detA
= δjk.

This equation can also be expressed as a matrix product. In fact, with the matrix B = (bij) with
bij = Aji/detA, this equation can be written simply as AB = I, where I is the n × n identity
matrix. That is, the matrix B is the inverse of A. In other words, we have

A−1 =

(

Aij

detA

)T

=

(

Aij

detA

)

j,i

=

(

Aji

detA

)

i,j

.

To explain the notation here, the subscripts j, i on the outside in the middle member indicates that
the entry listed between the parenthesis is in the j row and the ith column. The matrix in the
middle is obviously the same as the one on the right, where the subscripts outside indicate that the
entry listed between the parenthesis is in the i row and the jth column.123

123If, as usual, the subscripts on the outside are omitted, some agreed-upon unspoken assumption is made. For
example, one may assume that the letter that comes first in the alphabet refers to the rows.
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Cramer’s rule. Consider the system Ax = b of linear equations, where A = (aij) is an n × n
matrix, and x = (xi)

T and b = (bi)
T are column vectors. For a fixed k with 1 ≤ k ≤ n, multiplying

the ith equation
∑n

j=1 aijxj = bi by the cofactor Aik, and adding these equations for i with 1 ≤ i ≤ n
we obtain for the left-hand side

n
∑

i=1

Aik

n
∑

j=1

aijxj =
n
∑

j=1

xj

n
∑

i=1

aijAik =
n
∑

j=1

xjδjk detA = xk detA

So we obtain the equation

xk detA =

n
∑

i=1

biAik.

Assuming that detA 6= 0,124 we have

xk =

∑n
i=1 biAik

detA
=

detBk

detA
,

where Bk is the matrix where the kth column of A has been replaced by the right-hand side b;
the second equation holds because the numerator in the middle member represents the expansion
of detBk. This determinant is called the determinant of the unknown xk; the determinant detA
is called the determinant of the system. The above equation expressing xk is called Cramer’s rule.
Cramer’s rule is of theoretical interest, but it is not a practical method for the numerical solution
of a system of linear equations, since the calculations of the determinants in it are time consuming;
the practical method for the solution of a system of linear equations is Gaussian elimination.

35. POSITIVE DEFINITE MATRICES

An n × n matrix A with real entries is called positive definite if xTAx > 0 for any nonzero n-
dimensional column vector x. In what follows, all matrices will be assumed to have real entries. If
A = (aij) and x = (x1, . . . , xn)

T , then

xTAx =

n
∑

i,j=1

xiaijxj .

Hence, if A is a positive definite matrix then akk > 0 for all k with 1 ≤ k ≤ n. This follows by
choosing xi = δki. Further, note that if A is positive definite then the matrix obtained by deleting
the kth row and the kth column of the matrix for any k with 1 ≤ k ≤ n is also positive definite; this
can be seen by choosing xk = 0 in the equation above.

A minor of a matrix is the determinant of a submatrix obtained by taking the intersection of a
number of rows and the same number of columns in the matrix. A principal minor is the determinant
obtained by taking the intersection of the first k rows and first k columns of the matrix, for some
integer k; this principal minor is called the kth principal minor. A matrix A = (aij) is symmetric is
aij = aji.

The following is an important characterization of positive definite matrices:

124If detA = 0, then it is easy to show that the system of equations Ax = b does not have a unique solution –

i.e., either it has no solution, or it has infinitely many solutions. In fact, in this case the rank of the matrix A is less
than n.
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Theorem. All principal minors of a positive definite matrix are positive. Conversely, a symmet-
ric matrix is positive definite if all its principal minors are positive.

Proof. We will use induction on n, the size of the matrix. The result is obviously true in case
n = 1. Assume n > 1, and assume the result is true for every k× k matrix with 1 ≤ k < n. We will
then prove that it is also true for n× n matrices. Let A = (aij) be an n× n matrix. At this point,
we will only assume that A has one of the properties in the theorem, i.e., that it is either positive
definite or that all its principal minors are positive; then we will have to show that it has the other
property. Our first claim is that the element a11 is then nonzero. We know that this is true is A is
positive definite. On the other hand, a11 is just the first principal minor of A.

Form the matrix B by subtracting appropriate multiples of the first row of A from the other rows
in such a way that all but the first element of the first column will be zero (exactly as is done in
Gaussian elimination). Writing mi1 = ai1/a11, this amounts to forming the matrix B = (bij) = SA,
where S = (sij) is the matrix whose first column is (1,−m21,−m31, . . . ,−mn1)

T , and whose other
elements are sij = δij . Indeed, the element bij is obtained as the product of the ith row of S and
the jth column of A, i.e., for i > 1,

bij = −mi1a1j +

n
∑

k=2

δikakj = aij −mi1a1j ,

and the right-hand side here is zero in case j = 1. Next, form the matrix C = BST . Note that all
elements of the elements of the first column of C = (cij) are the same as those of B; this is because
the elements of the first column of C are obtained by multiplying the rows of B by the first column
of ST ; since the first column of ST is (1, 0, 0, . . . , 0)T , in each case the result of this multiplication
is the first element of the row of B in question.

Thus, c11 = a11, and ci1 = 0 for i > 1. Further, C = SAST . S is a lower triangular matrix with
all its diagonal elements equal to 1, so det(S) = det(ST ) = 1. Hence

det(C) = det(SAST ) = det(S) det(A) det(ST ) = det(A).

Next, we claim that C is positive definite if and only if A is positive definite. In fact, if x is an
n-dimensional column vector and y = STx then x is a nonzero vector if and only if y is so; this is
because S is nonsingular (as det(S) = 1), and so x = (ST )−1y. Further,

yTAy = xTCx;

so assuming the left-hand side is positive for all nonzero y is the same as assuming that the right-hand
side is positive for all x, establishing our claim.

Next assume that A is positive definite. Then all its principal minors other than det(A) are
positive by the induction hypothesis; we need to prove that det(A) is also positive. As we just saw,
C is also positive definite. Hence the matrix C ′ obtained by deleting the first row and first column
of C is also positive definite. Then, by the induction hypothesis the determinant of C ′ is positive;
further, c11 > 0, since, as we remarked above, all diagonal elements of a positive definite matrix are
positive. Hence

det(A) = det(C) = c11 det(C
′) > 0;

here the second equality can be seen by expanding the determinant C by its first column, and
noticing that all but the first element of this column is zero.

Finally, assume that all principal minors of A are positive. For an arbitrary positive integer
m ≤ n, writing Am,Sm, Cm, for the submatrices of A, S, C formed by the first m rows and m
columns, note that the equation C = SAST implies that Cm = SmAm(Sm)T ; this second equation
would not be true for arbitrary matrices A, S, and C satisfying the first equation; it is true at
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present because the block formed by the first m rows and the last n −m columns of S contain all
zeros, so the elements in this block do not contribute to the product on the right-hand side of the
second equation.125 Now, det(Sm) = det((Sm)T ) = 1, since Sm is a lower triangular matrix with
ones in the diagonal. So,

det(Cm) = det(Sm) det(Am) det((Sm)T ) = det(Am) > 0.

As for the principal minor associated with the submatrix C ′
m−1 of the matrix C ′ obtained by deleting

the first row and first column of C (that is, C ′
m−1 consists of the first m−1 rows and m−1 columns

of C ′, i.e., of the rows and columns of index 2 through m of C), we have

0 < det(Cm) = c11 det(C
′
m−1) = det(C1) det(C

′
m−1);

the first equation holds by expanding Cm by its first column, and the second equation holds because
the only entry of the matrix C1 is c11. Since det(C1) > 0, the inequality det(C ′

m−1) > 0 follows. So
all principal minors of C ′ are positive.

Now, assume also that A is a symmetric matrix, i.e., that AT = A. It then follows that C is also
symmetric, since

CT = (SAST )T = (ST )TATST = SATST = SAST .

Hence C ′ is also symmetric; since we just saw that all the principal minors of C ′ are positive, it
follows by the induction hypothesis that C ′ is positive definite. Further, as we know that all but the
first element in the first column of C is zero, it follows by the symmetry of C that all but the first
element in the first row of C is also zero; that is, for i > 1, ci1 = c1i = 0. Hence, for an arbitrary
nonzero vector x = (x1, . . . , xn)

T , we have

n
∑

i,j=1

xicijxj = c11x
2
1 +

n
∑

i,j=2

xicijxj > 0;

the inequality holds since c11 = det(C1) > 0 and the matrix C ′ is positive definite. Therefore, it also
follows that C is positive definite. As we remarked above, this implies that A is positive definite.
The proof of the theorem is complete. �

The second conclusion of the Theorem is not valid without assuming that A is symmetric, as the
example of the matrix

A =

(

1 −3
0 1

)

with positive principal minors shows. This matrix is not positive definite, since for the vector
x = (x1, x2)

T = (1, 1)T we have

xTAx = x21 − 3x1x
2 + x22 = −1.

125It may be easier to see this second equation directly, without considering block matrices. Indeed

cij =
n
∑

k,l=1

sikaklsjl.

Assuming i ≤ m and j ≤ m, if k > m, we have sik = 0, since sik 6= 0 only if k = 1 or i = k, neither of which is
the case; so the terms for k > m make no contribution. Similarly, if l > m, we have sjl = 0, so, again, the terms for
l > m do not make any contribution.

If one wants to argue with block matrices, all one needs to recall that matrices can be multiplied in blocks. That

is
(

A B

C D

)(

E F

G H

)

=

(

AE +BG AF +BH

CE +DG CF +DH

)

for matrices A, . . . , H of the appropriate size (so that they can be multiplied).
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Cholesky factorization. The Theorem has an important consequence concerning Gaussian
elimination.

Corollary. Assume A is a positive definite matrix. Then Gaussian elimination on A can
be performed without pivoting (i.e., without row interchanges). Further, in the LU factorization
A = LU , where L is a lower triangular matrix with all 1s in the diagonal, and U is an upper
diagonal matrix, the diagonal elements of U are all positive.

Proof. We start out with Gaussian elimination without pivoting, and at the kth step (with
1 ≤ k ≤ n, A being an n × n matrix); we will show that we can continue the procedure in that in

the matrix A(k) = (a
(k)
ij ) obtained at this point we have a

(k)
kk 6= 0; note that this is true in case k = 1,

since a
(k)
11 = a11 > 0, as A is positive definite. The operations in Gaussian elimination (subtracting

a multiple of a row from another row) do not change the values of the principal minors (since either
the subtracted row is in the principal minor in question, or both the subtracted row and the row
from which we subtract are outside this minor, and in this latter case the principal minor is not
changed). All principal minors of A being positive according to the Theorem above, the same holds

for the principal minors of A(k). In particular, we have det(A
(k)
k ) > 0, where A

(k)
k is the matrix found

in the intersection of the first k rows and the first k columns of A(k). This matrix is, however, upper
triangular, so its determinant is the product of its diagonal elements. Hence, none of these diagonal

elements can be zero; so a
(k)
kk 6= 0. Hence Gaussian elimination can be continued as claimed.

To see that ull > 0 for each l with 1 ≤ l ≤ n in the LU factorization LU obtained, note that
U = A(n), so we have det(Ul) > 0 for the lth principal minor of U , by what we said about the
principal minors of A(k) above. Since U is a triangular matrix, we have

det(Ul) = ull det(Ul−1);

as det(Ul) > 0 and det(Ul−1) > 0, the inequality ull > 0 follows.126 �

Observe that if it is possible to obtain an LU decomposition of a matrix A = LU (without
pivoting, as this equation holds without a permutation matrix only if no pivoting was done), then this
decomposition is unique, because the steps in the Gaussian elimination are uniquely determined.127

Form the diagonal matrix128 D by taking the diagonal elements of U . Then D−1U is an upper
diagonal matrix whose diagonal elements are ones, and LD is a lower diagonal matrix, and we have
A = (LD)(D−1U).129

Assume now that A is a symmetric matrix; then

A = AT = (D−1U)T (LD)T = (UT (D−1)T )(DTLT ) = (UTD−1)(DLT );

the fourth equation here holds, since D and D−1 are diagonal matrices, so they are their own
transposes. This is an LU decomposition of the matrix A with the diagonal elements of UTD−1

being ones, this decomposition is identical to LU ; hence U = DLT . That is,

A = LDLT .

126This argument works even in case l = 1 if we take U0 to be the empty matrix (i.e., a 0 × 0 matrix) and we
stipulate that det(U0) = 1. Of course, we also know that u11 = a11 > 0, so this argument is not really needed in case

l = 1.
127Another way of putting this is that the equation A = LU and the facts that L is a lower diagonal matrix, U is

an upper diagonal matrix, and the diagonal elements of L are ones, can be used to derive the equations used in the
Doolittle algorithm (without pivoting) to determine the entries of L and U .

128A matrix all whose elements outside the diagonal are zero.
129In fact, this is the decomposition obtained by the Crout algorithm.
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Now assume that A is positive definite (in addition to being symmetric). Then all diagonal entries
of D are positive, according to the Corollary above. Let E be the diagonal matrix formed by taking
the square roots of the diagonal elements of D. Then D = E2. Then writing L′′ = LE, we have

A = L′′(L′′)T ,

where L′′ is a lower triangular matrix. This representation of a positive definite symmetric matrix
A is called its Cholesky factorization. For the derivation of the formulas below, it may also be worth
noting that we have L′′ = LE = UT (D−1)E = UTE−1. The advantage of Cholesky factorization
over Gaussian elimination is that instead of n2 matrix elements, only about n2/2 matrix elements
need to be calculated. If one is only interested in solving the equation Ax = b, then it is better
to use the factorization A = LDLT mentioned above than the Cholesky factorization, since for this
factorization one does not need to calculate the square roots of the entries of the diagonal matrix
D. The formulas used in the Doolittle algorithm can easily be modified to obtain the factorization
A = LDLT or the Cholesky factorization A = L′′(L′′)T .

For the former, with A = aij , L = (lij) and D = (dij), where dij = 0 unless i = j, U = (uij) we
have

u1s = a1s for s ≥ 1,

and
ls1 =

u1s
u11

for s > 1.

For i > 1 one calculates

uis = ais −
i−1
∑

k=1

likuks for s ≥ i

and
lsi =

uis
uii

for s > i,

If one uses the last two formulas for i = 2, 3, . . . , in turn, the elements on the right-hand side have
already been calculated by the time one needs them.130 Finally, dii = uii (so dij = uiiδij).

For the Cholesky factorization with L′′ = (l′′ij) we have

l′′11 =
√
a11,

and
l′′s1 =

as1
l′′11

for s > 1.

For i > 1 we put

l′′ii =

√

√

√

√aii −
i−1
∑

k=1

(l′′ik)
2,

and

l′′si =
asi −

∑i−1
k=1 l

′′
ikl

′′
sk

l′′ii
for s > i

130The starting equations above are just equations (1) and (2) with i = 1, when these equations contain an empty

sum. So there was no need to state the starting equations; perhaps stating them makes the explanation clearer. These
equations can also be used in a different order, and the elements of L can also be calculated row by row. That is,
for s = 1, one calculates u11 by the above formulas, and then, for s > 1, one can calculate uis for i ≤ s and lis for
i < s. This order of calculations is possible because one does not intend to do any pivoting. Instead of looking at

the equations of the Doolittle algorithm, the above equations can also be directly obtained from the matrix equation
A = LU = LDLT .
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Again, the latter two formulas can also be used for i = 1 as well, so the two starting equations are
not needed. Here we wrote as1 and asi instead of a1s and ais; this is possible, because the matrix A
is symmetric.131 This emphasizes the point that the upper half of A (i.e., ais for s > i) never needs
to be stored. This is also true for the LDLT factorization, but there one needs also to store the
matrix U , so the whole square block normally reserved for the elements of a nonsymmetric matrix is
needed. The elements of L and U can be stored in the locations originally occupied by the elements
of A, just as in other variants of the Gaussian elimination; this is also true for the elements of L′′ in
Cholesky factorization, where only the lower triangular block representing the symmetric matrix A
is needed, first to store A, and then to store L′′.

36. JACOBI AND GAUSS-SEIDEL ITERATIONS

In certain cases, one can solve the system of equations

n
∑

j=1

aijxj = bi (1 ≤ i ≤ n)

by iteration. In Jacobi iteration, the kth approximation x
(k)
j to the solution xj of this equation is

calculated as

x
(k+1)
i =

bi −
∑n

j=1, j 6=i aijx
(k)
j

aii
(1 ≤ i ≤ n),

and in Gauss-Seidel iteration one takes

x
(k+1)
i =

bi −
∑i−1

j=1 aijx
(k+1)
j −∑n

j=i+1 aijx
(k)
j

aii
(1 ≤ i ≤ n);

that is, in Gauss-Seidel iteration, one makes use of x
(k+1)
j as soon as it is available. One can use any

starting values with these iterations; for example, x
(0)
i = 0 for each i is a reasonable choice.

Call an n× n matrix A = (aij) row-diagonally dominant if

|aii| >
n
∑

j=1
j 6=i

|aij |

for each i with 1 ≤ i ≤ n.

Lemma. Consider the equation Ax = b, where A is an n × n row-diagonally dominant matrix,
and b is an n-dimensional column vector. When solving this equation for the n-dimensional column
vector x, both Jacobi and Gauss-Seidel iterations will converge with any starting vector x(0).

Proof. Write

q = max
1≤i≤n

∑n
j=1, j 6=i |aij |

|aii|
.

According to the assumption that A is row-diagonally dominant, we have 0 ≤ q < 1. Assume that
for some k ≥ 1 and for some C we have

(1) |x(k)i − x
(k−1)
i | ≤ C for each i with 1 ≤ i ≤ n.

131Again, as no pivoting is intended, these equations can be used in a different order, as outlined in the preceding
footnote.
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In case of Jacobi iteration, we have

x
(k+1)
i − x

(k)
i =

∑n
j=1, j 6=i aij

(

x
(k−1)
j − x

(k)
j

)

aii
(1 ≤ i ≤ n),

and so

|x(k+1)
i − x

(k)
i | ≤

∑n
j=1, j 6=i |aij |C

|aii|
≤ qC (1 ≤ i ≤ n).

Thus, if |x(1)i − x
(0)
i | ≤ C0, then we have |x(k+1)

i − x
(k)
i | ≤ qkC0. Since the series

∑∞
k=0 q

kC0 is
convergent, given m and n with 1 ≤ m ≤ n, it follows that for all i with 1 ≤ i ≤ n we have

|x(n)i − x
(m)
i | =

∣

∣

∣

∣

∣

n−1
∑

k=m

(x
(k+1)
i − x

(k)
i )

∣

∣

∣

∣

∣

≤
n−1
∑

k=m

|x(k+1)
i − x

(k)
i | ≤

n−1
∑

k=m

C0q
k ≤

∞
∑

k=m

C0q
k =

C0q
m

1− q
.

Since the limit of the right-hand side is 0 when m → ∞, it follows by the Cauchy convergence

criterion that the sequence {x(k)i }∞k=1 is convergent. This proves the convergence of Jacobi iteration.
The proof of Gauss-Seidel iteration is slightly more subtle. For Gauss-Seidel iteration, we have

x
(k+1)
i − x

(k)
i =

∑i−1
j=1 aij

(

x
(k)
j − x

(k+1)
j

)

−∑n
j=i+1 aij

(

x
(k−1)
j − x

(k)
j

)

aii
(1 ≤ i ≤ n).

Consider a fixed i with 1 ≤ i ≤ n. Assume in addition to (1) that we have

(2) |x(k+1)
j − x

(k)
j | ≤ C for each j with 1 ≤ j < i;

note that this is vacuous for i = 1. Then

|x(k+1)
i − x

(k)
i | ≤

∑i−1
j=1 |aij |C +

∑n
j=i+1 |aij |C

|aii|
≤ qC (1 ≤ i ≤ n).

As q < 1, this establishes (2) with i + 1 replacing i (in that it shows the inequality in (2) with i
replacing j); thus, (2) follows by inductions. Hence the latter inequality also follows, assuming (1)
only (since (2) has been proved, it is no longer necessary to assume it). Therefore, similarly as in
the case of the Jacobi iteration, given m and n with 1 ≤ m ≤ n, for all i with 1 ≤ i ≤ n we have

|x(n)i − x
(m)
i | ≤ C0q

m

1− q
.

Since the limit of the right-hand side is 0 when m→ ∞, it again follows by the Cauchy convergence

criterion that the sequence {x(k)i }∞k=1 is convergent. This proves the convergence of the Gauss-Seidel
iteration.

Jacobi and Gauss-Seidel iterations exhibit linear convergence, and Aitken’s acceleration (see Sec-
tion 16) can be adapted to matrices and used to accelerate the convergence of these methods.

Problems

1. Question 1. Explain why the system of equations

6x+ 2y − 3z = −8

3x− 7y + 2z = 9

−2x− 4y + 9z = 5
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can be solved by Gauss-Seidel iteration.
Question 2. Write the equations describing the Gauss-Seidel iteration to solve the above system

of equations. Do not solve the equations.

Solution. Question 1. The system of equation is row-diagonally dominant. That is, the absolute
value of the each coefficient in the main diagonal is larger than the sum of the absolute values of
all the other coefficients on the left-hand side of the same equation. Such a system of equations can
always be solved by both Jacobi iteration and Gauss-Seidel iteration.

Question 2. In Gauss-Seidel iteration, one can start with x(0) = y(0) = z(0) = 0, and for each
integer k ≥ 0 one can take

x(k+1) =
−8− 2y(k) + 3z(k)

6

y(k+1) =
9− 3x(k+1) − 2z(k)

−7

z(k+1) =
5 + 2x(k+1) + 4y(k+1)

9

2. Question 1. Explain why the system of equations

8x− 3y − 2z = −9

2x+ 9y − 3z = 6

−3x+ 2y + 7z = 3

can be solved by Gauss-Seidel iteration.
Question 2. Write the equations describing the Gauss-Seidel iteration to solve the above system

of equations.
Question 3. Write the equations describing Jacobi iteration to solve the above system of equations.

Solution. Question 1. The system of equation is row-diagonally dominant, similarly as in the
preceding problem.

Question 2. In Gauss-Seidel iteration, one can start with x(0) = y(0) = z(0) = 0, and for each
integer k ≥ 0 one can take

x(k+1) =
−9 + 3y(k) + 2z(k)

8

y(k+1) =
6− 2x(k+1) + 3z(k)

9

z(k+1) =
3 + 3x(k+1) − 2y(k+1)

7
.

Question 3. In Jacobi iteration, one can start with x(0) = y(0) = z(0) = 0, and for each integer
k ≥ 0 one can take

x(k+1) =
−9 + 3y(k) + 2z(k)

8

y(k+1) =
6− 2x(k) + 3z(k)

9

z(k+1) =
3 + 3x(k) − 2y(k)

7
.



37. Cubic splines 167

3. Explain how to solve the system of equations

x− 2y − 7z = 7

8x− y + 3z = −2

2x+ 6y + z = −4

by Gauss-Seidel iteration.

Solution. By changing the order of equations, the system of equation can be made to be row-
diagonally dominant. Moving the first equation to the last place (when the second equation will
become the first one) and the third one will become the second one, we obtain the following system
of equations:

8x− y + 3z = −2

2x+ 6y + z = −4

x− 2y − 7z = 7

This system of equation is row-diagonally dominant. That is, the absolute value of the each coefficient
in the main diagonal is larger than the sum of the absolute values of all the other coefficients on
the left-hand side in the same row. Such a system of equations can always be solved by both Jacobi
iteration and Gauss-Seidel iteration.

When solving these equations with Gauss-Seidel iteration, one can start with x(0) = y(0) = z(0) =
0, and for each integer k ≥ 0 one can take

x(k+1) =
−2 + y(k) − 3z(k)

8

y(k+1) =
−4− 2x(k+1) − z(k)

6

z(k+1) =
7− x(k+1) + 2y(k+1)

−7

When solving them by Jacobi iteration, one can start with x(0) = y(0) = z(0) = 0, and for each
integer k ≥ 0 one can take

x(k+1) =
−2 + y(k) − 3z(k)

8

y(k+1) =
−4− 2x(k) − z(k)

6

z(k+1) =
7− x(k) + 2y(k)

−7

37. CUBIC SPLINES

Let [a, b] be an interval, and assume we are given points x0, x1, . . . , xn with a = x0 < x1 <
. . . < xn = b for some positive integer n. and corresponding values y0, y1, . . . , yn, we would like to
determine cubic polynomials

(1) Si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di
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for i with 0 ≤ i < n satisfying the following conditions:

Si(xi) = yi for i with 0 ≤ i ≤ n− 1,(2)

Sn−1(xn) = yn,(3)

S
(k)
i (xi+1) = S

(k)
i+1(xi+1) for i with 0 ≤ i ≤ n− 2 and 0 ≤ k ≤ 2.(4)

These represent (n+1)+3(n−1) = 4n−2 equations. The two remaining equations can be obtained
by setting conditions on S0 at x0 and Sn−1 at xn. For example, if one wants to approximate a
function f with f(xi) = yi, then one can require that

(5) S′
0(x0) = f ′(x0) and S′

n−1(xn) = f ′(xn);

these are called correct boundary conditions. The drawback of these conditions is that f ′(x0) and
f ′(xn) may not be known. Alternatively, one may require that

(6) S′′
0 (x0) = 0 and S′′

n−1(xn) = 0;

these are called free or natural boundary conditions. The function S(x) defined as

S(x) = Si(x) whenever x ∈ [xi, i+ 1] (1 ≤ i < n)

is called a cubic spline. The name spline is that of a flexible ruler forced to match a certain shape
by clamping it at certain points, and used to draw curves.

It is not too hard to solve the above equations. Write

hi = xi+1 − xi (0 ≤ i ≤ n− 1).

In view of equation (1), equations (2) say that yi = di for i with 0 ≤ i ≤ n − 1 Write dn = yn; so
far, dn has not been defined. From now on, we will use di instead of yi. Equations (3) and (4) can
be rewritten as

di+1 = aih
3
i + bih

2
i + cihi + di (0 ≤ i ≤ n− 1),(7)

ci+1 = 3aih
2
i + 2bihi + ci (0 ≤ i ≤ n− 2),(8)

bi+1 = 3aihi + bi (0 ≤ i ≤ n− 2).(9)

The equation for i = n − 1 in (7) corresponds to equation (3); the other equations in (7)–(9)
correspond the equations (4) with k = 0, 1, and 2.

By (9) we have

(10) ai =
bi+1 − bi

3hi
(0 ≤ i ≤ n− 2);

This can be used to determine the ai’s once the bi’s are known. Substituting this into (8), we obtain

(11) ci+1 = (bi+1 + bi)hi + ci (0 ≤ i ≤ n− 2);

According to (7),

(12)
di+1 − di

hi
= aih

2
i + bihi + ci (0 ≤ i ≤ n− 1).
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In case i 6= 0, we can substitute (11) with i− 1 replacing i on the right-hand side to obtain

di+1 − di
hi

= aih
2
i + bihi + (bi + bi−1)hi−1 + ci−1, (1 ≤ i ≤ n− 1).

Equation (12) with i− 1 replacing with i says

di − di−1

hi−1
= ai−1h

2
i−1 + bi−1hi−1 + ci−1. (1 ≤ i ≤ n)

Subtracting the last two equations, we obtain

di+1 − di
hi

− di − di−1

hi−1
= aih

2
i − ai−1h

2
i−1 + bi(hi + hi−1) (1 ≤ i ≤ n− 1).

Substituting into this the value for ai and ai−1 given by (10) and multiplying both sides by 3, we
have

3
di+1 − di

hi
− 3

di − di−1

hi−1
= (bi+1 − bi)hi − (bi − bi−1)hi−1 + 3bi(hi + hi−1) (1 ≤ i ≤ n− 2);

we cannot allow i = n − 1 here since (10) is not valid for i = n − 1; but, as we will see soon, (10)
will be extended to i = n− 1, and so this equation will also be extended to i = n− 1. This can also
be written as

(13) bi−1hi−1 + 2bi(hi + hi−1) + bi+1hi = 3
di+1 − di

hi
− 3

di − di−1

hi−1
(1 ≤ i ≤ n− 2).

This gives n − 2 equations for bi, 0 ≤ i ≤ n − 1. Two more equations can be obtained from the
boundary conditions (5) or (6). For example, the free boundary conditions given by equation (6)
gives

b0 = 0

and
3an−1hn−1 + bn−1 = 0.

Introducing the new variable bn and setting bn = 0, this amounts to extending (9) to i = n − 1.
Hence we can also extend (10) to i = n− 1:

an−1 =
bn − bn−1

3hn
and bn = 0.

By extending equation (10) to i = n − 1, equation (13) will also be extended to i = n − 1. Thus
equation (13) for i with 1 ≤ i ≤ n − 1 plus the equations b0 = bn = 0 allow us to determine the
values of bi; Once bi are known, the other coefficients can be determined with the aid of equations
(10) and (12). Note that the matrix of the system (13) of equations is row-diagonally dominant,
and so Gauss-Seidel iteration can be used to solve these equations.

A program implementing cubic spline interpolation (using free boundary conditions) is described
next. The header file spline.h is given as

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))
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6

7 struct rows{
8 double a;

9 double b;

10 double c;

11 double d;

12 };
13

14 struct rows *allocrows(int n);

15 double *allocvector(int n);

16 int gauss_seidel_tridiag(struct rows *eqn, double *x,

17 int n, float tol, int maxits, int *converged);

18 int free_spline(double *x, double *f, struct rows *s, int n,

19 float tol, int maxits, int *success);

20 double evalspline(double xbar, double *x, struct rows *s,

21 int n);

Line 5 defines the absolute value function |x|. In lines 7–12, the structure rows is defined to hold the
coefficients of the cubic polynomials constituting the splines on the one-hand, and it will hold the
coefficients and the right-hand side of the coefficient matrix in equations (1)3 on the other hand. The
coefficient matrix is a tridiagonal matrix ; that is, it has nonzero elements only in the main diagonal
and the two adjacent diagonals. Lines 14–21 give the declarations of the functions occurring in the
program. The memory allocation is handled by the functions in the file alloc.c:

1 #include "spline.h"

2

3 struct rows *allocrows(int n)

4 {
5 struct rows *b;

6 b=(struct rows *) malloc((size_t)((n+1)*sizeof(struct rows)));

7 if (!b) {
8 printf("Allocation failure 1 in rows\n");

9 exit(1);

10 }
11 return b;

12 }
13

14 double *allocvector(int n)

15 {
16 double *b;

17 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

18 if (!b) {
19 printf("Allocation failure 1 in vector\n");

20 exit(1);

21 }
22 return b;

23 }
The function allocrows in lines 3–12 allocates memory for a structure of type rows defined in the
file spline.h. The parameter n indicates that a block of n+1 structures (indexed from 0 to n) will
be reserved. In line 7 it is tested if the allocation was successful. In line 11, a pointer to the first of
these structures will be returned. In lines 14–23, the function allocvector is defined. This reserves
memory for a block of n+ 1 reals of the type double. This function is identical to the one used in



37. Cubic splines 171

Gaussian elimination. The main functions are defined in the file spline.c:

1 #include "spline.h"

2

3 int gauss_seidel_tridiag(struct rows *eqn, double *x,

4 int n, float tol, int maxits, int *converged)

5 {
6 int itcount, i;

7 double newx;

8 for (i=0;i<=n+1;i++) x[i]=0.;

9 *converged=0;

10 for (itcount=0; itcount<maxits && !(*converged); itcount++) {
11 *converged=1;

12 for (i=1;i<=n;i++) {
13 newx = (eqn[i].d - eqn[i].a * x[i-1]

14 - eqn[i].c * x[i+1])/ eqn[i].b;

15 if ( absval(newx-x[i])>tol ) *converged=0;

16 x[i]=newx;

17 }
18 }
19 return itcount;

20 }
21

22 int free_spline(double *x, double *f, struct rows *s, int n,

23 float tol, int maxits, int *success)

24 {
25 int i, noofits;

26 struct rows *eqn;

27 double *bvec, hi, hiprev, deltaf, prevdeltaf;

28 eqn=allocrows(n-1);

29 bvec=allocvector(n);

30 hiprev=x[1]-x[0]; prevdeltaf=f[1]-f[0];

31 for (i=1;i<n;i++) {
32 hi=x[i+1]-x[i]; deltaf=f[i+1]-f[i];

33 eqn[i].a=hiprev; eqn[i].b=2.*(hiprev+hi); eqn[i].c=hi;

34 eqn[i].d=3.*(deltaf/hi-prevdeltaf/hiprev);

35 hiprev=hi; prevdeltaf=deltaf;

36 }
37 noofits = gauss_seidel_tridiag(eqn, bvec, n-1, tol,

38 maxits, success);

39 if ( *success ) {
40 for (i=0;i<n;i++) {
41 hi=x[i+1]-x[i];

42 s[i].a=(bvec[i+1]-bvec[i])/(3.*hi);

43 s[i].b=bvec[i];

44 s[i].c=(f[i+1]-f[i])/hi-(bvec[i+1]+2.*bvec[i])*hi/3.;

45 s[i].d=f[i];

46 }
47 }
48 free(bvec);

49 free(eqn);

50 return noofits;
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51 }
52

53 double evalspline(double xbar, double *x, struct rows *s,

54 int n)

55 {
56 int i;

57 double dx;

58 for (i=1; i<n && x[i]<xbar; i++) ;

59 dx=xbar-x[--i];

60 return s[i].d + dx * (s[i].c + dx * (s[i].b + dx * s[i].a));

61 }
In linew 3–17, Gauss-Seidel iteration for a tridiagonal matrix is implemented. The coefficients ai−1 i,
aii, and ai i+1 are represented by the structure elements eqn[i].a, eqn[i].b, eqn[i].c, and the
right-hand side is represented by the structure element eqn[i].d. In the equation, it is assumed
that x0 = xn+1 = 0. This corresponds to the situation that in equations (13) with bi the unknowns
we have b0 = bn = 0 (the n in these equation will correspond to n− 1 in the program).

The function gauss_seidel_tridiag is called with parameters *eqs describing the coefficient
matrix and the right-hand side of the equation as just described, the vector *x to store the solution
of the equations, the integer maxits to store the maximum permissible number of iterations, and
the integer *converged indicating whether the calculation was successful (1 is successful, 0 if not).
The function returns the actual number of iterations performed. In line 11, the integer *converged
is set to be 1, but in line 15 it is set to be 0 unless the solution x[i] converges for every value of i
(1 ≤ i ≤ n). On line 19, the number of iterations itcount is returned.

The function free_spline in lines 22–51 calculates the coefficient matrix for the equations (1)3
in lines 30–36, it calls the function gauss_seidel_tridiag on line 37 to solve these equations, and
in lines 40–45 it calculates the coefficients of the polynomials (1) in lines 39–46. The function has
parameters *x, the vector where the points x0, . . . , xn are stored, the function values yi at these
points stored in the vector *f, the structure *s to store the coefficients of the polynomials (1), the
integer n (the number of interpolation points minus 1), the tolerance tol indicating the precision
required for the solution, the integer maxits giving the maximum permissible number of iterations,
and the integer *success indicating whether the determination of the polynomials (1) was successful.
This variable gets its values when it calls gauss_seidel_tridiag on line 37, to indicate whether
this function was successful in solving the system of equations. In lines 26, memory for the structure
holding the coefficients of the equation is reserved, and in line 27 memory is reserved for the vector
bvec to hold the solution of equations (1)3 (that is, the coefficients bi). The memory is freed in lines
48–49. On line 50 the number of iterations noofit is returned. This variable obtains its value from
the function call of gauss_seidel_tridiag in line 37, and indicates the number of iterations used
in solving the system of equations.

In lines 53–61 the function evalspline is defined. This function has the parameters xbar, the
value where the spline is to be evaluated, the double *x of interpolation points, the structure *s

holding the coefficients of the polynomials (1), and the integer n. In line 58, the value of i is searched
for which the point x̄ (or xbar is located in the interval [xi, xi+1), so that the value of the spline can
be returned on line 60.

The main program calling these programs in contained in the file main.c:

1 #include "spline.h"

2

3 main()

4 {
5 const float tol=5e-12;

6 const int maxits=100;



37. Cubic splines 173

7 int i,k,n, success, itcount;

8 double *x, *f, xbar, y, expxbar, theerror;

9 struct rows *s;

10 n=100;

11 x=allocvector(n);

12 f=allocvector(n);

13 s=allocrows(n-1);

14 printf("Approximating sin x by free cubic spline "

15 "interpolation using %d points\n", n+1);

16 for (i=0;i<=n;i++) {
17 x[i] = (double) i/10.;

18 f[i] = sin(x[i]);

19 printf("%7.2f ",x[i]);

20 if ( i%5==0 ) printf("\n");

21 }
22 printf("\n\n");

23 itcount=free_spline(x, f, s, n, tol, maxits,

24 &success);

25 if ( success ) {
26 printf("The number of Gauss-Seidel iterations "

27 "is %u\n\n", itcount);

28 printf(" x sin x "

29 " spline(x) error\n\n");

30 for (i=-1;i<=n/10;i++) {
31 xbar=0.55+(double) i;

32 y=evalspline(xbar,x,s,n);

33 expxbar=sin(xbar);

34 theerror=expxbar-y;

35 printf("%7.4f %18.13f %18.13f %18.13f\n",

36 xbar, expxbar, y, theerror);

37 }
38 }
39 else

40 printf("The coefficients of the cubic spline "

41 "count not be calculated\n"

42 "Probably more iterations are needed.\n");

43 free(s);

44 free(f);

45 free(x);

46 }
The tolerance tol used is specified on line 5 to be 5·10−12, the maximum number of allowed iterations
will be 100. The function sinx will be interpolated at 100 equidistant points in the interval [0, 10]. In
lines 11–13 memory is allocated for the vectors *x holding the interpolation points and *f holding the
function values at the interpolation points, and on line 13, memory is allocated for the structure *s
containing the coefficients of the spline polynomials. In lines 17 and 18 x[i] and f[i] are allocated.
In line 23, the function free_spline is called to find the coefficients of the spline polynomials, and
in lines 30–37 the spline is evaluated at 12 points. Two evaluations take place outside the interval of
interpolation, the rest of the evaluations take place inside, at the middle of certain partition intervals
[xi−1, xi]. If the evaluation of the coefficients of the spline polynomial is unsuccessful, a message to
this effect is printed in lines 40–41. In lines 43–45 the reserved memory is freed. The printout of
this program is as follows:
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1 Approximating sin x by free cubic spline interpolation using 101 points

2 0.00

3 0.10 0.20 0.30 0.40 0.50

4 0.60 0.70 0.80 0.90 1.00

5 1.10 1.20 1.30 1.40 1.50

6 1.60 1.70 1.80 1.90 2.00

7 2.10 2.20 2.30 2.40 2.50

8 2.60 2.70 2.80 2.90 3.00

9 3.10 3.20 3.30 3.40 3.50

10 3.60 3.70 3.80 3.90 4.00

11 4.10 4.20 4.30 4.40 4.50

12 4.60 4.70 4.80 4.90 5.00

13 5.10 5.20 5.30 5.40 5.50

14 5.60 5.70 5.80 5.90 6.00

15 6.10 6.20 6.30 6.40 6.50

16 6.60 6.70 6.80 6.90 7.00

17 7.10 7.20 7.30 7.40 7.50

18 7.60 7.70 7.80 7.90 8.00

19 8.10 8.20 8.30 8.40 8.50

20 8.60 8.70 8.80 8.90 9.00

21 9.10 9.20 9.30 9.40 9.50

22 9.60 9.70 9.80 9.90 10.00

23

24

25 The number of Gauss-Seidel iterations is 22

26

27 x sin x spline(x) error

28

29 -0.4500 -0.4349655341112 -0.4348249101747 -0.0001406239365

30 0.5500 0.5226872289307 0.5226870924736 0.0000001364570

31 1.5500 0.9997837641894 0.9997835031776 0.0000002610118

32 2.5500 0.5576837173914 0.5576835717979 0.0000001455935

33 3.5500 -0.3971481672860 -0.3971480636032 -0.0000001036828

34 4.5500 -0.9868438585032 -0.9868436008696 -0.0000002576336

35 5.5500 -0.6692398572763 -0.6692396825590 -0.0000001747173

36 6.5500 0.2636601823728 0.2636601135395 0.0000000688333

37 7.5500 0.9541522662795 0.9541520171807 0.0000002490989

38 8.5500 0.7674011568675 0.7674009565259 0.0000002003416

39 9.5500 -0.1248950371168 -0.1248937203815 -0.0000013167352

40 10.5500 -0.9023633099588 -1.1815860484840 0.2792227385251

38. OVERDETERMINED SYSTEMS OF LINEAR EQUATIONS

Assume we are given a system of linear equations

n
∑

j=1

aijxj = bi (1 ≤ i ≤ m),

wherem > n; that is, we have more equations than unknown. This situation can occur when we make
more measurements to determine the quantities xi than absolutely necessary. If the measurements
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were exact, all these equations would be satisfied; however, in view of measurement errors, the
determination of the coefficients has errors, and for these reason not all equations can be satisfied.

In such a situation one looks for the most reasonable solution of these equations. One can write
this system of equations in matrix form as

Ax = b,

where A = (aij) is an m × n matrix, x = (x1, . . . xn)
T is an n-dimensional column vector, and

b = (b1, . . . bm)T is an m-dimensional column vector. While this equation is unsolvable, one may
look for a vector x for which the norm of the vector b− Ax is the smallest possible. One can take
various vector norms; we will discuss the case of l2 norm.132 The square of the l2 norm of the vector
b−Ax can be written as

M =

m
∑

i=1

(

bi −
n
∑

j=1

aijxj

)2

.

The minimum of this will occur when the partial derivatives of M with respect to each of the
quantities xk (1 ≤ k ≤ n) are zero:

∂M

∂xk
= −2

m
∑

i=1

aik

(

bi −
n
∑

j=1

aijxj

)

= 0 (1 ≤ k ≤ n).

In matrix form, this equation can be written, with T in superscript indicating transpose, as−2AT (b−
Ax) = 0, or else as

ATAx = ATb.

These represent n equations for n unknowns, and in principle they are solvable for x. The problem
is that the matrix ATA is usually ill-conditioned. Hence, we will seek another way to solve the
problem of minimizing the l2 norm of the vector b−Ax.

An n × n matrix Q is called orthogonal if QTQ = I, where I is the identity matrix of the same
size.133 In this case, QT is the inverse of the matrix Q, and so we also have QQT = I. If Q1 and
Q2 are orthogonal matrices then Q1Q2 is also orthogonal, since (Q1Q2)

T = QT
2Q

T
1 , and so

(Q1Q2)
TQ1Q2 = QT

2Q
T
1Q1Q2 = QT

2 IQ2 = QT
2Q2 = I.

If Q is an orthogonal n× n matrix, then for any n-dimensional column vector x we have ‖Qx‖2 =
‖x‖2. Indeed,

‖Qx‖22 = (Qx)T (Qx) = xTQTQx = xTx = ‖x‖22.
In other word, multiplication on the left by Q is an isometry .134

Given an n-dimensional column vector v such that vTv = 1, the matrix

H = Hv = I − 2vvT

is symmetric and orthogonal. Indeed,

HT = IT − 2(vvT )T = I − 2(vT )TvT = I − 2vvT = H.

132The l2 norm ‖v‖2 of the vector v = (v1, . . . , vn)T is the square root of
∑n

i=1 v
2
i .

133The reason for calling these matrices orthogonal is that for any two distinct column vectors x and y of such a
matrix we have xTy = 0; i.e., such vectors are perpendicular, or orthogonal. The word perpendicular is rarely used
for vectors of dimension greater than three; the word orthogonal literally means having a right angle.

134An isometry is a transformation of a space that leaves the distance between two points unchanged. In the

present case, the distance between points represented by position vectors (i.e., vectors with initial points at the origin
and endpoints at the given points) x and y is ‖y − x‖2.
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Furthermore,

HTH = HH = (I − 2vvT )2 = I − 2 · 2vvT + 4vvTvvT

= I − 4vvT + 4v(vTv)vT = I − 4vvT + 4vvT = I;

the parenthesis in the third term of the fifth member can be placed anywhere since multiplication
of matrices (and vectors) is associative, and the fifth equation holds since vTv = 1. The matrix H
is called a Householder transformation. Given two vectors x and y with ‖x‖2 = ‖y‖2 and x 6= y,
there is a Householder transformation that maps x to y and y to x. Namely, if one takes

v =
x− y

‖x− y‖2
,

then Hv maps x to y. Indeed,

Hvx =

(

I − 2
x− y

‖x− y‖2
· (x− y)T

‖x− y‖2

)

x =

(

I − 2
(x− y)(xT − yT )

(x− y)T (x− y)

)

x

=

(

I − 2
(x− y)(xT − yT )

xTx− xTy − yTx+ yTy

)

x = x− 2
(x− y)(xTx− yTx)

xTx− xTy − yTx+ yTy
.

In the denominator on the right-hand side we have xTx = ‖x‖22 = ‖y‖22 = yTy in view of our
assumption, and, noting that xTy is a scalar, and so it equals its own transpose, we have xTy =
(xTy)T = yTx; hence the denominator on the right equals 2xTx−2yTx (note that this denominator
equals ‖x− y‖22, so it is not zero by our assumptions). Thus, the right-hand side equals

x− (x− y) = y,

showing that Hvx = y, as we wanted to show.
In finding the solution x of the equation Ax = b for which the norm ‖b −Ax‖2 of the error is

minimal,135 we will find an orthogonal matrix P of size m ×m for which PA has form (RT ,0T )T

such that R is an n×n upper triangular matrix and 0 is an n× (m−n) matrix with all its entries 0.
Write Pb = (cT ,dT )T , where c is an n-dimensional column vector and d is an m − n-dimensional

column vector. For the vector r
def
= b−Ax we then have

Pr =

(

c

d

)

−
(

R
0

)

x =

(

c−Rx
d

)

.

We have ‖r‖2 = ‖Pr‖2 since P is an orthogonal matrix. Hence, for the square of ‖r‖2 we have

‖r‖22 =

∥

∥

∥

∥

(

c−Rx
d

)∥

∥

∥

∥

2

2

= ‖c−Rx‖22 + ‖d‖22.

This will be minimal when c−Rx = 0. Thus, in order to minimize the norm of r, we have to solve
the equation

Rx = c.

The orthogonal matrix P will be found as the product of Householder matrices Hv of size m ×m.
Starting with the matrixA, we will form the matricesA1 = Hv1

A, A2 = Hv2
A1, . . . , An = Hvn

An−1,
and we will write P = Hvn

Hvn−1
. . . Hv1

. Since the product of orthogonal matrices is orthogonal,

135Such a solution is called the least square solution of the system of equations.
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P will be orthogonal. In the matrix Ak = (a
(k)
ij )1≤i≤m

1≤j≤n
the elements below the main diagonal in the

first k column will be 0. It will be seen that the process will not break down provided the columns
of the starting matrix A are linearly independent. This assumption will also guarantee that the
diagonal elements of the triangular matrix R in the upper square of the matrix PA are nonzero, and
so the equation Rx = c is solvable.136

Starting with the matrix A, we look for a Householder transformation that maps the first column
x = a1 of the matrix A to the m-dimensional vector y = (±||a1||2, 0, . . . , 0)T . This is possible, since
the two vectors have the same length. The sign ± is chosen to be the opposite of that of a11, so that
the first components of x and y get added in absolute value when forming the vector

v1 =
x− y

‖x− y‖2
,

for the Householder transformation Hv1
. Assume that we have formed the matrix Ak−1 in such a

way that all elements in the first k − 1 columns below the main diagonal of Ak−1 are zero. We will
choose the vector vk in such a way that the first k − 1 components of vk will be zero. In this case,
with I denoting the m×m identity matrix, the Householder matrix

Hvk
= I − 2vkv

T
k

will have zeros in the first k − 1 rows and columns except for ones in the main diagonal. Thus, in
the product Ak = Hvk

Ak−1, the first k − 1 columns of the matrix Ak−1 will not change.

To see this, note that the verbal description just given for Hvk means that this matrix can be written in block
matrix form as

Hvk =

(

I 0

0 H

)

,

where the matrix is partitioned into k − 1 and m− k + 1 rows and k − 1 and m− k + 1 columns. Here I denotes an
identity matrix, and the two 0’s indicate zero matrices, each of the appropriate size.137 The matrix Ak−1, partitioned
into k − 1 and m− k + 1 rows and k − 1 and n− k + 1 columns, can be written as

Ak−1 =

(

U B
0 C

)

,

where U is an upper diagonal square matrix, and 0 is a zero matrix, each of the appropriate size.138 This equation
expresses the fact that the the elements in the first k − 1 columns of Ak−1 under the main diagonal are zero. Now,

Ak = HvkAk−1 =

(

I 0

0 H

)(

U B
0 C

)

=

(

IU + 00 IB + 0C
0U +H0 0B +HC

)

=

(

U B
0 HC

)

;

136This latter assertion is easy to see. If the kth diagonal element of the triangular matrix R is zero, then the
rows of the block formed by the intersection of the first k rows and first k columns of R are linearly dependent, since
the kth row of this block consists entirely of zeros. Hence its columns are also linearly dependent. Hence the first

k columns of the whole matrix R are linearly dependent, since the entries in these columns outside the block just
described are all zero. Thus the columns of R are linearly dependent; therefore the columns of PA are also linearly
dependent, since these columns outside R contain only zero entries. On the other hand, P being an orthogonal

matrix, it is invertible. Hence, assuming that the columns of A are linearly independent, the columns of the matrix
PA cannot be linearly dependent, since a zero linear combination of the columns (which can be written as the equation
PAy = 0, with the components of the column vector y being the coefficients of such a linear combination) of this
matrix would be mapped by P−1 to a zero linear combination of the columns of the matrix A = P−1(PA) (that is,

Ay = P−1(PAy) = P0 = 0).
137Thus, I here is the (k − 1) × (k − 1) unit matrix, the 0 to the right is the (k − 1) × (m − k + 1) zero matrix,

the 0 below I is the (m− k + 1)× (k − 1) zero matrix, and H is an (m− k + 1)× (m− k + 1) matrix. H is actually
a Householder matrix, but this fact will not be used directly.

138Thus, the size of U is (k − 1) × (k − 1), that of 0 is (m − k + 1) × (k − 1), that of B is (k − 1) × (n − k + 1),
and that of C is (m− k + 1)× (n− k + 1)
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here the right-hand side is partitioned into k − 1 and m − k + 1 rows and k − 1 and m − k + 1 columns, i.e., the

same way as Ak−1 was partitioned. This shows that the first k − 1 columns of Ak−1 and Ak are indeed identical, as
claimed.

That is, the matrix Ak will have zeros in the first k − 1 columns below the main diagonal, since
the same was true for Ak−1. To make sure that in Ak the kth column also has zeros below the main
diagonal, choose a Householder transformation that maps the kth column

x = a
(k−1)
k =

(

a
(k−1)
1k , . . . , a

(k−1)
mk

)T

to

y = a
(k)
k =



a
(k−1)
1k , . . . , a

(k−1)
k−1 k,±

√

√

√

√

m
∑

i=k

(a
(k−1)
ik )2, 0 . . . , 0





T

,

where the zeros occupy the last m− k positions (i.e., all the positions corresponding to places below
the main diagonal of the kth column. These two vectors having the same l2 norms, there is a
Householder transformation mapping x to y. The ± sign is chosen to be the opposite of the sign of

a
(k−1)
kk , so that, when forming the difference

v̄ = x− y =



0, . . . , 0, a
(k−1)
kk ∓

√

√

√

√

m
∑

i=k

(a
(k−1)
ik )2, a

(k−1)
k+1 k, . . . , a

(k−1)
mk





T

,

quantities of the same sign are added in the kth component, so as to maximize the norm of the
vector v. Then we form the Householder transformation Hvk

with the vector

vk =
1

‖v̄‖2
v̄.

This process will break down only if the norm in the denominator here is zero, that is, if we

have a
(k−1)
ik = 0 for i ≥ k. This means that the first k columns of the matrix Ak−1 are linearly

dependent, since these columns have nonzero elements only in the first k − 1 places, and k vectors
of k − 1 dimension must be linearly dependent. Thus the columns of the matrix Ak−1 are linearly
dependent; this can only happen if the columns of the starting matrix A are linearly dependent,
since Ak−1 = P ′A for some orthogonal matrix (see the footnote above). Thus this algorithm of
triangularizing the top square of A will not fail if the columns of A are linearly independent.

The method will work even if A is a square matrix, giving a new way of triangularizing a matrix
without row interchanges. This gives a new way of solving the equation Ax = b even for square
matrices. However, the method is much more expensive in calculation than Gaussian elimination.

In programming the method, the header file household.h is used:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6 #define square(x) ((x)*(x))

7

8 int household(double **a,double **p,int m,int n);

9 void pb(double **p, double *b, int m, int n);

10 void triangsolve(double **a, double *b, double *x, int n);
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11 double **allocmatrix(int m, int n);

12 double *allocvector(int n);

On line 5 the absolute value, and on line 6 the square is defined. The function declarations in lines
8–12 will be discussed below. The memory allocation functions are described in the file alloc.c:

1 #include "household.h"

2

3 double **allocmatrix(int m, int n)

4 /* Allocate matrix. The following code segment allocates

5 a contiguous block of pointers for the whole matrix

6 of size m times n. */

7 {
8 int i;

9 double **a;

10 a=(double **) malloc((size_t)((m+1)*sizeof(double*)));

11 if (!a) {
12 printf("Allocation failure 1 in matrix\n");

13 exit(1);

14 }
15 /* Allocate the whole matrix: */

16 a[1]=(double *) malloc((size_t)(m*(n+1)*sizeof(double)));

17 if (!a[1]) {
18 printf("Allocation failure 2 in matrix\n");

19 exit(1);

20 }
21 /* Initialize the pointers pointing to each row: */

22 for (i=2; i<=m; i++) a[i]=a[i-1]+n+1;

23 /* Save the beginning of the matrix in a[0]; the

24 rows will be interchanged, the values of a[i]

25 for 1<=i<=n may change: */

26 a[0]=a[1];

27 return a;

28 }
29

30 double *allocvector(int n)

31 {
32 double *b;

33 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

34 if (!b) {
35 printf("Allocation failure 1 in vector\n");

36 exit(1);

37 }
38 return b;

39 }
The function allocmatrix in lines 3–38 differs from the earlier function allocmatrix discussed on
account of Gaussian elimination in that the matrix allocated here has size m×n. This changes very
little; on line 10, m+ 1 pointers are allocated, and in line 16, the size of the allocated block for the
matrix is m(n+ 1) (no memory needs to be allocated to the pointed a[0]; this pointer only needed
for freeing the memory, and on line 22, each row pointer is incremented by n + 1. The function
allocvector in lines 30–39 is identical to the function by the same name discussed on account of
Gaussian elimination. The file household.c contains the main functions implementing the method:
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1 #include "household.h"

2

3 int household(double **a,double **p,int m,int n)

4 /* The matrices are size m times n */

5 {
6 const double near_zero=1e-20;

7 int i,j,k,l,success;

8 double **c, norm;

9 c=allocmatrix(m,n);

10 success=1;

11 for(k=1;k<=n;k++) {
12 /* The entries of the matrix p could be stored in

13 the entries of the matrix a except for its main

14 diagonal -- at the price of some loss of

15 transparency in the method. The next line is

16 commented out, since it is superfluous. It

17 stores 0’s in a part of the matrix p that is

18 supposed to be zero; but since these entries

19 of p are never used, it is not necessary to

20 do this.

21 for (i=1;i<k;i++) p[i][k]=0.; */

22 p[k][k]=0.;

23 for (i=k;i<=m;i++) p[k][k] += square(a[i][k]);

24 p[k][k]=sqrt(p[k][k]);

25 if ( a[k][k]<0. ) p[k][k]=-p[k][k];

26 p[k][k] += a[k][k];

27 if (absval(p[k][k])<=near_zero) {
28 success=0;

29 break;

30 }
31 for (i=k+1;i<=m;i++) p[i][k]=a[i][k];

32 norm=0.;

33 for (i=k;i<=m;i++) norm += square(p[i][k]);

34 norm=sqrt(norm);

35 for (i=k;i<=m;i++) p[i][k] /= norm;

36 for (i=k;i<=m;i++)

37 for (j=k;j<=n;j++) {
38 c[i][j]=a[i][j];

39 for (l=k;l<=m;l++)

40 c[i][j] -= 2.*p[i][k]*p[l][k]*a[l][j];

41 }
42 for (i=k;i<=m;i++)

43 for (j=k;j<=n;j++) a[i][j]=c[i][j];

44 }
45 free(c[0]);

46 free(c);

47 return success;

48 }
49

50 void pb(double **p, double *b, int m, int n)

51 {
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52 int i,j,k,l;

53 double *c;

54 c=allocvector(m);

55 for(k=1;k<=n;k++) {
56 for (i=k;i<=m;i++) {
57 c[i]=b[i];

58 for (l=k;l<=m;l++) c[i] -= 2.*p[i][k]*p[l][k]*b[l];

59 }
60 for (i=k;i<=m;i++) b[i]=c[i];

61 }
62 free(c);

63 }
64

65 void triangsolve(double **a, double *b, double *x, int n)

66 {
67 int i,j,k,l;

68 x[n]= b[n]/a[n][n];

69 for (i=n-1;i>=1;i--) {
70 x[i]=b[i];

71 for (j=i+1;j<=n;j++) x[i] -= a[i][j]*x[j];

72 x[i] /= a[i][i];

73 }
74 }

The function household in lines 3–63 implements the Householder transformation of the matrix
**a, the first parameter of this function. The next parameter **p contains the column vectors vk

1 ≤ k ≤ n for the Householder transformations Hvk
.139 The last two parameters, m and n, contain

the size of the matrix. The function returns 1 is the calculation is successful, otherwise it returns 0.
The loop in lines 11–44 deals with the kth column of the matrix **a. In line 21, zeros are placed in
the first k places of the column vector p[.][k], but note that this line is commented out, so it has
no effect. It perhaps makes the program easier to read by a human reader, or perhaps it could be
useful in a modification of the method. In lines 22–31, the column vector v̄ is calculated in the kth
column of the matrix **p, and in lines 31–34 the norm of this vector is calculated. Before calculating
the norm, in line 27 it is tested whether p[k][k] is too close to zero (the constant near_zero is set
to 10−20; if it is, the norm of this vector will also be too close to 0. In this case, the variable success
will be set to 0 (false) (it was set to 1 on line 10); the calculation is then abandoned on line 29.
Finally the vector is divided by its norm in line 35 to obtain the vector vk. In line 9, a matrix **c

is allocated, to hold a temporary copy of the matrix **a while doing the matrix calculations. The
calculation of the product Hvk

Ak−1 is performed in lines 36–41; the result is placed in the matrix
**c, and in lines 42–43, this result is copied into the matrix **a. The matrix **c is freed in lines
45–46, and the integer success is returned on line 47.

The function pb in lines 50–63 has the matrix **p as its first parameter, the second parameter is
the column vector *b, the last two parameters m and n indicate the size of the matrix. When calling
this function, the matrix **p is expected to contain the Householder transformations in its columns
representing the matrix P (P is the product of these Householder transformations). *b contains the
right-hand side of the equation Ax = b when the function is called, and it will contain the vector
Pb when the function returns. The calculation in lines 55–61 parallels those in lines 35–44. In line
44, memory for a vector *c is allocated for temporary storage, and this memory freed in line 62.

139At some loss of transparency, it might be possible to store the matrix **p in the part of the matrix **a that will
become zero, but arranging this is considerably more complicated than in the case of Gaussian elimination; besides,

the columns of the matrix **p contain one more nonzero element that there are available spaces, so the matrix **a

would need to be enlarged by one row to make this possible.
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The function triangsolve in lines 65–74 solves a system of linear equation whose left-hand side is
represented by a triangular matrix; the method, backward substitution, was described on account
of Gaussian elimination.

1 #include "household.h"

2

3 main()

4 {
5 /* This program reads in the coefficient matrix

6 of a system of linear equations. The first

7 entry is m, the number of equations, and

8 second entry is n, the number of unknowns.

9 The rest of the entries are the coefficients

10 and the right-hand sides; there must be m(n+1)

11 of these. The second entry must be an unsigned

12 integer, the other entries can be integers or

13 reals. */

14 double **a, *b, **p, *x;

15 int i, j, m, n, readerror=0, success;

16 char s[25];

17 FILE *coefffile;

18 coefffile=fopen("coeffs", "r");

19 fscanf(coefffile, "%u", &m);

20 fscanf(coefffile, "%u", &n);

21 /* Create pointers to point to the rows of the matrix: */

22 a=allocmatrix(m,n);

23 /* Allocate right-hand side */

24 b=allocvector(m);

25 for (i=1;i<=m;i++) {
26 if ( readerror ) break;

27 for (j=1;j<=n+1;j++) {
28 if (fscanf(coefffile, "%s", s)==EOF) {
29 readerror=1;

30 printf("Not enough coefficients\n");

31 printf("i=%u j=%u\n", i, j);

32 break;

33 }
34 if ( j<=n ) {
35 a[i][j]=strtod(s,NULL);

36 }
37 else b[i]=strtod(s,NULL);

38 }
39 }
40 fclose(coefffile);

41 if ( readerror ) printf("Not enough data\n");

42 else {
43 p=allocmatrix(m,n);

44 success=household(a,p,m,n);

45 if ( success ) {
46 x=allocvector(n);

47 pb(p,b,m,n);

48 triangsolve(a,b,x,n);
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49 printf("The solution is:\n");

50 for (i=1;i<=n;i++)

51 printf("x[%3i]=%16.12f\n",i,x[i]);

52 free(x);

53 }
54 else

55 printf("The solution could not be determined\n");

56 free(p[0]);

57 free(p);

58 }
59 /*

60 printf("\n");

61 for (i=1;i<=m;i++) {
62 for (j=1;j<=n;j++)

63 printf("%5.2f ",a[i][j]);

64 printf(" %5.2f\n",b[i]);

65 }
66 */

67 free(a[0]);

68 free(a);

69 free(b);

70 }

In line 20 the file coeff is opened, then the coefficients are read in. The first two entries of the
file contain the size of the coefficient matrix, the rest of the entries contain the coefficients. In lines
25–39, the coefficients are read, and the file is closed on line 40. If there was a reading error (because
the end of file was reached before the expected number of data were read, no calculation is done.
Otherwise, lines 42–58 are executed. In line 43, the matrix **p is allocated to contain the vectors
describing the Householder transformations, then the function household is invoked to calculate the
entries of the matrix **p and triangularize the top square of the matrix **a. If this function was
successful, then lines 45–43 are executed. In line 46, the vector *x to contain the solution of the
equations is allocated memory space (this is freed on line 52), the right-hand side of the equation
is calculated on line 47, and the equations are solved on line 48, and then the solutions are printed
out. The matrix **p is freed in lines 56–57. In lines 60–65 the entries of the transformed matrix **a

are printed out; however, these lines are commented out, so nothing is actually done here. These
lines were useful for debugging, and rather than deleting them, they are only commented out. In a
later modification of the program, they can again be useful for debugging. The matrix **a and the
vector *b are freed in lines 67–69.

The program was run with the following input file coeffs:

1 12 10

2 2 3 5 -2 5 3 -4 -2 1 2 -3

3 1 4 -2 -1 3 -2 1 3 4 1 2

4 3 -1 2 1 3 -1 2 3 2 -1 -1

5 9 -2 -1 -1 4 2 3 -1 1 4 8

6 -1 2 -1 2 -1 3 -1 -3 -4 2 -3

7 -4 -5 2 3 1 1 2 3 -1 -1 -4

8 -1 -4 -2 3 4 1 2 -4 -3 -8 3

9 -9 -4 -3 -1 9 -2 -2 -3 4 8 2

10 -1 -2 9 8 -7 -8 2 -4 3 1 5

11 8 -7 7 0 3 -5 3 -2 4 9 7

12 9 -6 8 1 2 -4 6 -3 5 8 9
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13 -6 -4 -2 2 8 2 -3 -1 3 6 5

It is important to keep in mind that the first column represent line numbers and is not part of the
file. The program produced the following printout:

1 The solution is:

2 x[ 1]= 0.708141957416

3 x[ 2]= -0.677022884362

4 x[ 3]= -0.948640836111

5 x[ 4]= 0.611332408213

6 x[ 5]= -0.508849337986

7 x[ 6]= 0.471529531514

8 x[ 7]= -0.325609870356

9 x[ 8]= -0.863288481097

10 x[ 9]= 1.870101220300

11 x[ 10]= -0.173441867530

Problem

1. Describe what an orthogonal matrix is.

39. THE POWER METHOD TO FIND EIGENVALUES

Let n > 1 be an integer. Given an n× n matrix A, an n-dimensional nonzero column vector v is
called an eigenvector of A if there is a complex number λ such that

Av = λv.

The number λ is called an eigenvalue140 of A. Writing I for the n × n identity matrix, the above
equation can be written as

(A− λI)v = 0.

If ai denotes the ith column vector of A, ei denotes the ith column of the identity matrix I, and vi
denotes the ith component of v, then this equation can also be written as

n
∑

i=1

vi(ai − λei) = 0;

i.e., the vectors ai−λei (1 ≤ i ≤ n) are linearly dependent. In other words, the determinant formed
by these column vectors

p(λ) = det(A− λI)

is zero. p(λ) is a polynomial of λ of degree n. The coefficients of this polynomial of course depend on
the entries of the matrix A. This polynomial is called the characteristic polynomial of the matrix, and
the equation p(λ) = 0 is called its characteristic equation. The characteristic equation has n solutions
(which are usually complex numbers) when these solutions are counted with their multiplicities. The
multiplicity of a solution of the characteristic equation is also called the multiplicity of the same

140The German word eigen means something like owned by self. Thus, eigenvalue of a matrix would mean
something like a special value owned by the matrix. There have been attempts to translate the term eigenvalue into

English as characteristic value or proper value. The former expression is sometimes used, the latter is almost never; in
any case, the the mixed German-English term eigenvalue predominates in English (the German term is Eigenwert).
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eigenvalue. Thus an n× n matrix has n eigenvalues when these eigenvalues are counted with their
multiplicities.

If the eigenvalues λ1, λ2, . . . , λm (there may also be other eigenvalues) of an n × n matrix are
distinct, then the corresponding eigenvectors are linearly independent. Indeed, writing vi (1 ≤ i ≤
m) for the corresponding eigenvectors,141 assume that we have

m
∑

i=1

αivi = 0,

where not all the numbers αi are zero. Assume that the αi’s here are so chosen that the smallest
possible number among them is not zero. Let the number of nonzero coefficients among the αi be
k, where 1 ≤ k ≤ n. By rearranging the vectors and the corresponding eigenvalues, we may assume
that αi 6= 0 for i with 1 ≤ i ≤ k and αi = 0 for k < i ≤ m, where k ≥ 1. That is,

k
∑

i=1

αivi = 0.

Of course, k = 1 is not possible here, since it would mean that v1 = 0, whereas we assumed that an
eigenvector cannot be the zero vector. Multiplying this equation by the matrix A on the left, and
noting that Avi = λivi, we obtain

k
∑

i=1

αiλivi = 0.

Multiplying the former linear relation by λk and subtracting from it the latter, we obtain

k−1
∑

i=1

(αiλk − αiλi)vi = 0.

None of the coefficients αiλk − αiλi (1 ≤ i ≤ k − 1) is zero, since λi 6= λk by our assumption. This
relation contradicts the minimality of k.

That an n× n matrix does not need to have n linearly independent eigenvectors is shown by the
matrix

(

1 1
0 1

)

.

The characteristic polynomial of this matrix is
∣

∣

∣

∣

1− λ 1
0 1− λ

∣

∣

∣

∣

= (λ− 1)2,

so 1 is a double eigenvalue of this matrix, and so its only eigenvalue. The equation
(

1 1
0 1

)(

v1
v2

)

= λ

(

v1
v2

)

with λ = 1 can be written as142

v1+v2 = v1,

v2 = v2.

The only solution of these equations is v2 = 0 and v1 is arbitrary. That is, aside from its scalar
multiples, (1, 0)T is the only eigenvector of the above matrix.143

141In case λi is a multiple eigenvalue (i.e., if it is a multiple root of the characteristic equation), then the eigenvector
vi may not be unique.

142We must have λ = 1 in this equation since 1 is the only eigenvalue of the above matrix.
143vT is the transpose of the vector v. When describing a column vector, one can save space by writing it as the

transpose of a row vector.
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The companion matrix of a polynomial. Let

p(λ) = λn +

n−1
∑

k=0

akλ
k = λn + an−1λ

n−1 + . . .+ a1λ+ a0 (n ≥ 1)

be a polynomial . The n× n matrix

A =













0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
...

...
...

...
...

...
0 0 0 . . . 1 −an−1













is called the companion matrix of the polynomial p (for n = 1 take A = −a0). The interesting
point is that the characteristic polynomial of the matrix A is (−1)np(λ). The importance of the
companion matrix is that any method to find eigenvalues of a matrix can be used as a method to
find zeros of polynomials.

We are going to prove the above statement about the characteristic polynomial of the matrix A.
To do this, we have to show that the determinant

det(A− λI) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 0 . . . 0 −a0
1 −λ 0 . . . 0 −a1
0 1 −λ . . . 0 −a2
...

...
...

...
...

...
0 0 0 . . . 1 −λ− an−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

equals (−1)np(λ). To this end, assuming n > 1 first, we will expand this determinant by its first
row (see the Theorem on p. 158 in Section 34 on determinants). We obtain that this determinant
equals

−λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 0 0 . . . 0 −a1
1 −λ 0 . . . 0 −a2
0 1 −λ . . . 0 −a3
...

...
...

...
...

...
0 0 0 . . . −λ −an−2

0 0 0 . . . 1 −λ− an−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ (−1)n+1(−a0)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −λ 0 . . . 0 0
0 1 −λ . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 −λ
0 0 0 . . . 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The first determinant is the of form det(A1 − λI) where the (n− 1)× (n− 1) matrix A1 is obtained
from the matrix A by deleting the first row and the first column of A. So we can make the induction
hypothesis that this determinant equals (−1)n−1p1(λ), where

p1(λ) = λn−1 +
n−2
∑

k=0

ak+1λ
k = λn−1 + an−1λ

n−2 + . . .+ a2λ+ a1.

The second determinant is 1, since it is the determinant of a triangular matrix, so the value of this
determinant is just the product of this diagonal elements. Hence it follows that indeed

det(A− λI) = −λ · (−1)n−1p1(λ) + (−1)n+1(−a0) = (−1)np(λ).

To complete the proof by induction, one needs to check that the statement is true for n = 1. In this
case A is the determinant of the 1 × 1 matrix (−a0), so det(A − λI) = det(−a0 − λ) = −(λ + a0),
verifying the assertion also in this case. Another proof can be given by expanding the determinant
of the matrix A− λI by its last column; see Problem 8 below.



39. The power method to find eigenvalues 187

The power method. Let A be an n× n matrix with real numbers as entries. We will assume
that the eigenvectors of the matrix A span the vector space Rn, and all its eigenvalues are real; in
this case, the components of the eigenvectors are also real.144 In an important case, namely when
A = (aij) is a symmetric matrix, i.e., when aij = aji, this is valid. We will also assume that the
matrix A has a single eigenvalue of largest absolute value. That is, we assume that A has a real
eigenvalue λ of multiplicity 1 such that for all other eigenvalues ρ we have |ρ| < |λ|.145 If this is the
case, one can determine the eigenvalue of the matrix by what is called the power method.

To describe the method, assume that the eigenvalues of A are λi, 1 ≤ i ≤ n, and assume that
|λ1| > |λi| for all i with 2 ≤ i ≤ n. We do not assume that the λi’s for i with 2 ≤ i ≤ n are distinct.
Let vi, 1 ≤ i ≤ n be the corresponding eigenvectors. Let x(0) be an arbitrary n-dimensional column
vector; for lack of a better choice, we may choose

x(0) = (1, 1, . . . , 1)T .

As we assumed that the eigenvectors are linearly independent, we have

x(0) =

n
∑

i=1

α
(0)
i vi

for some numbers α
(0)
i . If α

(0)
1 = 0, our choice for x(0) is unlucky, and we must choose another

starting value.146

We form the vectors

(1) x(k) =

n
∑

i=1

α
(k)
i vi

and u(k) as follows. We start with the arbitrarily chosen vector x(0), already discussed above. If
x(k) has already been determined, we put

u(k+1) def
= Ax(k) =

n
∑

i=1

λiα
(k)
i vi

and, denoting by µk+1 the component of largest absolute value of the vector u(k+1),147 we put

x(k+1) =
n
∑

i=1

α
(k+1)
i vi =

1

µk+1
u(k+1) =

n
∑

i=1

λiα
(k)
i

µk+1
vi,

This step normalizes the vector x(k+1); that is, it ensures that the component of largest absolute
value of x(k+1) is 1. As the vectors vi were assumed to be linearly independent, the last displayed
equation means that

α
(k+1)
i =

λiα
(k)
i

µk+1
for each i with 1 ≤ i ≤ n.

144This is easy to see. The components of the eigenvector v corresponding to the eigenvalue λ are the coefficients
of a linear combination showing that the column vectors of the matrix A − λI are linearly dependent. Given that

these column vectors are in a vector space over the real numbers, these coefficients can be chosen to be real.
145The method converges even if λ has multiplicity greater than 1. We need to assume, however, that λ is real.
146If we perform the procedure described below in exact arithmetic, then the vectors obtained during the procedure

will all be inside the subspace spanned by v2, . . . , vn, and thus we will not be able to determine the eigenvalue λ1.

In practice, roundoff errors will lead us out of the subspace spanned by v2, . . . , vn, and so the procedure may still
converge to the largest eigenvalue, albeit slowly.

147If there is more than one component of u(k+1) of the largest absolute value, pick µk+1 to be the first one (i.e.,
the one with the smallest subscript) among them.
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Thus
α
(k+1)
i

α
(k+1)
1

=
λi
λ1

α
(k)
i

α
(k)
1

.

for each i with 1 ≤ i ≤ n. The case i = 1 is of course of no interest. Using this equation repeatedly,
we obtain

α
(k)
i

α
(k)
1

=

(

λi
λ1

)k
α
(0)
i

α
(0)
1

.

We assumed that λ1 has absolute value larger than any other eigenvalue Thus,

lim
k→∞

α
(k)
i

α
(k)
1

=
α
(0)
i

α
(0)
1

· lim
k→∞

(

λi
λ1

)k

= 0

for each i with 2 ≤ i ≤ n. Hence, according to (1), we have148

lim
k→∞

1

α
(k)
1

x(k) =
n
∑

i=1

α
(k)
i

α
(k)
1

vi = v1.

As the component of the largest absolute value of x(k) is 1, it follows that the limit

(2) α1
def
= lim

k→∞
α
(k)
1

exists,149 and α1 6= 0, at least in case v1 has a single component of the largest absolute value.
Indeed, if v1,r is this component of v1 then the component of the largest absolute value of x(k) is

x
(k)
r = 1 for large enough k, and

lim
k→∞

1

α
(k)
1

x(k)r = v1,r.

The limit in (2) is likely to exist even if v1 has several components of the largest absolute value.
To ensure this it was important to always pick the first component of the largest absolute value of
u(k+1) as µk+1, though even this may not be enough to guarantee the existence of the limit in (2).

What may happen is that the components of v1 of the largest absolute value are v1,r and v1,s with v1,r = −v1,s,
and for large k the largest component of u(k+1) is its rth or sth component, depending on the value of k. Even in
this case the limit

α′
1 = lim

k→∞
|α(k)

1 |

will exist, and with slight modifications of the description given here one can still determine the eigenvector v1 and
the associated eigenvalue λ1. In such a modification, instead of choosing the component of the largest absolute value
of u(k+1), for large k one would always choose the same component of u(k+1), and one would be satisfied if this

component is close to having the largest absolute value among the components of u(k+1).

If the limit in (2) exists, for large n we have x(k) ≈ α1v1. Since any nonzero scalar multiple
of the eigenvector v1 is an eigenvector, this means that x(k) is nearly an eigenvector of A for the
eigenvalue λ1. This allows us to (approximately) determine λ1 and a corresponding eigenvector.

In writing a program to calculate the eigenvalue of an n× n matrix using the power method, we
use the header file power.h:

148The limit z = limk→∞ z(k) of a sequence of vectors can be defined componentwise, that is, by saying that the
limit of each component of the vector z(k) is the corresponding component of the z.

149When a limit is infinite, we also say that the limit does not exist; so, by saying that the limit exists, we are also
saying that it is finite.
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1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6

7 double **allocmatrix(int n);

8 double *allocvector(int n);

9 int power(double **a, double *x, int n, double *lambda,

10 float tol, int maxits, int *success);

This file defines the absolute value function on line 5, and contains the declarations of the functions
used in the program in lines 7–10. The file alloc.c is almost the same as the one that was used for
Gaussian elimination:

1 #include "power.h"

2

3 double **allocmatrix(int n)

4 /* Allocate matrix. The following code segment allocates

5 a contiguous block of pointers for the whole matrix.

6 There is no real advantage for this here, because with

7 pivoting, rows will be interchanged. So memory for rows

8 could be allocated separately. On the other hand, even

9 the largest matrix for which Gaussian elimination

10 is feasible occupies a relatively modest amount of

11 memory, there does not seem to be any disadvantage

12 in asking for a contiguous block. */

13 {
14 int i;

15 double **a;

16 a=(double **) malloc((size_t)((n+1)*sizeof(double*)));

17 if (!a) {
18 printf("Allocation failure 1 in matrix\n");

19 exit(1);

20 }
21 /* Allocate the whole matrix: */

22 a[1]=(double *) malloc((size_t)(n*(n+1)*sizeof(double)));

23 if (!a[1]) {
24 printf("Allocation failure 2 in matrix\n");

25 exit(1);

26 }
27 /* Initialize the pointers pointing to each row: */

28 for (i=2; i<=n; i++) a[i]=a[i-1]+n+1;

29 /* Save the beginning of the matrix in a[0]; the

30 rows will be interchanged, the values of a[i]

31 for 1<=i<=n may change: */

32 a[0]=a[1];

33 return a;

34 }
35

36 double *allocvector(int n)

37 {
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38 double *b;

39 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

40 if (!b) {
41 printf("Allocation failure 1 in vector\n");

42 exit(1);

43 }
44 return b;

45 }
In fact, the only change is line one, which now includes the file power.h rather than gauss.h. The
file power.c contains the function power performing the power method.

1 #include "power.h"

2

3 int power(double **a, double *x, int n, double *lambda,

4 float tol, int maxits, int *success)

5 {
6 int i, j, itcount;

7 double m, max, newx, *y, *u;

8 u=allocvector(n);

9 for (i=1;i<=n;i++) x[i]=1.0;

10 for (itcount=1;itcount<=maxits;itcount++) {
11 /* Form y=Ax abd record maximum element max */

12 max=0.;

13 for (i=1;i<=n;i++) {
14 m=0.;

15 for (j=1;j<=n;j++) m += a[i][j]*x[j];

16 if ( absval(m)>absval(max) ) max=m;

17 u[i]=m;

18 }
19 /* Normalize u and test for convergence */

20 *success=1;

21 for (i=1;i<=n;i++) {
22 newx=u[i]/max;

23 if ( absval(newx-x[i])>tol ) *success=0;

24 x[i]=newx;

25 }
26 if ( *success ) {
27 *lambda=max;

28 break;

29 }
30 }
31 free(u);

32 return itcount;

33 }
The function power introduced in lines 3–4 returns the number of iterations performed. Its param-
eters of include the pointer **a to the coefficients of the matrix A, the vector *x that will store the
components of the eigenvector, the integer n specifying the size of the matrix, the pointer *lambda
to the location where the eigenvalue will be calculated, the tolerance tol, the maximum number of
iterations maxits allowed. and the pointer to the integer success indicating whether the procedure
converged.

On line 8, space is allocated for the vector u. In line 9 the vector x is given the initial value



39. The power method to find eigenvalues 191

(1, 1, . . . , 1)T . The iterations to find the new values of u and x are carried out in the loop in lines
10–30. In lines 13–18, the vector u is calculated, and in lines 21–25, the next value of the vector x
will be calculated. On line 20, *success is set to be 1 (true), but on line 23 it will be made 0 (false)
unless the ith component of the iteration converges; thus, it will stay one on line 26 if the iteration
converged for every value of i. If on line 26 it is found that the iteration converged, *lambda is given
its value as the largest component of u (it is easy to see that this is close to the eigenvalue, since
the largest component of the previous value of x was 1). The vector x at this point will contain an
approximation of the eigenvector, and the loop is exited on line 28. On line 31, the space allocated
for u is freed, and on line 32, the number of iterations is returned.

The function power.c is called in the file main.c:

1 #include "power.h"

2

3 main()

4 {
5 /* This program reads in the elements of a square

6 matrix the eigenvalue of which is sought. The

7 first entry is the required tolerance, and the

8 second entry is n, the size of the matrix. The

9 rest of the entries are the elements of the

10 matrix. The second entry must be an unsigned

11 integer, the other entries can be integers or

12 reals. */

13 double **a, *x, lambda;

14 float tol;

15 int n, i, j, subs, readerror=0, success, itcount;

16 char s[25];

17 FILE *coefffile;

18 coefffile=fopen("coeffs", "r");

19 fscanf(coefffile, "%f", &tol);

20 printf("Tolerance used: %g\n", tol);

21 fscanf(coefffile, "%u", &n);

22 a=allocmatrix(n);

23 for (i=1;i<=n;i++) {
24 if ( readerror ) break;

25 for (j=1;j<=n;j++) {
26 if (fscanf(coefffile, "%s", s)==EOF) {
27 readerror=1;

28 printf("Not enough coefficients\n");

29 printf("i=%u j=%u\n", i, j);

30 break;

31 }
32 a[i][j]=strtod(s,NULL);

33 }
34 }
35 fclose(coefffile);

36 if ( readerror ) printf("Not enough data\n");

37 else {
38 x=allocvector(n);

39 itcount=power(a,x,n,&lambda,tol,100,&success);

40 if ( success ) {
41 printf("%u iterations were used to find"
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42 " the largest eigenvalue.\n", itcount);

43 printf("The eigenvalue is %16.12f\n", lambda);

44 printf("The eigenvector is:\n");

45 for (i=1;i<=n;i++)

46 printf("x[%3i]=%16.12f\n",i,x[i]);

47 }
48 else

49 printf("The eigenvalue could not be determined\n");

50 free(x);

51 }
52 free(a[0]); free(a);

53 }
The matrix A is contained in the file coeffs. The first entry of this file is the tolerance tol, the
second entry is the size n of the matrix (this must be an integer, the first entry must be of type
float, and the rest of the entries can be real numbers such as float or double or integers). The
file coeffs is opened on line 18. After tol and n are read in and printed out in lines 19–21, space
for the matrix A is allocated on line 22. In lines 23–34, the matrix is read in, and on line 35 the file
coeffs is closed. If there were not enough coefficients, an error message is printed out on line 36,
otherwise the calculation is continued in line 37. On line 38, space is allocated for the vector *x; this
will contain the eigenvector of the matrix in the end. On line 39, the power method is called, and, if
successful, the results of the calculation are printed out in line 40–47; otherwise an error message is
printed on line 49. The space reserved for the vector x is freed on line 50 (this must be freed inside
the else statement of lines 37–51, where it was allocated). The space allocated for the matrix is
freed on line 52.

The following input file coeffs was used to run the program:

1 5e-14

2 5

3 1 2 3 5 2

4 3 4 -2 2 3

5 1 1 1 1 -1

6 1 2 1 -1 3

7 2 1 -1 1 2

The output obtained was as follows:

1 Tolerance used: 5e-14

2 28 iterations were used to find the largest eigenvalue.

3 The eigenvalue is 8.310753728109

4 The eigenvector is:

5 x[ 1]= 0.829693363275

6 x[ 2]= 1.000000000000

7 x[ 3]= 0.253187383172

8 x[ 4]= 0.478388026222

9 x[ 5]= 0.457090784061

Problems

1. Question 1. Find the characteristic polynomial of the matrix

A =

(

3 1
4 3

)

.

Question 2. Find the eigenvalues of the matrix A.
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Solution. Question 1. The characteristic polynomial is

p(λ) =

∣

∣

∣

∣

3− λ 1
4 3− λ

∣

∣

∣

∣

= (3− λ)(3− λ)− 1 · 4 = 9− 6λ+ λ2 − 4 = λ2 − 6λ+ 5.

Question 2. The eigenvalues are the solutions of the equation p(λ) = 0. One can use the quadratic
formula to solve this equation; however, the characteristic polynomial is easy to factor:

p(λ) = λ2 − 6λ+ 5 = (λ− 1)(λ− 5).

Thus, the solutions of the equation p(λ) = 0 are λ = 1 and λ = 5; i.e., the eigenvalues of A are 1
and 5.

2. Question 1. Find the characteristic polynomial of the matrix

A =

(

2 2
6 3

)

.

Question 2. Find the eigenvalues of the above matrix.

Solution. Question 1. The characteristic polynomial is

p(λ) =

∣

∣

∣

∣

2− λ 2
6 3− λ

∣

∣

∣

∣

= (2− λ)(3− λ)− 2 · 6 = 6− 5λ+ λ2 − 12 = λ2 − 5λ− 6.

Question 2. The eigenvalues are the solutions of the equation p(λ) = 0. One can use the quadratic
formula to solve this equation; however, the characteristic polynomial is easy to factor:

p(λ) = λ2 − 5λ− 6 = (λ+ 1)(λ− 6).

Thus, the solutions of the equation p(λ) = 0 are λ = −1 and λ = 6; i.e., the eigenvalues of A are −1
and 6.

3. Find the eigenvectors of the matrix

A =





2 3 1
0 1 4
0 0 3



 .

Solution. The eigenvalues of a triangular matrix are the elements in the main diagonal. The easiest
way to see this is to note that the determinant of a triangular matrix is the product of the elements
in the main diagonal. Thus, the characteristic polynomial of the above matrix is

p(λ) =

∣

∣

∣

∣

∣

∣

2− λ 3 1
0 1− λ 4
0 0 3− λ

∣

∣

∣

∣

∣

∣

= (2− λ)(1− λ)(3− λ).

Thus, the eigenvalues, i.e., the solutions of the equation p(λ) = 0, are 2, 1, 3. The eigenvectors are
the solutions of the equations Ax = λx with these values of λ; i.e., the solutions of the equations
Ax = 2x, Ax = x, and Ax = 3x. The equation Ax = 2x can be written as





2 3 1
0 1 4
0 0 3









x1
x2
x3



 = 2





x1
x2
x3



 .
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This equation can be written as

2x1 + 3x2 + x3 = 2x1

x2 + 4x3 = 2x2

3x3 = 2x3

The third equation here can be satisfied only with x3 = 0. Substituting this into the second
equation, this equation becomes x2 = 2x2. This can also be satisfied only with x2 = 0. Substituting
x2 = x3 = 0 into the first equation, this equation becomes 2x1 = 2x1. This is satisfied for any value
of x1. I.e., the eigenvector x corresponding to the eigenvalue 2 is

x = (x1, 0, 0)
T = x1(1, 0, 0)

T .

That is, an eigenvector corresponding to the eigenvalue 2 is

x = (1, 0, 0)T .

As we just saw, any scalar multiple of this is also an eigenvector; this, however, is hardly worth
pointing out, since a scalar multiple of an eigenvector is always an eigenvector.

As for the eigenvector corresponding to the eigenvalue 1, the equation Ax = x can be written as

2x1 + 3x2 + x3 = x1

x2 + 4x3 = x2

3x3 = x3

The third equation here can only be satisfied with x3 = 0. Substituting this into the second equation,
this equation becomes x2 = x2. We might as well choose x2 = 1; any other choice would only give
a scalar multiple of the eigenvector we are going to obtain. Substituting x3 = 0 and x2 = 1 into
the first equation, this equation becomes 2x1 + 3 = x1, i.e., x1 = −3. That is, the eigenvector
corresponding to the eigenvalue 1 is

x = (−3, 1, 0)T .

As for the eigenvector corresponding to the eigenvalue 3, the equation Ax = 3x can be written
as

2x1 + 3x2 + x3 = 3x1

x2 + 4x3 = 3x2

3x3 = 3x3

The third equation here is satisfied for any value of x3. We might as well choose x3 = 1, since any
other choice of x3 would only give a scalar multiple of the eigenvector we are going to obtain. The
second equation then becomes x2 + 4 = 3x2, i.e., x2 = 2. Substituting this into the first equation,
we obtain 2x1 + 3 · 2 + 1 = 3x1, i.e., x1 = 7. This gives the eigenvector

x = (7, 2, 1)T .

Thus, the eigenvectors are (1, 0, 0)T , (−3, 1, 0)T , (7, 2, 1)T , corresponding to the eigenvalues 2, 1,
3, in turn.

4. Find all eigenvectors of the matrix

A =







1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1






.
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Solution. The only eigenvalue of A is 1, since A is a triangular matrix, and the only element in the
main diagonal is 1. The equation Ax = x with x = (x1, x2, x3, x4)

T can be written as

A =







1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1













x1
x2
x3
x4






=







x1
x2
x3
x4






.

This equation can be written as the following system of equations:

x1+x2 = x1

x2+x3 = x2

x3+x4 = x3

x4 = x4

The first equation here implies x2 = 0, the second equation implies x3 = 0, and the third equation
implies x4 = 0. The fourth equation is always satisfied. In the first equation we can take any
value of x1. We must have x1 6= 0, since an eigenvector cannot be the zero vector. Thus we have
x = x1(1, 0, 0, 0)

T . We might as well take x1 = 1 here, since an eigenvector is only determined up
to a scalar multiple. That is, aside from its scalar multiples, (1, 0, 0, 0)T is the only eigenvector.

5. Given the matrix

A =

(

2 1
8 9

)

,

do one step of the power method to determine its eigenvalues, using the starting vector x(0) = (1, 1)T .

Solution. We have
u(1) = Ax(0) = (3, 17)T ,

and

x(1) =
1

17
u(1) =

(

3

17
, 1

)T

.

This gives the first approximation 17 (the component of u(1) with the largest absolute value) to the
largest eigenvalue. The actual values of the eigenvalues are 10 and 1.

6. Explain what it means for a column vector v to be an eigenvector of a square matrix (of the
same size).

7. Assume A is an invertible n × n matrix, and B is an arbitrary n × n matrix. Show that the
matrices AB and BA have the same eigenvalues.

Solution. The eigenvalues of AB are the zeroes of its characteristic polynomial

det(AB − λI),

where λ is the unknown, and I is the n× n identity matrix, and det(C) denotes the determinant of
the matrix C. Noting that we have

det(CD) = det(C) · det(D)
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for any two n× n matrices C and D, we have

det(AB − λI) = det(A(B − λA−1)) = det(A) det(B − λA−1) = det(B − λA−1) det(A)

= det((B − λA−1)A) = det(BA− λI),

showing that the characteristic polynomials of AB and BA are the same.

Note. The result is true even if A is not invertible. In fact, even if A is not invertible, the matrix
A − ηI is invertible except for finitely many values of η (namely, it is invertible exactly when η is
not an eigenvalue of A). So, the matrix A− ηI will be invertible if η 6= 0 is close enough to 0. For
such an η, we have

det((A− ηI)B − λI) = det(B(A− ηI)− λI).

Taking the limit when η → 0, we can see that

det(AB − λI) = det(BA− λI).

Even more generally, one can show that given any commutative ring R and two n × n matrices
A and B over R, the equation

det(AB − λI) = det(BA− λI).

is an identity in the polynomial ring R[λ]. This follows from from the fact that this is an identity
over the ring of integers, usually denoted as Z (we mean Z itself and not the polynomial ring Z[λ];
that is, λ in this latter context is an integer, and not an abstract variable). See Section 1.1 in [Ma,
p. 2].

8. Show that the characteristic polynomial of the companion matrix A of the polynomial

p(λ) = λn +
n−1
∑

k=0

akλ
k = λn + an−1λ

n−1 + . . .+ a1λ+ a0

is (−1)np(λ) by expanding the determinant A− λI by its last column.

Hint. By crossing out the row and the column of the element −ak (or −λ−an−1 in case k = n− 1)
in the last column of the matrix A− λI, we obtain the matrix

C =

(

P 0

0T Q

)

,

where P is a k × k lower triangular matrix with all its diagonal elements equal to −λ, Q is an
(n − k − 1) × (n − k − 1) upper triangular matrix with all its diagonal elements equal to 1, 0 is
k×(n−k−1) matrix with all its elements 0, and 0T is its transpose. It is easy to show by the Leibniz
formula we used to define determinants (see p. 154 in Section 34) that detP = (−λ)k, detQ = 1,
and detC = detP · detQ. For this discussion to make sense in case k = 0 (when P is an empty
matrix, or a 0 × 0 matrix) or k = n − 1 (when Q is an empty matrix), take the determinant of an
empty matrix to be 1.
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40. THE INVERSE POWER METHOD

The inverse power method is the power method applied with the matrix (A − sI)−1 for some
number s.150 Assuming λ is an eigenvalue of A corresponding to the eigenvector v, this vector is
also an eigenvector of (A− sI)−1 with eigenvalue (λ− s)−1. Indeed, we have

(A− sI)−1v = (λ− s)−1v.

To see this, note that
(A− sI)v = Av − sIv = λv − sv = (λ− s)v.

Multiplying this equation by (λ − s)−1(A − sI)−1 on the left, we obtain the equation above (after
reversing the sides).151

If the eigenvalues of A are λ1, . . . , λn, then the eigenvalues of (A − sI)−1 will be (λ1 − s)−1,
. . . , (λn − s)−1.152 Thus, if λ1 is the closest eigenvalue of A to s, (λ − s)−1 will be the eigenvalue
of (A − sI)−1 with the largest absolute value. Therefore, the power method will be well-suited to
determine this eigenvalue of (A− sI)−1, assuming that λ1 is real.

That is, as in the power method, one starts with an arbitrary vector x(0). As before, unless a
better choice is available, we may put

x(0) = (1, 1, . . . , 1)T .

Having determined x(k), we write

u(k+1) = (A− sI)−1x(k),

and

x(k+1) =
1

µk+1
u(k+1),

where µk+1 is the component of the largest absolute value of the vector u(k+1).
When using the inverse power method, one does not need to determine the inverse of the matrix

A− sI. Instead, one finds the LU-factorization of the matrix A− sI, and then finds

u(k+1) = (A− sI)−1x(k)

by solving the equation
(A− sI)u(k+1) = x(k).

The LU-factorization need to be calculated only once, and then can be used repeatedly for solving
this equation with different k.

In a program implementing the inverse power method, we use the header file inv_power.h

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

150There are variants of the inverse power method for which this statement is not quite accurate.
151In this argument, we need to assume that s itself is not an eigenvalue of A; this will guarantee that the matrix

A− sI is invertible.
152One can reverse the above argument to show that if µ is an eigenvalue of the matrix (A− sI)−1, then µ−1 + s

is an eigenvalue of A. Writing λ = µ−1 + s, we have µ = (λ− s)−1. That is, every eigenvalue of (A− sI) is of form
(λ− s)−1 for some eigenvalue λ of A.
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6

7 double **allocmatrix(int n);

8 double *allocvector(int n);

9 int inv_power(double **a, double *x, int n, float s,

10 double *lambda, float tol, int maxits, int *success);

11 void swap_pivot_row(double **a, int col, int n);

12 void LUfactor(double **a, int n, int *success);

13 void LUsolve(double **a, int n, double *b);

Line 5 defines the function absval to take the absolute value. The file alloc.c handling memory
allocation is virtually identical to the one used for Gaussian elimination.

1 #include "inv_power.h"

2

3 double **allocmatrix(int n)

4 /* Allocate matrix. The following code segment allocates

5 a contiguous block of pointers for the whole matrix.

6 There is no real advantage for this here, because with

7 pivoting, rows will be interchanged. So memory for rows

8 could be allowcated separately. On the other hand, even

9 the largest matrix for which Gaussian elimination

10 is feasible occupies a relatively modest amount of

11 memory, there does not seem to be any disadvantage

12 in asking for a contiguous block. */

13 {
14 int i;

15 double **a;

16 a=(double **) malloc((size_t)((n+1)*sizeof(double*)));

17 if (!a) {
18 printf("Allocation failure 1 in matrix\n");

19 exit(1);

20 }
21 /* Allocate the whole matrix: */

22 a[1]=(double *) malloc((size_t)(n*(n+1)*sizeof(double)));

23 if (!a[1]) {
24 printf("Allocation failure 2 in matrix\n");

25 exit(1);

26 }
27 /* Initialize the pointers pointing to each row: */

28 for (i=2; i<=n; i++) a[i]=a[i-1]+n+1;

29 /* Save the beginning of the matrix in a[0]; the

30 rows will be interchanged, the values of a[i]

31 for 1<=i<=n may change: */

32 a[0]=a[1];

33 return a;

34 }
35

36 double *allocvector(int n)

37 {
38 double *b;

39 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

40 if (!b) {
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41 printf("Allocation failure 1 in vector\n");

42 exit(1);

43 }
44 return b;

45 }
The only difference is that the file inv_power.h is included on line 1 instead of gauss.h, an inessential
change (since the latter would also work, since none of the functions declared in the file inv_power.h
are needed in the file alloc.c The file lufactor.c implements LU-factorization:

1 #include "inv_power.h"

2

3 void swap_pivot_row(double **a, int col, int n)

4 /* Scans the elements a[col][i] for col<=i<=n to find the

5 element c[col][pivi] with the largest absolute value,

6 and then the rows a[col] and a[pivi] are interchanged. */

7 {
8 double maxel, *rowptr;

9 int i,pivi;

10 maxel=absval(a[col][col]); pivi=col;

11 for (i=col+1;i<=n;i++) {
12 if ( absval(a[i][col])>maxel ) {
13 maxel=absval(a[i][col]); pivi=i;

14 }
15 }
16 if ( pivi !=col ) {
17 rowptr=a[col]; a[col]=a[pivi]; a[pivi]=rowptr;

18 }
19 }
20

21 void LUfactor(double **a, int n, int *success)

22 /* Uses partial pivoting */

23 {
24 const double assumedzero=1e-20;

25 double pivot, mult;

26 int i, j, k;

27 for (j=1;j<n;j++) {
28 swap_pivot_row(a, j, n); pivot=a[j][j];

29 if ( absval(pivot)<=assumedzero ) {
30 *success=0; return;

31 }
32 else *success=1;

33 for (i=j+1; i<=n; i++) {
34 mult = a[i][j] /= pivot;

35 for (k=j+1;k<=n;k++) a[i][k]-=mult*a[j][k];

36 }
37 }
38 }

This is identical to the file with the same name given on account of Gaussian elimination, except
that the first line now includes the file inv_power.h instead of gauss.h.153 The file lusolve.c

153In fact, there is no need to change the file lusolve.c, and the program would work even if the file gauss.h were
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implements the solution of a linear system of equation given the LU-factorization of the matrix of
the equation:

1 #include "inv_power.h"

2

3 void LUsolve(double **a, int n, double *b)

4 {
5 int i, j;

6 /* We want to solve P^-1 LUx=b. First we calculate c=Pb.

7 The elements of c[i] will be stored in a[i][0], not used

8 in representing the matrix. */

9 for (i=1;i<=n;i++) a[i][0]=b[1+(a[i]-a[0])/(n+1)];

10 /* Here is why we preserved the beginning of the matrix

11 in a[0]. The quantity 1+(a[i]-a[1])/(n+1) gives

12 the original row index of what ended up as row i

13 after the interchanges. Next we calculate y=Ux=L^-1 c.

14 y will be stored the same place c was stored:

15 y[i] will be a[i][0]. */

16 for (i=2;i<=n;i++)

17 for (j=1;j<i;j++) a[i][0] -= a[i][j]*a[j][0];

18 /* Finally, we calculate x=U^-1 y. We will put x in

19 the same place as y: x[i]=a[i][0]. */

20 a[n][0] /= a[n][n];

21 for (i=n-1;i>=1;i--) {
22 for (j=i+1;j<=n;j++) a[i][0] -= a[i][j]*a[j][0];

23 a[i][0] /= a[i][i];

24 }
25 }

This file is again similar to the one used for Gaussian elimination. Again, the file inv_power.h is
included on line 1 instead of gauss.h However, we retained only the function LUsolve; that is, we
deleted the functions backsubst and improve used for iterative improvement, since iterative im-
provement is not appropriate in the present case.154 The inverse power method itself is implemented
in the file inv_power.c:

1 #include "inv_power.h"

2

3 int inv_power(double **a, double *x, int n, float s,

4 double *lambda, float tol, int maxits, int *success)

5 {
6 int i, j, itcount;

7 double m, max, newx, *y, *u;

8 /* Form A-sI and place the result in A */

9 for (i=1;i<=n;i++) a[i][i] -= s;

10 LUfactor(a,n,success);

11 if ( !*success ) return 0;

12 /* I am here */

13 u=allocvector(n);

14 for (i=1;i<=n;i++) x[i]=1.0;

included instead of inv_power.h. In fact, the file lusolve uses no function defined outside the file.
154Whatever one may get out of iterative improvement, it is much more efficient to improve the approximation

to the eigenvalue and the eigenvector is to perform the inverse power method with a closed approximation s to the
eigenvalue λ being calculated.
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15 for (itcount=1;itcount<=maxits;itcount++) {
16 /* Solve (A-sI)y=x and place the result in u */

17 LUsolve(a,n,x);

18 max=0.;

19 for (i=1;i<=n;i++) {
20 u[i] = a[i][0];

21 if ( absval(u[i])>absval(max) ) max=u[i];

22 }
23 /* Normalize u and test for convergence */

24 *success=1;

25 for (i=1;i<=n;i++) {
26 newx=u[i]/max;

27 if ( absval(newx-x[i])>tol ) *success=0;

28 x[i]=newx;

29 }
30 if ( *success ) {
31 *lambda=s+1./max;

32 break;

33 }
34 }
35 free(u);

36 return itcount;

37 }
The function inv_power defined in lines 3–37 is very similar to the power function used in the
power method. It is useful to make a line-by-line comparison between this file and the file power.c
discussed on account of the power method. The parameter list is the same as the one used for
the power method. That is, the first parameter **a represents the entries of the matrix, *x will
contain the eigenvector at the end of the calculation, n is the size of the matrix, tol is the tolerance,
or permissible error, in the calculation, maxits is the maximum allowed number of iterations, and
*success indicates whether the method was successful. In line 9, the matrix A − sI is calculated,
and stored in the same locations where A itself was stored, and in line 10 its LU-factorization
is calculated (and, again, it is stored in the same locations). In line 11, if LU-factorization was
unsuccessful, there is nothing more to be done (except, perhaps, to try the inverse power method
with a different value of s). Then, on line 13, memory for the vector u is allocated. The vector x

is initialized on line 14, and in lines 15–34, successive values of the vectors u and x are calculated.
On lines 17–22, the vector u = (A− sI)−1x is calculated; note that LUsolve stores the solution of
this equation in column zero of the array **a, and this solution is copied into the vector *x in lines
19–21. The element of maximum absolute value is also calculated in these lines, and stored as the
variable max. In lines 25–29 the normalized vector u is stored in x, and convergence is tested. For
the convergence test, the integer *success is set to be 1 (true) on line 24, and it is changed to false
on line 27 if the test on this line fails for any value of i. If the process is successful, on line 31, the
eigenvalue of A is calculated, using the equation

λ = s+
1

µ
,

(i.e., µ = (λ − s)−1)m where µ is the eigenvalue calculated for the matrix (A − sI)−1. On line 35,
the memory allocated for the vector u is freed, and the number of iterations is returned on line 35.

The calling program is contained in the file main.c, to be discussed soon. This program read the
values of the entries of the matrix from the file coeffs

1 9.2
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2 5e-14

3 5

4 1 2 3 5 2

5 3 4 -2 2 3

6 1 1 1 1 -1

7 1 2 1 -1 3

8 2 1 -1 1 2

(Recall that the numbers in the first column are line numbers.) The first entry in this file is the
value of s, the second one is the tolerance tol, the third one is the value of n, and the rest of the
entries are the entries of the matrix A. The file main.c is as follows:

1 #include "inv_power.h"

2

3 main()

4 {
5 /* This program reads in the elements of a square

6 matrix from the file coeffs the eigenvalue of

7 which is sought. The first entry is an

8 approximate eigenvalue, the second entry

9 entry is the required tolerance, and the

10 third entry is n, the size of the matrix.

11 The rest of the entries are the elements of the

12 matrix. The first entry must be of type float,

13 the third entry an unsigned integer, the other

14 entries can be integers or reals. The inverse

15 power method is used to determine the

16 eigenvalue of the matrix */

17 double **a, *x, lambda;

18 float s, tol;

19 int n, i, j, subs, readerror=0, success, itcount;

20 char ss[25];

21 FILE *coefffile;

22 coefffile=fopen("coeffs", "r");

23 fscanf(coefffile, "%f", &s);

24 printf("Approximate eigenvalue used: %8.5f\n", s);

25 fscanf(coefffile, "%f", &tol);

26 printf("Tolerance used: %g\n", tol);

27 fscanf(coefffile, "%u", &n);

28 a=allocmatrix(n);

29 for (i=1;i<=n;i++) {
30 if ( readerror ) break;

31 for (j=1;j<=n;j++) {
32 if (fscanf(coefffile, "%s", ss)==EOF) {
33 readerror=1;

34 printf("Not enough coefficients\n");

35 printf("i=%u j=%u\n", i, j);

36 break;

37 }
38 a[i][j]=strtod(ss,NULL);

39 }
40 }
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41 fclose(coefffile);

42 if ( readerror ) printf("Not enough data\n");

43 else {
44 x=allocvector(n);

45 itcount=inv_power(a,x,n,s,&lambda,tol,100,&success);

46 if ( success ) {
47 printf("%u iterations were used to find"

48 " the largest eigenvalue.\n", itcount);

49 printf("The eigenvalue is %16.12f\n", lambda);

50 printf("The eigenvector is:\n");

51 for (i=1;i<=n;i++)

52 printf("x[%3i]=%16.12f\n",i,x[i]);

53 }
54 else

55 printf("The eigenvalue could not be determined\n");

56 free(x);

57 }
58 free(a[0]); free(a);

59 }
The program main.c is nearly identical to the one used on account of the power method. One
difference is that in lines 23–24 the parameter s is read from the input file coeffs and then it is
printed out; in the present file, the name of the character string declared on line 30 was changes to
ss to avoid conflict (in the file main.c associated with the power method, this character string was
called s). On line 45 the function inv_power is called (rather than power power method earlier).
With the above input file, the output of the program is the following:

1 Approximate eigenvalue used: 9.20000

2 Tolerance used: 5e-14

3 15 iterations were used to find the largest eigenvalue.

4 The eigenvalue is 8.310753728109

5 The eigenvector is:

6 x[ 1]= 0.829693363275

7 x[ 2]= 1.000000000000

8 x[ 3]= 0.253187383172

9 x[ 4]= 0.478388026222

10 x[ 5]= 0.457090784061

41. WIELANDT’S DEFLATION

In Wielandt’s deflation, after determining the eigenvalue and the corresponding eigenvector of
a square matrix, the order of the matrix is reduced, and then one can look for the remaining
eigenvalues. To explain how this work, let A be a square matrix, and assume that the column vector
x is an eigenvector of A with eigenvalue λ; that is,

Ax = λx.

One then looks for a column vector z such that

zTx = 1,
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and then forms the matrix
B = A− λxzT .

One may want to keep in mind that if A is an n× n matrix and z, x are n× 1 column vectors, then
zTx is a number, and xzT is an n× n matrix.

One can make the following observations. First, 0 is an eigenvalue of B, with eigenvector x.
Indeed,

Bx = Ax− λ(xzT )x = λx− λx(zTx) = λx− λx = 0.

Second, if ρ 6= 0 is an eigenvalue of A different from λ then ρ is also an eigenvalue of B. In fact, if

Ay = ρy

for some nonzero vector y, then we will show that

Bw = ρw

with
w = ρy − λ(zTy)x.

Note that w 6= 0. Indeed, as the ρ 6= λ, the eigenvectors y and x of A corresponding to the
eigenvalues ρ and λ must be linearly independent. w being one of their linear combinations, we
must have w 6= 0. We have

Bw = A(ρy − λ(zTy)x)− λ(xzT )(ρy − λ(zTy)x)

= ρ2y − λ2(zTy)x− λρ(xzT )y + λ2(zTy)(xzT )x

= ρ2y − λ2(zTy)x− λρ(xzT )y + λ2(zTy)x(zTx)

= ρ2y − λ2(zTy)x− λρ(xzT )y + λ2(zTy)x = ρ2y − λρ(xzT )y

= ρ2y − λρx(zTy) = ρw.

In the last term of the second member of these equations, the matrix xzT and the scalar zTy were
interchanged to obtain the last term of the third member. Then the associative rule for matrix
products was used to obtain the last term of the fourth member. Next, the equality zTx = 1 was
used to obtain the fifth member of these equations. To obtain the seventh member, the associative
rule was used. To obtain the last equation, one needs to note that the vector x and scalar xTy

commute.155

Finally, we have

zTw = ρ(zTy)− λ(zTy)(zTx) = ρ(zTy)− λ(zTy) = (ρ− λ)(zTy).

Hence, assuming that ρ 6= λ, we have

zTy =
1

ρ− λ
(zTw).

Thus, if we also have ρ 6= 0, then

(1) y =
1

ρ
(w + λ(zTy)x) =

1

ρ

(

w +
λ

ρ− λ
(zTw)x

)

.

155The assumption ρ 6= λ was only used to show that x and y were linearly independent, and this was needed to
ensure that w 6= 0. That is, the argument works even if ρ = λ 6= 0 and x and y are linearly independent. That is, if
λ is a multiple eigenvalue with at least two linearly independent eigenvectors, then λ will still be an eigenvalue of B.

Note: If ρ = λ and y = cx then w = ρy − λ(zTy)x = ρy − λ(zTx)y = 0, so we cannot allow x and y to be
linearly dependent.
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This equation expresses the eigenvector y associated with the eigenvalue ρ of A in terms of the
eigenvector w of B belonging to the same eigenvalue.

In one step of Wielandt deflation, the order of an n×n matrix A = (aij) is reduced by one. First,
one finds a nonzero eigenvalue λ and the corresponding eigenvector x = (x1, . . . , xn)

T . Then one
finds the component xr of x of maximum absolute value; this will guarantee that xr 6= 0, since x,
being an eigenvector, cannot be a zero vector. Then one picks

z =
1

λxr
(ar1, ar2, . . . , arn)

T

Then zTx is the rth component of the vector

1

λxr
Ax =

1

λxr
λx =

1

xr
x.

The second equation holds because x is an eigenvector of A with eigenvalue λ. The rth component
of this vector is 1

xr
xr = 1. Thus, the equation zTx = 1 is satisfied, as was required above.

The entry bij of the matrix B = A− λxzT can be expressed as

(2) bij = aij − λxi ·
1

λxr
arj = aij −

1

xr
xiarj .

It can be seen that all elements in the rth row are zero:

brj = arj −
1

xr
xrarj = 0

Now, we are looking for another eigenvalue ρ 6= 0 of the matrix A eigenvector y. As mentioned
above, then the vector w = ρy − λ(zTy)x is an eigenvector of B with eigenvalue ρ. Write w =
(w1, . . . , wn)

T . The rth component of the vector ρw = Bw is

ρwr =

n
∑

j=1

brjwj = 0,

where the last equation holds because brj = 0 for each j. As ρ 6= 0, it follows that wr = 0.
It follows that the rth column of the matrix B plays does not enter into the calculation of the

eigenvalue ρ and the corresponding eigenvector. Indeed, the equation ρw = Bw can be written
componentwise as

ρwi =

n
∑

j=1

bijwj =

n
∑

j=1
j 6=r

bijwj ,

where the second equality holds because wr = 0. Therefore, if one deletes the rth row and rth
column of the matrix B to obtain B′, and if one deletes the rth component of the vector w to obtain
w′, one will have B′w′ = ρw′. Hence, one can calculate the eigenvalues and eigenvectors of B′ to
find ρ and w′. Having found w′, and can find w by restoring the deleted zero component. Finally,
one can calculate the corresponding eigenvector of y of A by using equation (1).

Thus, having found one eigenvalue λ and a corresponding eigenvector x of the matrix A, one
can reduce the order of the matrix A by one, that is, one can deflate the matrix, and look for the
remaining eigenvalues of a lower order matrix. In this way, one can find all the eigenvalues one by
one. Using equation (1) to find the corresponding eigenvector is, however, probably not worth doing.
This is because the eigenvalues of the deflated matrix should only be considered approximations of
those of the original matrix A, since successive deflations introduce roundoff errors. One can use the
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inverse power method with the original matrix to obtain better approximations of the eigenvalues;
if ρ̄ is the calculated approximation of the eigenvalue ρ of A, then one would use the inverse power
method to calculate the largest eigenvalue of the matrix (A− ρ̄I)−1. Because of roundoff errors, we
will have ρ̄ 6= ρ, and this matrix will not be singular (so the inverse can be calculated). The fact that
the matrix A− ρ̄I is nearly singular (and so its inverse cannot be calculated very accurately) will not
adversely affect the calculation of the eigenvalue. Since the inverse power method also calculates the
eigenvector of the original matrix, there is little reason to keep track of eigenvectors during deflation.

In the computer implementation of Wielandt’s deflation, the header file wielandt.h is used:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6

7 double **allocmatrix(int n);

8 double *allocvector(int n);

9 /* int inv_power(double **a, double *x, int n, float s,

10 double *lambda, float tol, int maxits, int *success); */

11 int power_maxel(double **a, double *x, int n, double *lambda,

12 int *r, float tol, int maxits, int *success);

13 void wielandt(double **a, double *x, int n, int k);

14 int wielandt_defl(double **a, double *x, int n,

15 double *lambda, float tol, int maxits);

Here the function inv_power is commented out on lines 9–10, since it is not used in the present
implementation. As mentioned above, after calculating the eigenvalues by deflation, one should use
the inverse power method with the original matrix to improve the accuracy of the solution; for the
sake of simplifying the discussion, we omitted this step. The file power_maxel.c contains a slightly
modified version of the power method:

1 #include "wielandt.h"

2

3 int power_maxel(double **a, double *x, int n, double *lambda,

4 int *r, float tol, int maxits, int *success)

5 /* In this variation of the power method, the subscript

6 of the maximal element of the eigenvector is returned

7 as r */

8 {
9 int i, j, itcount;

10 double m, max, newx, *y, *u;

11 u=allocvector(n);

12 for (i=1;i<=n;i++) x[i]=1.0;

13 for (itcount=1;itcount<=maxits;itcount++) {
14 /* Form y=Ax and record maximum element max */

15 max=0.;

16 for (i=1;i<=n;i++) {
17 m=0.;

18 for (j=1;j<=n;j++) m += a[i][j]*x[j];

19 if ( absval(m)>absval(max) ) max=m;

20 u[i]=m;

21 }
22 /* Normalize u and test for convergence */
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23 *success=1;

24 for (i=1;i<=n;i++) {
25 newx=u[i]/max;

26 if ( absval(newx-x[i])>tol ) *success=0;

27 x[i]=newx;

28 }
29 if ( *success ) {
30 *lambda=max;

31 /* In principle, we would want to find the value of r

32 for which x[r] has the largest absolute value. However,

33 we know that x[r] for this r has value 1; so it

34 is easier to look for x[r] with the largest value.

35 The calling program will assume x[r]==1. If we were

36 looking for x[r] with the largest absolute value,

37 it might happen that we find another component

38 with x[r]==-1; theoretically, this should not happen,

39 but in practice it might happen because of rounding

40 errors. */

41 *r=1; max=x[1];

42 for (i=1;i<=n;i++)

43 if ( x[i]>max) {
44 *r=i;

45 max=x[i];

46 }
47 break;

48 }
49 }
50 free(u);

51 return itcount;

52 }

The function power_maxel has an additional parameter *r compared to the function power discussed
earlier. In lines 41–46, the subscript r of the component xr of the largest absolute value of the
eigenvector x is calculated, in effect. As explained in the comment in lines 31–40, in actual fact,
the component of the largest value is calculated instead. This allows us to be certain that x[r]==1,
which allows us make this assumption in the calling program. The value *r of this subscript is
returned to the calling program; as was pointed out in the theoretical discussion above, this value
of r is used in the deflation. Aside from this, the function power_maxel is identical to the function
power discussed earlier, on account of the power method. The deflation itself is performed by the
functions in the file wielandt.c:

1 #include "wielandt.h"

2

3 /* It is important to preserve the original row

4 pointers for **a so the matrix could be freed */

5

6 void wielandt(double **a, double *x, int n, int r)

7 {
8 int i, j;

9 for (i=1;i<=n;i++)

10 if ( i!=r )

11 for (j=1;j<=n;j++) a[i][j] -= x[i]*a[r][j];
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12 for (i=r;i<n;i++) a[i]=a[i+1];

13 for (i=1;i<n;i++)

14 for (j=r;j<n;j++) a[i][j]=a[i][j+1];

15 return;

16 }
17

18 int wielandt_defl(double **a, double *x, int n,

19 double *lambda, float tol, int maxits)

20 {
21 int m, r, success, eigencount, itcount;

22 for (m=n;m>1;m--) {
23 eigencount=n-m;

24 itcount=power_maxel(a,x,m,&lambda[eigencount+1],&r,

25 tol,maxits,&success);

26 printf("%3u iterations used for eigenvalue number %u\n",

27 itcount, eigencount+1);

28 if ( !success ) break;

29 wielandt(a,x,m,r);

30 }
31 if ( success && m==1 ) {
32 eigencount=n;

33 lambda[n]=a[1][1];

34 }
35 return eigencount;

36 }
The function wielandt in lines 6–16 has as parameters the matrix **a, the vector *x containing the
eigenvector found by the calling program, the size n of the matrix, and the subscript r of the row
and column to be deleted. On line 11, formula (2) is used to calculate the components of the matrix
B and stored at the same location where the matrix A was stored. Note that the eigenvector *x

was obtained by the power method (through the function call on line 24 below); the power method
ensures that the component x[r] of the largest absolute value of x is 1; this is why there is no need
to divide by xr on line 11, unlike in formula (2).156 In lines 13–15, the rth row and rth column of
the matrix B is deleted.

The function wielandt described in lines 18–36 returns the number of the eigenvalues that were
successfully calculated. Its parameters are the matrix **a, the vector *x that will contain the various
eigenvectors calculated, but no data will be returned in *x to the calling program. Its role is only
to reserve memory only once, to be used to store various vectors in the course of the calculation.
The remaining parameters are the size n of the matrix A, the vector *lambda that will contain the
eigenvalues being calculated, the tolerance (or permissible error) tol, and the maximum number of
iterations maxit to be used in calculating each eigenvalue. The integer m will contain the current
size of the deflated matrix. The loop in lines 22–30 starts with m = n, and the value of m will
be decreased by 1 with each deflation step. In lines 24–25, the function power_maxel is called
to calculate the largest eigenvalue of the current matrix; as mentioned in the description of this
function, the parameter r will contain the subscript of the largest component of the eigenvector
x. On line 26, the number of iterations used to calculate the current eigenvalue is printed out;
alternatively, this value could be returned as the component of a vector to the calling program, and
the calling program could decide whether to print out this value of to discard it. If the calculation of

156This was the reason that in the file power_maxel.c we were looking for the largest xr rather than the xr with
the largest absolute value in lines 41–43. If there is an r′ < r for which xr′ is rounded to −1, r′ would be returned

instead of r, even though without rounding errors we should have |x′r| < xr = 1. With xr = −1, the calculation on
line 11 would not work.
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the eigenvalue was unsuccessful in lines 24–25, the calculation is abandoned on line 28 by breaking
out of the loop. Otherwise, the function wielandt is called to carry out one step of deflation, and
the body of the loop is executed again unless m==1. If everything was successful, in line 33 the
last eigenvalue is calculated. At this point, the matrix has order 1 × 1, and the eigenvalue of this
matrix is the only matrix element. On line 35, the number is returned of the eigenvalues successfully
calculated.

This program was used with a symmetric matrix, since it is guaranteed that all eigenvalues of a
symmetric matrix is real; a complex eigenvalue might interfere with the power method used during
the deflation process. The file symm_coeffs with the following content was used:

1 5e-14

2 5

3 1 2 3 5 8

4 3 -2 2 3

5 1 1 -1

6 -1 3

7 2

The first column of numbers are line numbers, not part of the file. The number on line 1 is the
tolerance, that on line 2 is the size of the matrix. In lines 3–7, the entries in the upper triangle of
the matrix are given; since the matrix is assumed to be symmetric, there is no need to store the
other entries. The calling program is given in the file main.c:

1 #include "wielandt.h"

2

3 main()

4 {
5 /* This program reads in the elements of in the

6 upper triangle of a square matrix int the file

7 named symm_coeffs, and fills in the lower triangle

8 to make the matrix symmetric. The first entry in

9 the file is the required tolerance, the

10 second entry is n, the size of the matrix. The

11 rest of the entries are the elements in the

12 upper triangle of the matrix. The first entry

13 must be of type float, the third entry must be

14 an unsigned integer, the other entries can be

15 integers or reals. */

16 double **a, *x, *lambda;

17 float s, tol;

18 int n, i, j, subs, readerror=0, success, eigencount;

19 char ss[25];

20 FILE *coefffile;

21 coefffile=fopen("symm_coeffs", "r");

22 fscanf(coefffile, "%f", &tol);

23 printf("Tolerance used: %g\n", tol);

24 fscanf(coefffile, "%u", &n);

25 a=allocmatrix(n);

26 for (i=1;i<=n;i++) {
27 if ( readerror ) break;

28 for (j=i;j<=n;j++) {
29 if (fscanf(coefffile, "%s", ss)==EOF) {
30 readerror=1;
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31 printf("Not enough coefficients\n");

32 printf("i=%u j=%u\n", i, j);

33 break;

34 }
35 a[j][i]=a[i][j]=strtod(ss,NULL);

36 }
37 }
38 fclose(coefffile);

39 if ( readerror ) printf("Not enough data\n");

40 else {
41 x=allocvector(n);

42 lambda=allocvector(n);

43 eigencount=wielandt_defl(a,x,n,lambda,tol,150);

44 if ( eigencount==0 )

45 printf("No eigenvalues could be calculated\n");

46 else if ( eigencount==1 )

47 printf("Only one eigenvalue could be calculated. It is:\n");

48 else if ( eigencount<n )

49 printf("Only %u eigenvalues could be calculated. They are:\n",

50 eigencount);

51 else

52 printf("All eigenvalues were calculated. They are:\n");

53 for (i=1;i<=eigencount;i++) {
54 printf("%16.12f ", lambda[i]);

55 if ( i % 4 == 0 ) printf("\n");

56 }
57 printf("\n");

58 free(lambda);

59 free(x);

60 }
61 free(a[0]); free(a);

62 }

All coefficients of the matrix A are stored. This is necessary, since even if the starting matrix is
symmetric, the matrices obtained during the deflation process will not be symmetric (but they will
all have only real eigenvalues). The coefficients of the matrix are read in the loop in lines 26–37;
much of what is being done here is similar to the way earlier matrices have been read, except that
only the upper triangle of the matrix is read, and the missing elements of the matrix are filled in on
line 35. As in earlier programs, if there is no reading error (that is, there were enough numbers in
the input file), in lines 40–60, the calculation of eigenvalues is performed. In lines 41–42, memory
for the vectors pointed to by x and lambda is reserved, and this memory is freed in lines 58–59,
inside the same else statement. Wielandt deflation is called on line 43, with at most 150 iterations
permitted for calculating each eigenvalue. The printout of the program was as follows:

1 Tolerance used: 5e-14

2 56 iterations used for eigenvalue number 1

3 48 iterations used for eigenvalue number 2

4 139 iterations used for eigenvalue number 3

5 20 iterations used for eigenvalue number 4

6 All eigenvalues were calculated. They are:

7 13.583574215424 -7.852544184194 4.256975565094 -3.363332212396

8 -0.624673383928
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Problems

1. Consider the matrix

A =





14 8 10
8 22 14
4 8 8



 .

An eigenvalue of this matrix is 2 with eigenvector x = (−1,−1, 2)T . Do one step of Wielandt
deflation.

Solution. We have λ = 2, the rth component with r = 3 has the largest absolutle value of the
eigenvector x, xr = x3 = 2, and the rth, i.e., third, row of A is a3∗ = (4, 8, 8). Hence

z =
1

λx3
aT3∗ =

1

2 · 2(4, 8, 8)
T =

1

2
(2, 4, 4)T ;

here the row vector (4, 8, 8) is the third row of the matrix A. The third row is used since the third
component of the eigenvector x has the largest absolute value.

The purpose of choosing the component of the largest absolute value of the eigenvector is to make the roundoff
error the smallest possible. The reason this results in the smallest roundoff error is that this is likely to make the
entries of the subtracted matrix x · zT the smallest possible (since we divide by xr, the largest component of x, in
calculating z). The larger the components of the matrix that we are subtracting from A, the more the original values

of the entries of A will perturbed by roundoff errors. This is especially important if one performs repeated deflations,
since the roundoff errors then accumulate. When doing exact calculations with integers, this point may be moot,
since in this case there are no roundoff errors.

We have

B = A− λ · x · zT = A− 2 · x · zT =





14 8 10
8 22 14
4 8 8



−





−1
−1
2



 ( 2 4 4 )

=





14 8 10
8 22 14
4 8 8



−





−2 −4 −4
−2 −4 −4
4 8 8



 =





16 12 14
10 26 18
0 0 0



 .

When looking for the eigenvalues of the matrix B (except for the eigenvalue 0, which is not an
eigenvalue of the original matrix A), one can delete the third row and third column of the matrix
B, and look for the eigenvalues of

B′ =

(

16 12
10 26

)

.

2. Consider the matrix

A =





36 54 12
30 48 36
36 72 36



 .

An eigenvalue of this matrix is 12 with eigenvector x = (6,−2,−3)T . Do one step of Wielandt
deflation.

Solution. We have λ = 12, the rth component with r = 1 has the largest absolutle value of the
eigenvector x, xr = x1 = 6, and the rth, i.e., first, row of A is a1∗ = (36, 54, 12). Hence

z =
1

λx1
aT1∗ =

1

12 · 6(36, 54, 12)
T =

1

12
(6, 9, 2)T ,
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we have

B = A− λ · x · zT = A− 12 · x · zT =





36 54 12
30 48 36
36 72 36



−





6
−2
−3



 ( 6 9 2 )

=





36 54 12
30 48 36
36 72 36



−





36 54 12
−12 −18 −4
−18 −27 −6



 =





0 0 0
42 66 40
54 99 42



 .

When looking for the eigenvalues of the matrix B (except for the eigenvalue 0, which is not an
eigenvalue of the original matrix A), one can delete the first row and first column of the matrix B,
and look for the eigenvalues of

B′ =

(

66 40
99 42

)

.

42. SIMILARITY TRANSFORMATIONS AND THE QR ALGORITHM

Let A and S be n× n matrices and assume that S is nonsingular. The matrix S−1AS is said to
be similar to A, and the the transformation that takes A to S−1AS is called a similarity transfor-
mation.157 The importance of similarity transformations for us is that A and S−1AS have the same
eigenvalues. In fact, we have

Av = λv

if and only if
S−1AS(S−1v) = λ(S−1v),

as is easily seen by multiplying the first of these equations by S−1 on the left.
An upper Hessenberg matrix is a square matrix where all elements below the main diagonal, but

not immediately adjacent to it, are zero; that is, A = (aij) is an upper Hessenberg matrix if aij = 0
whenever i > j + 1. There are methods to find the eigenvalues of a Hessenberg matrix. Hence, as a
first step in finding the eigenvalues of a matrix A may be to transform it to a Hessenberg matrix.
In fact, there are various methods to find a matrix S−1AS similar to A that is an upper Hessenberg
matrix. One method performs Gaussian elimination. One can do this by performing the following
steps.

One goes through the columns of the matrix A, beginning with the first column. When dealing
with the kth column (1 ≤ k ≤ n− 2), one makes the elements ak+2 k, . . . , ank in this column zero.
If these elements are already zero then nothing is done, and one goes on to deal with column k+ 1.
If not, then one finds the element of largest absolute value among the elements ak+1 k, . . . , ank. If
this is ai′k then one interchanges row k+1 and row i′. To make this a similarity transformation, one
then interchanges column k+1 and column i′. (We will give some explanation of this point below.)

At this point, the element that became ak+1,k is nonzero. For i = k+2, . . . , n, one then subtracts

mi
def
= aik/ak+1 k times row k + 1 from row i. To make this a similarity transformation, one then

adds mi times column i to column k + 1.

157A matrix can be thought of as the description of a linear transformation of a finite dimensional vector space
in terms of how the basis vectors are transformed. Namely, if T is a linear transformation and e1, . . . , en are basis
vectors, then the matrix A = (aij) such that

T (ei) =
n
∑

i=1

aijei.

A similarity transformation corresponds to a change of basis.
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To explain why changing the matrix A in this way is a similarity transformation, consider inter-
changing row k + 1 and row i′. This corresponds to multiplying A on the left by a permutation
matrix P = (pij) where pii = 1 if i 6= k + 1 and i 6= i′, and pk+1 i′ = 1 and pi′ k+1 = 1 and pij = 0
otherwise. The inverse of the matrix P is P itself.158 Multiplying A by P on the right amounts to
interchanging columns k + 1 and i′ of A. That is, first interchanging the rows and the the columns
as stated amounts to forming the matrix PAP = P−1AP .

Let k and l be arbitrary with 1 ≤ k, l ≤ n with k 6= l, and let c be a number. Subtracting ρ times
row k from row l in the matrix A amounts to multiplying the matrix A on the left by the matrix
C = (cij), where

159

cij = δij − ρδilδkj .

Adding ρ times column l to column k in the matrix A amounts to multiplying A on the right by
D = (dij), where

dij = δij + ρδkjδil.

It is easy to see that C = D−1. Indeed,160

n
∑

r=1

cirdrj =
n
∑

r=1

(δirδrj + ρδirδkjδrl − ρδilδkrδrj + ρ2δilδkrδkjδrl)

= δij + ρδilδkj − ρδilδkj + ρ2δilδklδkj = δij ;

the last equation holds because δkl = 0 since we assumed k 6= l.
Plain rotations will be used to transform a Hessenberg matrix to an upper triangular matrix.

Given p and q with 1 ≤ p, q ≤ n and p 6= q, a plain rotation by angle θ involving row p and q is a
transformation such that

a′pj = apj cos θ − aqj sin θ,

a′qj = apj sin θ + aqj cos θ,

and
a′ij = aij if i 6= p and i 6= q.

The reason this is called a plain rotation is because if one describes the components of a vector with
unit vectors e1, . . . , en, and then one takes the plain of the vectors ep and eq, rotates the unit
vectors in this plain by an angle θ to obtain the new unit vectors e′p and e′q, (while leaving all other
unit vectors unchanged, the above formulas describe the vector (namely, the jth column vector of
the matrix) in the new coordinate system. The way the matrix A′ = (a′ij) is obtained from the
matrix A = (aij) amounts to multiplying A on the left by the matrix S = sij where

spp = cos θ, spq = − sin θ, sqp = sin θ, sqq = cos θ, and sij = δij otherwise.

The matrix S is clearly an orthogonal matrix; hence its inverse is its transpose. The entries a′′ij of

the matrix A′′ = AST can be obtained by the formulas

a′′ip = a′ip cos θ − a′iq sin θ,

a′′iq = a′ip sin θ + a′iq cos θ,

158In terms of permutations this means that if one interchanges row k+1 and row i′, and then one again interchanges
row k + 1 and row i′, then one gets back the original matrix.

159δij , called Kronecker’s delta, is defined to be 1 is i = j and 0 if i 6= j.
160Instead of the following calculation, one might note that multiplying the matrix CA on the left by D amounts to

adding ρ times row k to row l of the matrix CA; the resulting matrix is clearly the original matrix A; thus DCA = A;
since this is true for an arbitrary matrix A, it follows that CD is the identity matrix.
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and
a′′ij = a′ij if j 6= p and j 6= q.

The transformation SAST is a similarity transformation, since S = (ST )−1.
Assuming that A is an upper Hessenberg matrix, one uses plain rotations to make the elements

under the main diagonal zero, so as to transform A into an upper triangular matrix. When wanting
to change the element aqp to zero (where q = p + 1 in our case), one uses a plain rotation S that
changes the element aqp to zero. Using a plain rotation with rows p and q with angle θ, we have

a′qp = app sin θ + aqp cos θ.

In order to have a′qp = 0, the angle θ needs to be determined so that, with

α =
1

√

a2pp + a2qp

,

we have
sin θ = −aqpα and cos θ = appα.

For p = 1, . . . , p = n − 1, one multiplies A from the left by such a matrix Sp involving rows p
and p+ 1 to change the element ap+1 p to zero. That is, one forms the matrix

Sn−1Sn−2 . . . S1A.

Since one wants to perform a similarity transformation so as not to change the eigenvalues, one then
needs to multiply on the right with the inverses (or, what amounts to the same, transposes) of these
matrices, to obtain the matrix

(1) A1 = Sn−1 . . . S1AS
T
1 . . . S

T
n−1.

This matrix will not be a triangular matrix, since multiplication from the right will change the zero
elements ap+1 p next to the main diagonal back to nonzero elements. Nevertheless, assuming that
all eigenvalues of A are real, by repeatedly performing this transformation (i.e., again changing the
elements just below the main diagonal to zero), one obtains a sequence of matrices that usually
converges to a triangular matrix.

One can speed up this convergence by applying shifts. That is, instead of starting with the
Hessenberg matrix A, one forms the matrix A − sI with an appropriate value of s, then forms the
matrix

A′
1 = Sn−1 . . . S1(A− sI)ST

1 . . . S
T
n−1,

and then applies the shift A1 = A′
1 + sI. Of course, equation (1) is then also valid, since the shifts

−sI and +sI will cancel (since the matrices Si and S
T
i commute with the identity matrix I), but

the shift makes a difference in determining the appropriate matrices Si. The shift that needs to
be applied can be determined the lower right 2 by 2 minor of the matrix A. If λ1 and λ2 are the
eigenvalues of this minor, then one chooses s as the eigenvalue λi for which |λi − ann| is smaller in
case λ1 and λ2 are real, and the real part of λ1 (or λ2) if these eigenvalues are complex (since they
are complex conjugates of each other, assuming that we are dealing with a real matrix).

After obtaining the matrix A1, one obtains the matrices A2, . . . , until in the matrix Ak, the

element a
(k)
n−1 n is close enough to zero; in this case, an eigenvalue of Ak will be (close to) the

element a
(k)
nn . Having determined this eigenvalue, the matrix Ak can be deflated by crossing out the

last row and last column; then one can determine the eigenvalues of the deflated matrix.
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When calculating A1, one can form the matrices B1 = S1A, B2 = S2B1S
T
1 , B3 = S3B2S

T
2 , . . . ,

Bn−1 = Sn−1Bn−2S
T
n−2, and A1 = Bn−1S

T
n−1. This is because multiplying by Si−1 on the right does

not change the entries of the matrix involved in determining the rotation Si+1 (since multiplying on
the right by Si−1 affects columns i − 1 and i of the matrix only, and to determine Si+1 one needs
only the current values of the entries ai+1 i+1 and ai+2 i+1).
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To implement this method on computer, one used the header file qr.h:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6 #define square(x) ((x)*(x))

7

8 void simgauss(double **a,int n);

9 double shiftamount(double **a, int n);

10 int protation(double **a, int p, int q, int n,

11 double *sintheta, double *costheta);

12 int leftprotate(double **a, int p, int q, int n,

13 double sintheta, double costheta);

14 int rightprotate(double **a, int p, int q, int n,

15 double sintheta, double costheta);

16 double qr(double **a, int n, double tol, int maxits,

17 int *itcount, int *success);

18 double **allocmatrix(int n);

19 double *allocvector(int n);

20 void printmatrix(double **a, int n);

21 void printmatrix_mathematica(double **a, int n);

The functions in this file will be explained below. The file alloc.c is the same as the one used
before:

1 #include "qr.h"

2

3 double **allocmatrix(int n)

4 /* Allocate matrix. The following code segment allocates

5 a contiguous block of pointers for the whole matrix.

6 There is no real advantage for this here, because with

7 pivoting, rows will be interchanged. So memory for rows

8 could be allocated separately. On the other hand, even

9 the largest matrix for which Gaussian elimination

10 is feasible occupies a relatively modest amount of

11 memory, there does not seem to be any disadvantage

12 in asking for a contiguous block. */

13 {
14 int i;

15 double **a;

16 a=(double **) malloc((size_t)((n+1)*sizeof(double*)));

17 if (!a) {

161That is, the matrix Bi still contains the original entries of A needed to determine Si+1. The order of evaluation

C1 = S1AS
−1
1 , C2 = S1AS

−1
2 , . . . , Cn = S1AS

−1
n , and A1 = Cn would be less advantageous, since the matrix Ci no

longer contains the entries needed to determine Si+1, and so one would need to remember the entries of the original
matrix A.
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18 printf("Allocation failure 1 in matrix\n");

19 exit(1);

20 }
21 /* Allocate the whole matrix: */

22 a[1]=(double *) malloc((size_t)(n*(n+1)*sizeof(double)));

23 if (!a[1]) {
24 printf("Allocation failure 2 in matrix\n");

25 exit(1);

26 }
27 /* Initialize the pointers pointing to each row: */

28 for (i=2; i<=n; i++) a[i]=a[i-1]+n+1;

29 /* Save the beginning of the matrix in a[0]; the

30 rows will be interchanged, the values of a[i]

31 for 1<=i<=n may change: */

32 a[0]=a[1];

33 return a;

34 }
35

36 double *allocvector(int n)

37 {
38 double *b;

39 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

40 if (!b) {
41 printf("Allocation failure 1 in vector\n");

42 exit(1);

43 }
44 return b;

45 }

This is identical to the file alloc.c first used for Gaussian elimination. The only change we made
is line 1, where the file qr.h is included now. The file hessenberg.c contains the function using
Gaussian elimination to produce the upper Hessenberg matrix:

1 #include "qr.h"

2

3 void simgauss(double **a,int n)

4 /* The matrices are size n times n */

5 {
6 const double near_zero=1e-20;

7 int i,j,k,l,pivi,success;

8 double max, temp, *rowptr, norm;

9 success=1;

10 for(k=1;k<n-1;k++) {
11 pivi=k+1;

12 max=absval(a[k+1][k]);

13 for (i=k+2;i<=n;i++)

14 if( (temp=absval(a[i][k])) > max ) {
15 max=temp;

16 pivi=i;

17 }
18 /* interchange rows and column */

19 if ( pivi != k+1 ) {
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20 /* interchange rows */

21 rowptr=a[k+1]; a[k+1]=a[pivi]; a[pivi]=rowptr;

22 /* interchange columns */

23 for (i=1;i<=n;i++) {
24 temp=a[i][k+1]; a[i][k+1]=a[i][pivi]; a[i][pivi]=temp;

25 }
26 }
27 /* If a[k+1][k] is nearly zero then do nothing, since

28 then column k of the matrix is almost zero already */

29 if (absval(a[k+1][k])>near_zero)

30 for (i=k+2;i<=n;i++) {
31 temp=a[i][k]/a[k+1][k];

32 for (j=k;j<=n;j++) a[i][j] -= temp*a[k+1][j];

33 for (j=1;j<=n;j++) a[j][k+1] += temp*a[j][i];

34 }
35 }
36 }
37

38 double shiftamount(double **a, int n)

39 {
40 double discr, theshift, realpart;

41 realpart=(a[n-1][n-1]+a[n][n])/2.;

42 discr=square(realpart)/4.+

43 a[n-1][n]*a[n][n-1]-a[n-1][n-1]*a[n][n];

44 if ( discr<0 ) return realpart;

45 if ( a[n-1][n-1]>=a[n][n] )

46 return realpart-sqrt(discr);

47 return realpart+sqrt(discr);

48 }
49

50 int protation(double **a, int p, int q, int n,

51 double *sintheta, double *costheta)

52 {
53 const near_zero=1e-20;

54 double alpha;

55 if (p==q) return 0;

56 if ( absval(a[q][p])<=near_zero ) return;

57 alpha=1./sqrt(square(a[p][p])+square(a[q][p]));

58 *sintheta=-alpha*a[q][p];

59 *costheta= alpha*a[p][p];

60 return 1;

61 }
62

63 int leftprotate(double **a, int p, int q, int n,

64 double sintheta, double costheta)

65 {
66 int j;

67 double temp;

68 /* error is p==q */

69 if (p==q) return 0;

70 for (j=1;j<=n;j++) {
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71 temp=a[p][j];

72 a[p][j]=costheta*temp-sintheta*a[q][j];

73 a[q][j]=sintheta*temp+costheta*a[q][j];

74 }
75 return 1;

76 }
77

78 int rightprotate(double **a, int p, int q, int n,

79 double sintheta, double costheta)

80 {
81 int i;

82 double temp;

83 /* error is p==q */

84 if (p==q) return 0;

85 for (i=1;i<=n;i++) {
86 temp=a[i][p];

87 a[i][p]=temp*costheta-a[i][q]*sintheta;

88 a[i][q]=temp*sintheta+a[i][q]*costheta;

89 }
90 return 1;

91 }

The function simgauss in lines 3–36 has the matrix **a and its size n as parameters. Dealing with
columns k = 1 through k = n − 2 in the loop in lines 10–35, the pivot element is found in lines
11–18, and then the rows and columns are interchanged in lines 19–26; as we mentioned, we need to
interchange columns as well in order to make the transformation a similarity transformation. Then
the k + 1st row is subtracted from later rows in line 32, and the appropriate column subtraction
(necessary to make the transformation a similarity transformation) is performed in line 33.

The function shiftamount in lines 38–48 uses the quadratic formula to find the eigenvalues of
the lower right 2 by 2 minor of the matrix **a, and calculates the appropriate shift to be applied
to the matrix before using plane rotations. The function protation in lines 50--61 calculates
sin θ and cos θ for the plain rotation that would make the element aqp zero. The angle θ itself does
not need to be determined. This function returns the values of sin θ and cos θ as pointers sintheta
and costheta. The function leftprotate in lines 63–76 applies this transformation as a matrix
multiplication on the left, and the function rightprotate in lines 78–91 applies its transpose as a
matrix multiplication on the right. The last three functions mentioned return 0 in case p and q are
equal (when the transformation cannot be carried out), otherwise they return 1.

The file qr.c contains the function applying these plain rotations:

1 #include "qr.h"

2

3 double qr(double **a, int n, double tol, int maxits,

4 int *itcount, int *success)

5 {
6 int i, j, pk;

7 double lambda, sint, cost, oldsint, oldcost;

8 *success=0;

9 for (*itcount=1;*itcount<=maxits;(*itcount)++) {
10 pk=shiftamount(a,n);

11 for (i=1;i<=n;i++) a[i][i] -= pk;

12 for (i=1;i<n;i++) {
13 protation(a,i,i+1,n,&sint,&cost);
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14 leftprotate(a,i,i+1,n,sint,cost);

15 if (i>1) rightprotate(a,i-1,i,n,oldsint,oldcost);

16 oldsint=sint; oldcost=cost;

17 }
18 rightprotate(a,n-1,n,n,oldsint,oldcost);

19 for (i=1;i<=n;i++) a[i][i] += pk;

20 if ( absval(a[n][n-1])<=tol ) {
21 *success=1;

22 return a[n][n];

23 }
24 }
25 /* We get to this point if we are unsuccessful */

26 return 0.;

27 }
28

29 void printmatrix(double **a, int n)

30 {
31 int i,j;

32 for (i=1;i<=n;i++) {
33 printf("\n");

34 for (j=1;j<=n;j++)

35 printf("%8.5f ",a[i][j]);

36 }
37 printf("\n");

38 }
39

40 void printmatrix_mathematica(double **a, int n)

41 {
42 int i,j;

43 printf("\nm={");
44 for (i=1;i<=n;i++) {
45 if ( i>1 ) printf("},");
46 printf("\n{");
47 for (j=1;j<n;j++)

48 printf("%8.5f,",a[i][j]);

49 printf("%8.5f",a[i][n]);

50 }
51 printf("}}\n");
52 printf("N[Eigenvalues[m]]\n");

53 }
The function qr uses plain rotations involving rows i and i + 1 on the Hessenberg matrix to make
the element ai+1 i zero. One needs to multiply with these rotation matrices also on the right with
one step delay as was explained above. For this reason, only the last matrix used needs to be
remembered. This is why one stores the current values of sint and cost in oldsint and oldcost

on line 16, to use it for the next cycle of the loop on lines 9–16. The parameters of the function qr

are the matrix **a, the size n of the matrix, the tolerance tol to stop the iteration when the test
on line 20 shows that the element a[n][n-1] is small enough, the maximum number of iterations
maxits allowed, the number of iterations *itcount (as a pointer, so the calling program can read
it), and the integer *success showing whether the function was successful.

The function printmatrix can be used to print out the entries of the matrix **a. A simi-
lar function printmatrix_mathematica prints out the matrix in the form usable by the software
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Mathematica. This is useful for debugging purposes, since Mathematica can be used to calculate
the eigenvalues of the matrix, to compare it with the result produced by the present program. This
program was used with the following input file symm_coeffs:

1 5e-14

2 5

3 1 2 3 5 8

4 3 -2 2 3

5 1 1 -1

6 -1 3

7 2

The numbers on the left are line numbers. The first number is the tolerance, the second number is
the size of the matrix; rows 3–7 then contain the upper triangle of a symmetric matrix. The present
program does not require that the matrix be symmetric, but it works only if the eigenvalues are
real. For a symmetric matrix, it is guaranteed that the eigenvalues are real. The calling program is
contained in the file main.c:

1 #include "qr.h"

2

3 main()

4 {
5 /* This program reads in the elements of in the

6 upper triangle of a square matrix int the file

7 named symm_coeffs, and fills in the lower triangle

8 to make the matrix symmetric. The first entry in

9 the file is the required tolerance, the

10 second entry is n, the size of the matrix. The

11 rest of the entries are the elements in the

12 upper triangle of the matrix. The first entry

13 must be of type float, the third entry must be

14 an unsigned integer, the other entries can be

15 integers or reals. */

16 double **a, lambda;

17 float tol;

18 int n, i, j, subs, readerror=0, success, itcount;

19 char ss[25];

20 FILE *coefffile;

21 coefffile=fopen("symm_coeffs", "r");

22 fscanf(coefffile, "%f", &tol);

23 printf("Tolerance used: %g\n", tol);

24 fscanf(coefffile, "%u", &n);

25 a=allocmatrix(n);

26 for (i=1;i<=n;i++) {
27 if ( readerror ) break;

28 for (j=i;j<=n;j++) {
29 if (fscanf(coefffile, "%s", ss)==EOF) {
30 readerror=1;

31 printf("Not enough coefficients\n");

32 printf("i=%u j=%u\n", i, j);

33 break;

34 }
35 a[j][i]=a[i][j]=strtod(ss,NULL);
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36 }
37 }
38 fclose(coefffile);

39 if ( readerror ) printf("Not enough data\n");

40 else {
41 simgauss(a,n);

42 lambda=qr(a,n,tol,100,&itcount,&success);

43 printf("The number of iterations was %u\n", itcount);

44 if ( success ) printf("An eigenvalue is %16.12f\n", lambda);

45 else printf("No eigenvalue could be calculated\n");

46 printmatrix(a,n);

47 }
48 free(a[0]); free(a);

49 }
In lines 26–37 the matrix is read; if there is no error in reading the input (no end of file is reached
before the required number of data are read), in line 41 the function simgauss is invoked to perform
a similarity transformation based on Gaussian elimination. Then, in line 42, the eigenvalue is
calculated by using plane rotations. In lines 42–45 the result is printed out, and in line 46 the final
entries of the matrix **a are printed out. The printout of the program is as follows:

1 Tolerance used: 5e-14

2 The number of iterations was 20

3 An eigenvalue is -0.624673383928

4

5 13.58357 3.79959 -0.88053 4.24524 6.29943

6 0.00001 -7.85017 2.74484 -0.32985 -3.76364

7 -0.00000 0.01046 4.25460 1.40126 -1.52720

8 -0.00000 0.00000 -0.00000 -3.36333 -1.18487

9 -0.00000 -0.00000 -0.00000 -0.00000 -0.62467

The lower right entry of the matrix contains the calculated eigenvalue. It is interesting to note that
the other elements in the main diagonal of the matrix are also fairly close to the other eigenvalues.
In fact, the eigenvalues, as printed out by Wielandt’s deflation are as follows:

1 Tolerance used: 5e-14

2 56 iterations used for eigenvalue number 1

3 48 iterations used for eigenvalue number 2

4 139 iterations used for eigenvalue number 3

5 20 iterations used for eigenvalue number 4

6 All eigenvalues were calculated. They are:

7 13.583574215424 -7.852544184194 4.256975565094 -3.363332212396

8 -0.624673383928

43. SPECTRAL RADIUS AND GAUSS-SEIDEL ITERATION

Spectral radius. In this section we will discussN×N matrices with complex numbers as entries.
An eigenvalue of such a matrix A is a complex number for which there is a nonzero n-dimensional
column vector x = (x1, x2, . . . , xN )T , called the eigenvector corresponding to λ, for which Ax = λx;
in other word, (A − λI)x = 0, where I is the identity matrix. This equation can also be read as
saying that the linear combination of the column vectors of A − λI) formed by the coefficients x1,
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. . . , xN ; that is, these column vectors are linearly dependent. This is equivalent to saying that
A − λI is not invertible; in what follows, it will be simpler to write λ − A instead of λI − A. The
spectrum of A is the set of its eigenvalues. In other words, one can define the spectrum of A as the
set of complex numbers for which the matrix λ−A is not invertible.162

The spectral radius ρ(A) of a matrix A is defined as the maximum of the absolute values of the
elements of its spectrum. If ‖ · ‖ is a matrix norm compatible with a vector norm,163 for any matrix
A we have

(1) ρ(A) ≤ ‖An‖1/n for any positive integer n ≥ 1.

Furthermore,

(2) ρ(A) = lim
n→∞

‖An‖1/n.

The proof of the first of these relations is easy to prove. In fact, if λ is an eigenvalue of A with
eigenvector x, then Ax = λx, A2x = A(Ax) = A(λx) = λAx = λ2x, and, in fact, using a similar
argument combined with induction on n, for any positive integer n, we have Anx = λnx. Taking λ
to be the eigenvalue with the largest absolute value of A, and x to be a corresponding eigenvector
with ‖x‖ = 1, we have

ρ(A) = λ = (λn)1/n = (|λn| ‖x‖)1/n = (|λ|n|x‖)1/n = ‖Anx‖1/n ≤ (‖An‖‖x‖)1/n ≤ ‖An‖1/n.

The proof of (2) is more complicated. For matrices, it can be carried out using the Jordan normal
form,164 but the most elegant proof, generalizable way beyond the scope of matrices, relies on the
concept of the resolvent of a matrix, discussed in the next subsection. This discussion, however,
relies on the theory of complex functions, and should be skipped by those unfamiliar with the basics
of this theory.

The resolvent of a matrix. The resolvent (of resolvent function) R(ζ) of the matrix A is
defined as

R(ζ) = RA(ζ)
def
= (ζ −A)−1,

where ζ is a complex variable. R(ζ) is defined at every point where ζ − A is invertible, that is, at
every point ζ that does not belong to the spectrum of A. The complement of the spectrum of A,
that is, the domain of RA, is called the resolvent set of A.

If ζ0 is in the resolvent set of A and ζ is close to ζ0, one might try to calculate the inverse of

ζ −A = (ζ0 −A)− (ζ0 − ζ) =
(

I − (ζ0 − ζ)(ζ0 −A)−1)
)

(ζ0 −A);

note that the inverse occurring in the second factor on the right-hand side exists according to the
assumption that ζ0 belongs to the resolvent set of A. We want to calculate this inverse of the left-
hand side of A; to this end, we need the inverse of the first factor on the right-hand side. In analogy
for the expansion

(1− x)−1 = 1 + x+ x2 + . . . =

∞
∑

n=0

xn,

162This second definition of the spectrum is much better than the first definition, since it can be generalized to

entities much more general than matrices, and in the generalized setting not all elements of the spectrum will be
eigenvalues.

163A matrix norm ‖ · ‖ is called compatible, or consistent, with a vector norm, also denoted as ‖ · ‖, if for any

matrix A and any column vector x we have
‖Ax‖ ≤ ‖A‖‖x‖.

In the discussion that follows, ‖ · ‖ will denote a fixed vector norm or a fixed matrix norm compatible with this vector
norm.

164For the Jordan normal form of matrices, see, for example Serge Lang, Linear Algebra, Second edition, Addison-
Wesley Publishing Company, Reading, Mass, 1971.
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convergent for |x| < 1, we might try

(

I − (ζ0 − ζ)(ζ0 −A)−1
)−1

=

∞
∑

n=0

(

(ζ0 − ζ)(ζ0 −A)−1
)n

=

∞
∑

n=0

(ζ0 − ζ)n(ζ0 −A)−n.

In fact, it is easy to show that if

|ζ0 − ζ| ‖(ζ0 −A)−1‖ < 1,

then this series converges and equals the inverse on the left-hand side. This shows that the resol-
vent set is open, since the small circle represented by the numbers ζ belongs to the resolvent set;
the expansion can be termwise differentiated165 in this small circle, showing that the resolvent is
holomorphic166 on its domain (since ζ0 was an arbitrary element of the domain).

Take any circle with center at the origin that includes the spectrum of A in its interior. Note
that any circle of radius greater than the spectral radius ρ(A) of A will do. For any positive integer
n, the value of the integral

∮

|ζ|=r

ζnRA(ζ) dζ

taken along the circle {ζ : |ζ| = r} of radius r with center at the origin, is independent of r as long
as r is large enough for this circle to include the spectrum of A in its interior, since a well-known
theorem of complex function theory says that path integrals on simply connected domains167 only
depend on the starting point and the endpoint, and not the path connecting them. For any such
integral with large enough r, we can write
∮

|ζ|=r

ζnRA(ζ) dζ =

∮

|ζ|=r

ζn(ζ −A)−1 dζ =

∮

|ζ|=r

ζn−1
(

I − ζ−1A
)−1

dζ

=

∮

|ζ|=r

ζn−1
∞
∑

k=0

ζ−kAk dζ =

∮

|ζ|=r

∞
∑

k=0

ζn−1−kAk dζ =

∞
∑

k=0

∮

|ζ|=r

ζn−k−kAk dζ = 2πiAn;

the expansion after the third equality is analogous to the expansion of (1 − x)−1 described above,
and it is convergent for large r, e.g. if r−1‖A‖ = |ζ|−1‖A‖ < 1; in this case the integral of the series
can be evaluated termwise, as the forth equality shows. The last equality follows since the integral
of ζ−n for integer n ≥ 0 is zero unless n− 1− k = −1, i.e., unless k = n.

However, as we remarked above, the value of the integral on the left-hand side, is the does not
depend on r as long as r > ρ(A). So the left-hand side is still equal to the right-hand side for any
such r, even though the intervening infinite series need not make sense for all such r. Hence, for any
r > ρ(A) and n > ge1 we have

‖An‖ =

∥

∥

∥

∥

∥

1

2πi

∮

|ζ|=r

ζnRA(ζ) dζ

∥

∥

∥

∥

∥

≤ 1

2π

∮

|ζ|=r

|ζn|max
|ζ|=r

‖RA(ζ)‖ d|ζ|

≤ 1

2π
2πr · rn max

|ζ|=r
‖RA(ζ)‖ = rn+1 max

|ζ|=r
‖RA(ζ)‖;

165That is, if one differentiates each term of the series and then adds up these terms, the result will be the derivative
of the sum of this series.

166Holomorphic is the term used in complex function theory for functions that are differentiable (differentiability
in complex function theory behaves very differently in differentiability on the real line, so much so that the use of a

different term is justified).
167A domain is a connected open set, i.e., an open set such that from any point of the set one can reach any

other point by walking along a number of straight line segments. A domain is called simply connected if it has no
holes inside; a somewhat more precise way of describing this is that any path consisting of line line segments entirely

inside the domain can be continuously deformed into any other similar path with the same endpoints – when doing
the deformation, one may need to break up a line segment into a path consisting of a number of line segments.



224 Introduction to Numerical Analysis

the second inequality holds since |ζ| = r along the path of integration, and the length of the path of
integration is 2πr. Making n→ ∞, we obtain

lim sup
n→∞

‖An‖1/n ≤ lim
n→∞

r(n+1)/n
(

max
|ζ|=r

‖RA(ζ)‖
)1/n

= r;

on the left-hand side, we need to take lim sup, since the existence of the limit is not guaranteed.
Since this is true for any r > ρ(A), it follows that

lim sup
n→∞

‖An‖1/n ≤ ρ(A).

This, together with (1), establishes (2).

Hermitian matrices. Write z̄ for the complex conjugate of the number z; that is, if z = x+ iy
with real x and y, then z̄ = x− iy. Given an m×n matrix A = (ajk)j,k:1≤j≤m, 1≤k≤n, the conjugate
transpose A∗ of A is the n × m matrix A∗ = (ajk)k,j:1≤j≤m, 1≤k≤n; to understand the notation,
note that the first subscript listed outside the parentheses before the column identifies rows, and the
second one identifies column. The order of listing the ranges of the subscripts is immaterial. Thus
the matrix A has m rows and n columns, and the entry in the intersection of the jth row and the
kth column is ajk. On the other hand, the matrix A∗ has n rows and m columns, and the element
in the intersection of the kth row and jth column is ajk, the complex conjugate of ajk. We could
equally well have written A∗ = (akj)j,k:1≤j≤n, 1≤k≤m. If one can multiply the matrices A and B (in
this order),168 then it is easy to check that one can also multiply the matrices B∗ and A∗, and

(AB)∗ = B∗A∗.

This is true even in case AB is a number,169 with the understanding that for a number c we write
c∗ = c̄.

In what follows, N will be a fixed positive integer, and we will only be interested in the conjugate
transpose of an N ×N square matrix, or an N -dimensional column vector. The conjugate transpose
of the latter is an N -dimensional row vector. For an N -dimensional column vector x = (x1, . . . , xn)
with complex entries, the l2 norm of x is defined as

‖x‖ = ‖x‖2
def
= x∗x =

( N
∑

n=1

xnxn

)1/2

=

( N
∑

n=1

|xn|2
)1/2

.

The norm for vectors ‖ · ‖ will from now on denote the l2 norm. The matrix norm, also called l2

norm, induced by this vector norm is defined for N ×N matrices is defined as

‖A‖ def
= max

x:‖x‖=1
‖Ax‖;

it is easily seen that this matrix norm is compatible with the vector norm ‖ · ‖, that is,

‖Ax‖ ≤ ‖x‖.

We will be interested in the expression, called a quadratic form, x∗Ax, associated with an N × N
matrix A = (aij). It is easy to see that, with x = (x1, . . . xN )T , we have

x∗Ax =
N
∑

j,k=1

xjajkxk.

168That is, if the number of columns of A is the same as the number of rows of B.
169I.e., if A is a column vector, and B is a row vector (of the same dimension, so they can be multiplied).
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The N ×N matrix A = (aij) is called Hermitian170 if A∗ = A; this is equivalent to saying that
ajk = akj for any j, k with 1 ≤ j, k ≤ N . For a Hermitian matrix A and for any column vector x,
the quadratic form x∗Ax is a real number. Indeed,

(x∗Ax)∗ = x∗A∗(x∗)∗ = x∗Ax.

A Hermitian matrix A is called positive definite if for any nonzero column vector x we have

x∗Ax > 0.

As in the real case, this implies that the diagonal elements are positive, since if in the vector x we
have xj all but the kth component is zero, and the kth component is 1, then we have

x∗Ax = akk.

If the entries of A are real, then it is sufficient to require this inequality for column vectors with
real entries. In fact, any column vector z can be written as x+iy with x and y being column vectors
with real entries. Then

z∗ = (x+ iy)∗ = xT − iyT ,

and so
z∗Az = (xT − iyT )A(x+ iy) = xTAxT + ixTAyT − iyTAxT + yTAyT .

Since we assumed for this calculation that the entries of A are real, we have A∗ = AT , that is A is
a real symmetric matrix. Then xTAyT is real, so

xTAy = (xTAy)T = yTATx = yTAx,

and so
z∗Az = xTAxT + yTAyT .

That is, for symmetric matrices with real entries, the present definition of the term “positive definite”
given for Hermitian matrices reverts to the definition given earlier.

Gauss-Seidel iteration. Consider the system of linear equations Ax = b, where A = (aij) is
an N × N matrix with complex entries, x = (x1, . . . , xN )T is the column vector of the unknowns,
and b = (b1, . . . , bN )T is the right-hand side of the equation. Write A in the form

A = L+D + U,

where L is a lower triangular matrix with zeros in the diagonal, D is a diagonal matrix, and U is an

upper diagonal matrix with with zeros in the diagonal.171 Write xn = (x
(n)
1 , . . . , x

(n)
N )T for the nth

approximation to the solution. Then Gauss-Seidel iteration can be described as follows: We start
with an arbitrary vector x0, and for n ≥ 0 we determine the vector xn+1 by using the equation

(L+D)xn+1 + Uxn = b.

Indeed, this can be written as a system of equations

j
∑

k=1

ajkx
(n+1)
k +

N
∑

k=j+1

ajkx
(n)
k = bj (1 ≤ j ≤ N).

170Named after the French mathematician Charles Hermite, 1822-1901.
171Clearly, L and U here is not the same as the matrices L and U obtained in LU factorization.
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By solving the jth equation for x
(n+1)
j , we obtain the usual equations used in Gauss-Seidel iteration.

When solving these equations, it is necessary to require that ajj 6= 0 for 1 ≤ j ≤ N , i.e., that the
diagonal elements of the matrix A (which is the same as the diagonal elements of the matrix D) are
nonzero. The matrix form of these equations can also be solved for xn+1:

(3) xn+1 = (L+D)−1(b− Uxn).

The condition for solving these equations is that the matrix L+D should be invertible. As L+D is
a lower triangular matrix, it is invertible if and only if its diagonal entries, i.e., the diagonal entries
of D, are nonzero (this is the same as the condition mentioned above necessary in order to be able

to solve the jth equation for x
(n+1)
j for each j in the above system of equations). The following is

an important result concerning the convergence of Gauss-Seidel iteration.

Theorem. Assume A is a positive definite Hermitian matrix (with complex entries). Then the
equation Ax = b is solvable by Gauss-Seidel iteration.

Proof. If xn is the nth vector of Gauss-Seidel iteration, then for n ≥ 0 we have

xn+2 − xn+1 = −(L+D)−1U(xn+1 − xn).

Indeed, this equation can be obtained by taking equation (3) with n+1 replacing n, and subtracting
from it equation (3) as given. Iterating this, we can see that

xn+1 − xn = (−1)n((L+D)−1U)n(x1 − x0),

that is,
‖xn+1 − xn‖ ≤ ‖(L+D)−1U)n‖ ‖x1 − x0‖,

where we used l2 norms. In order to show that the iteration converges, it will be sufficient to show
that the series

∑∞
n=0 ‖xn+1 − xn‖ is convergent, and for this it will be sufficient that there be a

positive number q < 1 such that
‖(L+D)−1U)n‖ < qn,

and this will follow according to (2) if the spectral radius ρ((L+D)−1U) of (L+D)−1U is less than
1, that is, if all eigenvalues of (L+D)−1U lie in the unit circle (of the complex plane). This is what
we are going to show.

To this end, let λ be an eigenvalue of (L+D)−1U with the associated eigenvector x; that is,

(L+D)−1Ux = λx,

where λ is a complex number and x is a nonzero vector. We need to show that |λ| < 1. Recall that
the matrix A = L+D+U is assumed to be Hermitian; hence the entries of D are real and U = L∗.
Hence, the last equation can be written as

(L+D)−1L∗x = λx,

or, multiplying both sides by L+D on the left and switching the sides, as

λ(L+D)x = L∗x.

Adding λL∗x to both sides, noting that L+D + L∗ = A, and multiplying both sides by x∗ on the
left, we obtain

(4) λx∗Ax = (1 + λ)x∗L∗x.
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The conjugate transpose of this equation is

λ̄x∗Ax = (1 + λ̄)x∗Lx.

Multiplying the first equation by 1 + λ̄ and the second one by 1 + λ and adding the equations, we
obtain

(λ+ λ̄+ 2λλ̄)x̄∗Ax̄ = (1 + λ)(1 + λ̄)x∗(L+ L∗)x.

Adding (1 + λ)(1 + λ̄)x∗Dx to both sides and noting on the right-hand side that L+D + L∗ = A,
we obtain

(1 + λ)(1 + λ̄)x∗Dx+ (λ+ λ̄+ 2λλ̄)x̄∗Ax̄ = (1 + λ+ λ̄+ λλ̄)x∗Ax.

Transferring the term involving A on the left-hand side to the right-hand side, noting that λλ̄ = |λ|2
and (1 + λ)(1 + λ̄) = (1 + λ)(1 + λ), we obtain that

|1 + λ|2x∗Dx = (1− |λ|2)x∗Ax.

Note that λ 6= −1; indeed, equation (4) with λ = −1 implies that x∗Ax = 0, whereas x∗Ax > 0
since A is positive definite. A being positive definite also implies that all the diagonal elements of
A (which are the same as the diagonal elements of D) are positive; hence we also have x∗Dx > 0.
Thus, the last displayed equation can hold only if 1− |λ|2 > 0. This shows that |λ| < 1. �

44. ORTHOGONAL POLYNOMIALS

Let (a, b) be an interval and let w be a positive integrable function on (a, b).172 The polynomials

pn(x) = γnx
n + . . . (n = 0, 1, 2 . . . )

such that

(1)

∫ b

a

pm(x)pn(x)w(x) dx = δmn (m,n = 0, 1, 2, . . . )

are called orthonormal on the interval (a, b) with respect to the weight function w.173 Here we
assume that γn > 0, so that pn is a polynomial of degree n.174 Sometimes one drops to condition of
normality, and one wants to consider the monic175 polynomials 1

γn
pn.

One can construct the polynomials pn by using what is called the Gram-Schmidt orthogonalization: Let

γ0 =

(∫ b

a
w(x) dx

)−1/2

;

172We will assume that the interval (a, b) is finite. However, the arguments can be extended to the case when a
or b or both are infinite if one assumes that the function |x|nw(x) is integrable on (a, b) for all positive integers n.

173The word orthonormal is constructed by combining the words orthogonal (referring to the above relation when

m 6= n) and normal (referring to the case when m = n.
174The condition that

∫ b

a
p2n(x)w(x) dx = 1

determines only |γn|. One then is free to choose γ to be positive or negative. We make the choice of γ being positive.
175Monic polynomials are polynomials with leading coefficient one.
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the integral here is positive since we assumed that w(x) > 0; hence raising it to the power −1/2 is meaningful. Put

p0(x)
def
= γ0. Then

∫ b

a
p0(x) = 1.

Assuming that the polynomials pk(x) of degree k have been defined for k with 0 ≤ k < n in such a way that

∫ b

a
pk(x)pl(x) dx = δkl

whenever 1 ≤ k, l < n. Writing

ηk =

∫ b

a
xnpk(x) dx,

put

Pn(x) = xn −
n−1
∑

k=0

ηkpk(x).

For l < n we have

∫ b

a
Pn(x)pl(x)w(x) dx =

∫ b

a
xnpl(x)w(x) dx−

n−1
∑

k=0

∫ b

a
ηkpk(x)pl(x) dx = ηl − ηl = 0.

Write

γn =

(∫ b

a
P 2
n(x)w(x) dx

)−1/2

;

note that the integral here is positive since w(x) is positive and the polynomial Pn(x) is not identically zero (namely,
its leading coefficient is 1). Put pn(x) = γnPn(x). Then

∫ b

a
p2n(x)w(x) dx = 1.

Thus, the system of polynomials pn constructed this way is orthonormal on (a, b) with respect to the weight function w.

It is clear that every polynomial p(x) of degree m ≥ 0 can be written as a linear combination

p(x) =
m
∑

i=0

λipi(x).

Hence, (1) implies

(2)

∫ b

a

pn(x)p(x)w(x) dx = 0

whenever p(x) has degree less than n. Now, it is also clear that pn+1(x), can be written as a linear
combination

pn+1(x) = λn+1xpn(x) +
n
∑

i=0

λipi(x);

in fact, any polynomial of degree n+ 1 can be written in such a way for appropriate choices of the
coefficients λi, 0 ≤ λ ≤ n + 1. Multiplying both sides by pk(x)w(x) for some integer k and then
integrating on (a, b), we obtain

∫ b

a

pn+1(x)pk(x)w(x) dx = λn+1

∫ b

a

pn(x)xpk(x)w(x) dx+
n
∑

i=0

λi

∫ b

a

pi(x)pk(x)w(x) dx.
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For k with 0 ≤ k < n−1, every integral is zero except the coefficient of λi for i = k on the right-hand
side; in fact, we have

∫ b

a

pn(x)xpk(x)w(x) dx = 0

in particular, since the polynomial xpk(x) has degree less than n. Hence we have176

0 = λk

∫ b

a

p2k(x)w(x) dx = λk.

Therefore, we have

(3) pn+1(x) = λn+1xpn(x) + λnpn(x) + λn−1pn−1(x)

This is the three-term recurrence formula for orthogonal polynomials. For n = 0, (3) should be
replaced with

p1(x) = λ1xp0(x) + λnpn(x),

as is easily seen by following the above calculation for n = 0. However, instead of considering the
case n = 0 separately, it is more convenient to stipulate that p−1(x) ≡ 0, in which case (3) becomes
valid even for n = 0.

We will take a closer look at the coefficients λn−1, λn, and λn+1 in (3). First, note that the
coefficient of xn+1 on the left-hand side is γn+1, and that on the right-hand side is γnλn+1. Thus

(4) λn+1 =
γn+1

γn
;

note that the denominator on the right-hand side is not zero, since we assumed that γn 6= 0.
Furthermore, λn+1 6= 0 since γn+1 6= 0. Multiplying both sides in (3) by pn−1w(x) and integrating,
we obtain

∫ b

a

pn+1(x)pn−1(x)w(x) dx

= λn+1

∫ b

a

xpn(x)pn−1(x)w(x) dx+ λn

∫ b

a

pn(x)pn−1w(x) dx+ λn−1

∫ b

a

p2n−1(x)w(x) dx.

The integral on the left and the second integral on the right are zero, and the third integral on the
right-hand side is 1. Thus,

0 = λn+1

∫ b

a

xpn(x)pn−1(x)w(x) dx+ λn−1.

So, using the expression for λn+1 given by (4), we obtain

λn−1 = −γn+1

γn

∫ b

a

xpn(x)pn−1(x)w(x) dx.

This expression can be further simplified. In fact, we have

xpn−1(x) = γn−1x
n + lower order terms =

γn−1

γn
pn(x) + q(x),

176p2k(x) is short for (pk(x))
2.
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where q(x) is some polynomial of degree less than n. Thus, we have

λn−1 = −γn+1

γn

∫ b

a

pn(x)xpn−1(x)w(x) dx = −γn+1

γn

∫ b

a

pn(x)

(

γn−1

γn
pn(x) + q(x)

)

w(x) dx

= −γn+1γn−1

γ2n

∫ b

a

p2n(x)w(x) dx− γn+1

γn

∫ b

a

pn(x)q(x)w(x) dx.

The first integral on the right-hand side is one and the second one is zero (because the degree of
q(x) is less than n – cf. (2)). Therefore,

(5) λn−1 = −γn+1γn−1

γ2n
.

Multiplying both sides of (3) by pn(x)w(x) and integrating

∫ b

a

pn+1(x)pn(x)w(x) dx

= λn+1

∫ b

a

xp2n(x)w(x) dx+ λn

∫ b

a

p2n(x)w(x) dx+ λn−1

∫ b

a

pn−1(x)pn(x)w(x) dx.

Again, the integral on the left and the third integral on the right is zero, while the second integral
on the right-hand side is 1. Hence,

0 = λn+1

∫ b

a

xp2n(x)w(x) dx+ λn.

Therefore, again using the above expression for λn+1, we obtain

(6) λn = −γn+1

γn

∫ b

a

xp2n(x)w(x) dx.

Write
ak =

γk−1

γk
for k ≥ 1,

which makes an = γn−1/γn and an+1 = γn/γn+1; note that ak > 0 since γi > 0. Further, put

bn =

∫ b

a

xp2n(x)w(x) dx.

Multiplying (3) by γn

γn+1
, (4)–(6) imply

(7) xpn(x) = an+1pn+1(x) + bnpn(x) + anpn−1(x).

This is the usual form of the three-term recurrence formula. This formula is valid for any n ≥ 0,
provided that we stipulate that p−1(x) ≡ 0 (since this choice made (3) valid for n = 0).177

Given a system of orthonormal polynomials pn, it can be shown that any “nice”178 function f
can be written as an infinite series

f(x) =

∞
∑

n=0

cnpn(x).

177In this case, one can define a0 arbitrarily, since it is multiplied by zero; e.g., one can take a0 = 1.
178We do not define here what is meant by “nice.” The theory of Riemann integration is not adequate to discuss

this topic in an elegant framework; one needs the theory of Lebesgue integration, developed by Henry Lebesgue at the
beginning of the twentieth century, for this.
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This property of orthogonal polynomials is called completeness ; that is, a system of orthogonal
polynomials is complete. Multiplying the above equation by pk(x)w(x) and integration on the
interval (a, b), we obtain179

ck =

∫ b

a

f(x)pk(x)w(x) dx.

An important theorem about the zeros of orthogonal polynomials is the following

Theorem. Let (a, b) be an interval, let w(x) be positive on (a, b), and let {pn}∞n=0 be a system
of orthonormal polynomials on (a, b) with weight w. Then for each n, the zeros of the polynomial pn
are single, real, and they are located in the interval (a, b).

Proof. Let λ1, λ2, . . . , λk be the zeros of pn of odd multiplicity that are located in the interval
(a, b). Since λi for i with 1 ≤ i ≤ k are the exactly places where the polynomial pn(x) changes its
sign, Therefore, the polynomial

pn(x)

k
∏

j=1

(x− λj)

has constant sign (i.e., it is always positive, or always negative) on the interval (a, b), with the
exception of finitely many places (the λi’s and the zeros of even multiplicity of pn(x) in the interval
(a, b)). Hence we have

∫ b

a

pn(x)
(

k
∏

j=1

(x− λj)
)

w(x) dx 6= 0;

thus, we must have k = n in view of (2). Thus, the numbers λ1, . . . , λn constitute all the zeros of
the polynomial pn (since pn has degree n, so it cannot have more zeros).

Another important observation about the zeros is the following

Lemma. Let (a, b) and {pn}∞n=0 be as in the Theorem above. Then pn and pn+1 have no common
zeros.

Proof. Assume pn+1(λ) = pn(λ) = 0 for some λ. Then pn−1(λ) = 0 according the the recurrence
formula (7). Repeating this argument, we can conclude that pn−2(λ) = . . . = p0(λ) = 0. However,
p0 must be a constant different from zero. This contradiction shows that the assumption pn+1(λ) =
pn(λ) = 0 cannot hold.

Much more than this is true; namely, the zeros of pn+1 and pn are interlaced in the sense that
every zero of pn is located between adjacent zeros of pn+1, and exactly one zero of pn is located
between two adjacent zeros of pn+1. This can be established by induction on n with the aid of (7)
by analyzing how the sign changes of pn(x) and pn+1(x) are related. We omit the details.

The Christoffel-Darboux formula. Let k ≥ 0. We have

ak+1

(

pk+1(x)pk(y)− pk(x)pk+1(y)
)

=
(

ak+1pk+1(x)
)

pk(y)− pk(x)
(

ak+1pk+1(y)
)

=
(

(x− bk)pk(x)− akpk−1(x)
)

pk(y)− pk(x)
(

(y − bk)pk(y)− akpk−1(y)
)

= (x− y)pk(x)pk(y) + ak
(

pk(x)pk−1(y)− pk−1(x)pk(y)
)

;

the second equality here was obtained by using the recurrence equation (7) to express ak+1pk+1(x)
and ak+1pk+1(y); note that the above calculation is true even for k = 0 if we take p−1 ≡ 0 (this

179In order to verify the following formula, one needs to be able to justify the legitimacy of the termwise integration

of the infinite sum on on the right-hand side. This can be done fairly easily under very general circumstances using
the theory of the Lebesgue integral. The theory of the Riemann integral is much less suitable for this purpose.
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choice was needed to make (7) valid for n = 0). Dividing this equation by x− y and rearranging it,
we obtain

pk(x)pk(y) = ak+1
pk+1(x)pk(y)− pk(x)pk+1(y)

x− y
− ak

pk(x)pk−1(y)− pk−1(x)pk(y)

x− y
.

Summing this for k = 0, 1, . . . , n, the sum on the right-hand side telescopes. Taking into account
that p−1 ≡ 0, we can see that the second fraction on the right-hand side for k = 0 is zero. Hence we
get

(8)

n
∑

k=0

pk(x)pk(y) = an+1
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
.

This is called the Christoffel-Darboux formula. Making y → x, we obtain

n
∑

k=0

p2k(x) = an+1

(

−pn+1(x) lim
y→x

pn(y)− pn(x)

y − x
+ pn(x) lim

y→x

pn+1(y)− pn+1(x)

y − x

)

= an+1

(

pn(x)p
′
n+1(x)− pn+1(x)p

′
n(x)

)

C. W. Clenshaw’s summation method. Using the recurrence formula (7), the sum

fn(x) =

n−1
∑

k=0

ckpk(x)

can be efficiently evaluated as follows. Write yn+1 = yn = 0, and put

yk =
x− bk
ak+1

yk+1 −
ak+1

ak+2
yk+2 + ck

for k = n− 1, n− 2, . . . , 0. Solving this for ck and substituting this into the above sum, we obtain

fn(x) =

n−1
∑

k=0

ckpk(x) =

n−1
∑

k=0

(

yk − x− bk
ak+1

yk+1 +
ak+1

ak+2
yk+2

)

pk(x).

Given m with 2 ≤ m ≤ n − 1, the quantity ym occurs on the right-hand side in the terms corre-
sponding to k = m, k = m− 1, and k = m− 2. Collecting these terms, we can see that the sum of
the terms involving ym on the right-hand side is

ym

(

pm(x)− x− bm−1

am
pm−1(x) +

am−1

am
pm−2(x)

)

.

According to (7), the quantity in the parentheses is zero. Therefore, all terms involving yk for k ≥ 2
add up to zero in the sum expressing fn(x). Hence

fn(x) =

(

y0 −
x− b0
a1

y1

)

p0(x) + y1p1(x).
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45. GAUSS’S QUADRATURE FORMULA

Given an interval (a, b), let w(x) be positive on (a, b), and let {pk}∞k=0 be a system of orthonormal
polynomials on (a, b) with respect to the weight function w(x). Fix n, and let x1, x2, . . . , xn be the
zeros of pn.

180 For i with 1 ≤ i ≤ n, let li be the Lagrange fundamental polynomials

(1) li(x) =

n
∏

j=1
j 6=i

x− xj
xi − xj

=
pn(x)

p′n(xi)(x− xi)

considered on account of the Lagrange interpolation.181 The numbers

Λi =

∫ b

a

li(x)w(x) dx

are called Christoffel numbers ; they play an important role in the Gauss Quadrature Formula:182

Λi of course also depends on n; if one wants to indicate this dependence, one may write Λin instead
of Λi.

Theorem (Gauss). For any polynomial p(x) of degree less than 2n we have

∫ b

a

p(x)w(x) dx =

n
∑

i=1

p(xi)Λi,

Proof. According to the polynomial division algorithm, we have

p(x) = q(x)pn(x) + r(x),

where q(x) and r(x) are a polynomials of degree at most n− 1; one can call this equation a division
equation. We have

∫ b

a

q(x)pn(x)w(x) dx = 0

in view of the orthogonality relation; cf. formula (2) in Section 44 on Orthogonal Polynomials.
Furthermore,

r(x) =

n
∑

i=1

r(xi)li(x) =

n
∑

i=1

p(xi)li(x)

according to the Lagrange interpolation formula; the second equation hold because pn(xi) = 0, and
so r(xi) = p(xi) according to the division equation above. Multiplying this equation by w(x) and
then integrating on (a, b), we obtain

∫ b

a

p(x)w(x) dx =

∫ b

a

r(x)w(x) dx =

∫ b

a

n
∑

i=1

p(xi)li(x)w(x) dx =

n
∑

i=1

p(xi)Λi.

180As we proved above, the xi are all distinct, real, and they lie in the interval (a, b).
181In Section 5 on Lagrange interpolation, we defined li by the first equality. The second equality was proved in

the form

li(x) =
p(x)

p′(xi)(x− xi)
,

where p(x) =
∏n

j=1(x− xj). It is easy to see that we have pn(x) = γnp(x) for this p(x) (as pn(x) and p(x) have the

same zeros, they must agree up to a constant factor), the second equation above for li follows.
182This formula is also called the Gauss-Jacobi Quadrature Formula. The term quadrature in a synonym for

integration, in that in quadrature one seeks a square having the area equal to a certain area (in the case of integration,
the area under a curve). The term is somewhat old fashioned, but it survives in certain contexts.
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The first equation here holds in view of the integral of q(x)pn(x)w(x) being zero, as shown above,
and the third equation holds in view of the definition of the Christoffel numbers.

It is worth pointing out that Λi > 0. This is because the Gauss Quadrature Formula is applicable
with the polynomial l2k(x) (1 ≤ k ≤ n), since this polynomial has degree 2n− 2. We have

∫ b

a

l2k(x)w(x) dx =
n
∑

i=1

l2k(xi)Λi = Λk.

The second equation holds because lk(xi) = δki. The left-hand side here is of course positive, showing
that Λi > 0 as claimed.

The Christoffel-Darboux formula can be used to evaluate Λi. Namely, we have

an+1p
′
n(xi)pn+1(xi)li(x) = an+1

pn(x)pn+1(xi)

(x− xi)

= −an+1
pn+1(x)pn(xi)− pn(x)pn+1(xi)

(x− xi)
= −

n
∑

k=0

pk(x)pk(xi);

the first equation here holds in view of (1), the second equation because xi is a zero of pn (i.e.,
pn(xi) = 0), and the third one because of the Christoffel-Darboux formula. Multiplying both sides
by w(x) and integrating on the interval (a, b), we obtain

an+1p
′
n(xi)pn+1(xi)Λi = an+1p

′
n(xi)pn+1(xi)

∫ b

a

li(x)w(x) dx

= −
n
∑

k=0

pk(xi)

∫ b

a

pk(x)w(x) dx = −1.

The first equality here holds in view of the definition of Λi. To see why the last one holds, note that
p0(x) is a nonzero constant; hence we have p0(x) = p0(xi) 6= 0, say. So,

∫ b

a

pk(x)w(x) dx =
1

p0(xi)

∫ b

a

pk(x)p0(x)w(x) dx =
1

p0(xi)
δk0.

Thus,

(2) Λi = − 1

an+1p′(xi)pn+1(xi)
.

46. THE CHEBYSHEV POLYNOMIALS

The Chebyshev183 polynomials are defined as

Tn(cos θ) = cosnθ (n = 0, 1, 2 . . . ).

For example, we have

(1) T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1;

183P. L. Chebyshev, a Russian mathematician of the 19th century. His name is often transliterated into French as
Tchebichef; this is why these polynomials are usually denoted as Tn.
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the last equation corresponds to the identity cos 2θ = 2 cos2 θ− 1. The above formula indeed defines
Tn as a polynomial, since we have

cosnθ + i sinnθ = (cos θ + i sin θ)n =

n
∑

k=0

(

n

k

)

ik cosn−k θ sink θ.

where i =
√
−1; the first equation here holds according to de Moivre’s formula, and the second one

holds in view of the Binomial Theorem. Taking real parts on both sides, we have an equation for
cosnθ. The real part on the right-hand side will only involve even values of k, i.e., even powers of
sin θ; that is, integral184 powers of sin2 θ = 1− cos2 θ. This shows that cosnθ is indeed a polynomial
of cos θ.

Given arbitrary nonnegative integers m and n,

∫ π

0

cosmθ cosnθ dθ =
1

2

∫ π

0

(

cos(m+ n)θ + cos(m− n)θ
)

dθ.

The integral of both cosine terms is zero unless m + n or m − n is zero, in which case the integral
of the corresponding term is π. Thus we obtain that

∫ π

0

cosmθ cosnθ dθ =











π
2 if m = n > 0,

π if m = n = 0,

0 if m 6= n.

Noting that the substitution θ = arccosx gives

dθ = − dx√
1− x2

,

i.e.,
∫ π

0

cosmθ cosnθ dθ = −
∫ −1

1

Tm(x)Tn(x)
dx√
1− x2

=

∫ 1

−1

Tm(x)Tn(x)
dx√
1− x2

.

Therefore,

(2)

∫ 1

−1

Tm(x)Tn(x)
dx√
1− x2

=











π
2 if m = n > 0,

π if m = n = 0,

0 if m 6= n.

Thus, the polynomials Tn are orthogonal (but not orthonormal) on the interval (-1,1) with respect
to the weight function 1√

1−x2
.

The recurrence equations for the polynomials Tn can be written as

xT0(x) = T1(x)

and

(2) xTn(x) =
1

2

(

Tn+1(x) + Tn−1(x)
)

184The word integral here is the adjectival form of the word integer, and has nothing to do with the work integration

(except in an etymological sense).
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for n ≥ 1. These equations are just translations of the equations

cos θ cos 0θ = cos 1θ,

and

cos θ cosnθ =
1

2

(

cos(n+ 1)θ + cos(n− 1)θ
)

.

It is simpler to work out the Clenshaw’s recurrence equations for calculating the sum185

fn(x) =
c0
2

+

n−1
∑

k=1

ckTk(x)

directly than to use the worked-out form in the section on Orthogonal Polynomials: Put yn+1 =
yn = 0 and write

yk = 2xyk+1 − yk+2 + ck

for k = n− 1, n− 2, . . . , 1. Expressing ck from this equation, we have

fn(x) =
c0
2

+

n−1
∑

k=1

(yk − 2xyk+1 + yk+2)Tk(x).

For m with 3 ≤ m ≤ n− 1 the sum of the terms involving ym on the right-hand side is

ym(Tm(x)− 2xTm−1(x) + Tm−2(x)) = 0,

where the second equality holds in view of the recurrent equation (2). Thus, only the terms involving
y1 and y2 make a contribution to the sum describing fn(x). Hence,

fn(x) =
c0
2

+ y1T1(x)− 2xy2T1(x) + y2T2(x) =
c0
2

+ y1x− 2xy2x+ y2(2x
2 − 1)

=
c0
2

+ xy1 − y2;

for the second equation, cf. (1).
Assume f(x) is a polynomial of degree at most n− 1. Then we have

f(x) =
c0
2

+

n−1
∑

k=1

ckTk(x)

with

(3) ck =
2

π

∫ 1

−1

f(x)Tk(x)
dx√
1− x2

(0 ≤ k < n);

the factor 2/π comes about as the reciprocal of the integral of T 2
k (with respect to the weight

function).186 Since the degree of f(x)Tk(x) is at most 2n − 1 for k < n, we can use the Gauss
Quadrature Formula with the zeros of Tn to evaluate this integral.

185It is customary to take c0
2
. The reason is that the the integral of T 2

0 is twice the integral of T 2
k for k > 0; cf. (2).

This sum is called the Dirichlet kernel, and is usually denoted as Dn(θ).
186In case k = 0 this integral is π. We still have 2/π in (3) for k = 0, since we took c0/2 in the expansion of fn(x).
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We are going to use formula (2) of Section 45 on the Gauss Quadrature formula to evaluate Λi.
For this, we first need the orthonormal Chebyshev polynomials tn:

t0(x) =
1√
π
T0(x) and tn(x) =

√

2

π
Tn(x) (n > 0).

The recurrence formula for the orthonormal Chebyshev polynomials can be written as follows:

(4)

xt0(x) =
1√
2
t1(x),

xt1(x) =
1

2
t2(x) +

1√
2
t0(x),

xtn(x) =
1

2
tn+1(x) +

1

2
tn−1(x) (n ≥ 2).

Thus, formula (2) in Section 45 on the Gauss Quadrature Formula, we have

1

Λi
= −1

2
t′n(xi)tn+1(xi) = −1

2
· 2
π
T ′
n(xi)Tn+1(xi) = − 1

π
T ′
n(xi)Tn+1(xi) (n ≥ 1),

where xi is a zero of Tn(x). For the first equation we have an+1 = 1/2 for n ≥ 1 according to (4) for
the coefficient in the recurrence equation for the Chebyshev polynomial.187 Writing x = cos θ and
xi = cos θi, we have

T ′
n(x) =

d cosnθ
dθ

d cos θ
dθ

=
n sinnθ

sin θ
.

Further, noting that 0 = Tn(xi) = cosnθi, we have

Tn+1(xi) = cos(n+ 1)θi = cos(nθi + θi) = cosnθi cos θi − sinnθi sin θi = − sinnθi sin θi.

Hence
T ′
n(xi)Tn+1(xi) = −n sin2 nθi = −n(1− cos2 nθi) = −n.

Thus we have
Λi =

π

n
.

Hence, (3) becomes

ck =
2

n

n
∑

i=1

f(xi)Tk(xi).

Noting that xi = cos θi, where θi are the zeros of cosnθ with −1 < θ < 1,188 we have θi = π i−1/2
n

for i = 1, 2, . . . , n. Hence,

(5) ck =
2

n

n
∑

i=1

f

(

cosπ
i− 1/2

n

)

cos kπ
i− 1/2

n
.

This formula can be used for numerical calculations.

187As shown by (4), we have a1 = 1/
√
2; this is why we need to require n ≥ 1 in the last displayed formula.

188As we saw in the discussion of orthogonal polynomials, the zeros of Tn(x) all lie in the interval (−1, 1); this

interval corresponds to the interval (0, π) for θ. Of course, we could chose another interval for θ that the mapping
θ 7→ cos θ maps to the interval [−1, 1] in a one-to-one way.
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Next we discuss a program incorporating formula (5). The header file chebyshev.h contains the
functions to be described below:

1 #include <stdio.h>

2 #include <math.h>

3 #include <stdlib.h>

4

5 #define absval(x) ((x) >= 0.0 ? (x) : (-(x)))

6 #define square(x) ((x)*(x))

7

8 double *allocvector(int n);

9 void chebcoeffs(double (*funct)(double), double *c, int n);

10 double chebyshev(double x, double *c, int n);

11 double funct(double x);

The file alloc.c now only needs to define vectors; matrices are not needed:

1 #include "chebyshev.h"

2

3 double *allocvector(int n)

4 {
5 double *b;

6 b=(double *) malloc((size_t)((n+1)*sizeof(double)));

7 if (!b) {
8 printf("Allocation failure 1 in vector\n");

9 exit(1);

10 }
11 return b;

12 }

The definition of the function allocvector is the same as before. The main calculations take place
in the file chebyshev.c:

1 #include "chebyshev.h"

2 #define F(x) ((*fnct)(x))

3

4 void chebcoeffs(double (*fnct)(double), double *c, int n)

5 {
6 const double pi=3.1415926535897931;

7 int i,j;

8 long double sum;

9 double two_over_n, *fvector;

10 fvector=allocvector(n);

11 two_over_n=2.0/n;

12 for (j=1;j<=n;j++) {
13 fvector[j]=F(cos(pi*(j-0.5)/n));

14 }
15 for (i=0;i<n;i++) {
16 sum=0;

17 for (j=1;j<=n;j++)

18 sum += fvector[j]*cos(pi*i*(j-0.5)/n);

19 c[i]=two_over_n*sum;

20 }
21 free(fvector);
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22 }
23

24 double chebyshev(double x, double *c, int n)

25 {
26 int i;

27 double fx, oldfx, newfx;

28 fx=0.; oldfx=0.;

29 for (i=n-1;i>=1;i--) {
30 newfx=2.*x*fx-oldfx+c[i];

31 oldfx=fx;

32 fx=newfx;

33 }
34 return x*fx-oldfx+0.5*c[0];

35 }
The function chebcoeff has a pointer to the function *fnct; this function in the program is referred
to as F (cf. the #define on line 2). The second parameter, the vector *c will contain the coefficients
ck, and the last parameter, the integer n, corresponds to n in formula (5). The calculation in lines
5–22 is a straightforward implementation of formula (5). One point worth mentioning is that the
inner product calculated in line 18 is accumulated in the variable sum of type long double. Once
the coefficients ck have been calculated, the value of fn(x) can be calculated with the aid of the
Clenshaw recurrence equations. This is accomplished by the function chebyshev in lines 24–35. The
file funct.c defines the function that is evaluated with the aid of Chebyshev polynomials:

1 #include "chebyshev.h"

2

3 double funct(double x)

4 {
5 double value;

6 value = 1.0/(1.0+x*x);

7 return(value);

8 }
This file defines the function funct as

f(x) =
1

1 + x2
.

This example is somewhat pointless, the real role of Chebyshev polynomials is to evaluate functions
repeatedly when these functions are expensive to evaluate. That is, by calculating the coefficients
in the Chebyshev expansion of f(x) we can replace further evaluations with evaluations of the
Chebyshev expansion. These programs were used with the calling program in the file main.c:

1 #include "chebyshev.h"

2

3 main()

4 {
5 int n=40;

6 double *c, x=.34753, y;

7 c=allocvector(n-1);

8 chebcoeffs(&funct,c,n);

9 y=chebyshev(x,c,n);

10 printf(" x Chebyshev approx"

11 " function value\n\n");

12 printf("%10.8f %20.16f %20.16f\n", x, y, funct(x));
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13 free(c);

14 }
On line 8, the program chebyshev is called to calculate forty Chebyshev coefficients. Then the
function is evaluated at a single location on line 9, and the result is compared to the actual value of
the function. The printout of this program is as follows:

1 x Chebyshev approx function value

2

3 0.34753000 0.8922380723133866 0.8922380723133848

This shows good agreement between the actual function value and the one obtained by Chebyshev
expansion. Chebyshev polynomials can be used to approximate a function with uniform accuracy
on an interval, as opposed to Taylor polynomials, which approximate a function very well near the
base point, less well away from this point. For example, if one finds that, in evaluating a power
series, one needs to calculate too many terms near the endpoints of an interval, one can reduce the
amount of calculation by using Chebyshev polynomials.

47. BOUNDARY VALUE PROBLEMS AND THE FINITE ELEMENT METHOD

In the discussion of a boundary value problem, it will be helpful to reformulate the problem in
terms of the calculus of variations. As a background, we included a problem from classical mechanics;
while this background can be skipped and the discussion of the differential equation below can be
followed, some of the motivation would be lost.

Background from Lagrangian mechanics. The Lagrangian of a mechanical system is given
as L = T − V , where T is the total kinetic energy, and V is the potential energy. These quantities
are described in terms of the position variables q1, q2, . . . , qf , and in terms of their time derivatives,
called generalized velocities, q̇1, q̇2, . . . , q̇f . Here f is a positive integer, called the degree of freedom
of the system. Explicit dependence on time t is also allowed. Assume that the system start at the
point A = (a0, . . . , af ) at time t = t0 and ends up at the point A = (b0, . . . , bf ) at time t = t1. In
order to describe the evolution of the system, one wants to find the the position coordinates as a
function of time, i.e., one wants to find functions q1(t), q2(t), . . . , qf (t), with q1(t0) = a1, q2(t0) = a2,
. . . , qf (t0) = af , and q1(t1) = b1, q2(t1) = b2, . . . , qf (t1) = bf , According to Hamilton’s principle,
the evolution of of the system takes place in a way for which the integral

I =

∫ t1

t0

L(qi(t), q̇i(t), t) dt

is minimal (sort of – more about this later); here q̇i(t) = dqi(t)/dt. The above integral is called the
action of the mechanical system.

As an example, in describing the motion of a planet of mass m around the sun of mass M , one
may assume that the sun is always at the center of the coordinate system. This is, of course, not
really true, but since the sun’s mass is so much larger than that of the planet, the sun’s movement
is neglected. The planet is assumed to move in the xy plane, but instead of the usual Cartesian
coordinates, its position will be described with polar coordinates ρ (the polar radius) and θ (the
polar angle. Then the potential energy of the planet is

V = −γMm

ρ
,

and the kinetic energy is

T =
m(ρ̇2 + ρ2θ̇2)

2
,
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so the Lagrangian is

L =
m(ρ̇2 + ρ2θ̇2)

2
+ γ

Mm

ρ
.

This system has a degree of freedom f = 2, and one can take q1 = ρ and q2 = θ. In general, if one
considers the motion of n point particles is three-dimensional space, we will have n = 3f with three
Cartesian coordinates for each particle, but, depending on the nature of the system, one may find
it convenient to use some coordinates other than the Cartesian coordinates to describe the system.

In order to find the minimum of the above integral, one replaces the paths qi(t) by nearby paths
qi(t) + δi(t), where δi(t) is assumed to be small, and δi(t0) = δi(t1) = 0 (i.e., the two endpoints of
the paths do not change. Then

L(qi(t) + δi(t), q̇i(t) + δ̇i(t), t) ≈ L(qi(t), q̇i(t), t)

+

f
∑

k=1

(

∂L(qi(t), q̇i(t), t)

∂qk
δi(t) +

∂L(qi(t), q̇i(t), t)

∂q̇k
δ̇i(t)

)

,

where the change in L is approximated by the total differential (this approximation implies that

not only δi(t), but also δ̇i(t) is assumed to be small). So the change in the above integral can be
described approximately as

δI = δ

∫ t1

t0

L(qi(t), q̇i(t), t) dt =

∫ t1

t0

f
∑

k=1

(

∂L(qi(t), q̇i(t), t)

∂qk
δi(t) +

∂L(qi(t), q̇i(t), t)

∂q̇k
δ̇i(t)

)

dt,

In order for the integral I to be minimal, this first order approximation, or variation, δI to this
integral must be zero, the same way as the derivative of a function at a place of minimum must be
zero. In fact, Hamilton’s principle states that δI is zero, not that I is minimum, and this is described
by saying that the system evolves along a stationary path, i.e., evolves in a way that if this path is
slightly changed then the above integral does not change in the first order (i.e., its change is much
smaller than the change in the path).

Hamilton’s principle gives a kind of teleological189 formulation of Newtonian mechanics. In New-
tonian mechanics, the particles move along paths determined by forces acting upon them. In the
formulation given by Hamilton’s principle, the particles have a goal of getting from point A to point
B, and they choose a path which minimizes the action integral.

Hamilton’s principle goes earlier teleological principles, such as Fermat’t principle that light be-
tween two points travels in a way that takes the least amount of time. Fermat used this to explain
the law of refraction. For example, light travels more slowly in water than in air. So if light starts
out at a point in air to go to another point under water, then going along a straight line is not the
fastest way for the light to get there; it is faster to travel a longer path in air, and a shorter path in
water.

Pierre de Fermat (1601–1665) stated his principle in 1662. René Descartes (1596–1650) thought that the speed of
light was infinite. The speed of light was first measured by the Danish astronomer Ole Rømer in 1676 by studying

the orbits of the satellite Io of Jupiter. The first measurement of the speed of light on earth was carried out by the
French physicist Hippolite Fizeau in 1849. So Fermat must have relied on some assumptions unverifiable at the time
he stated his principle.

Using integration by parts, we have
∫ t1

t0

∂L(qi(t), q̇i(t), t)

∂q̇k
δ̇i(t) dt =

∂L(qi(t), q̇i(t), t)

∂q̇k
δi(t)

∣

∣

∣

∣

t=t1

t=t0

−
∫ t1

t0

(

d

dt

∂L(qi(t), q̇i(t), t)

∂q̇k

)

δi(t) dt

= −
∫ t1

t0

(

d

dt

∂L(qi(t), q̇i(t), t)

∂q̇k

)

δi(t) dt;

189Teleology is the doctrine that final causes (i.e, goals or purposes) exist. In other words, the mechanical system,
knowing in advance where it wants to go, finds a way to get there in such a manner that involves the least action.
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the second equality holds since we have δi(t0) = δi(t1) = 0, and so the integrated-out part is zero.
Taking this into account, the equation δI = 0 can be written as

∫ t1

t0

f
∑

k=1

(

∂L(qi(t), q̇i(t), t)

∂qk
− d

dt

∂L(qi(t), q̇i(t), t)

∂q̇k

)

δi(t) dt = 0.

This integral must be zero for all choices of small δk(t) for which δk(t0) = δk(t1) = 0, and this is
possible only if

(1)
∂L(qi(t), q̇i(t), t)

∂qk
− d

dt

∂L(qi(t), q̇i(t), t)

∂q̇k
= 0 for k = 1, 2, . . . , f.

To see this, choose δk(t) to be the of the same sign as the left-hand side of this equation. For
example, one can choose

δk(t) = ǫ(t− t0)(t1 − t) · ∂L(qi(t), q̇i(t), t)
∂qk

− d

dt

∂L(qi(t), q̇i(t), t)

∂q̇k
;

here, a small positive ǫ ensures that δk(t) is small, and the factor (t−t0)(t1−t) (where t0 < t1) ensures
that δk(t0) = δk(t1) = 0, Equations (1) are the Euler-Lagrange differential equations describing the
mechanical system. They originate in a letter that Lagrange sent to Euler in 1755, when he was only
19 years old. The area of mathematics that seeks to minimize integrals of the above type is called
the calculus of variations. The Lagrangian formulation of mechanics plays a very important part in
modern physics, in that it led to a reformulation of quantum mechanics by Richard Feynman.

Problem

1. Write the Euler-Lagrange equations for the planetary motion example above.

Solution. The position variables are ρ and θ. For the variable ρ we have

∂L

∂ρ
= mρθ̇2 − γ

Mm

ρ2
,

and
d

dt

∂L

∂ρ̇
=

d

dt
mρ̇ = mρ̈,

and the corresponding Euler-Lagrange equation is

∂L

∂ρ
− d

dt

∂L

∂ρ̇
= 0 : mρθ̇2 − γ

Mm

ρ2
−mρ̈ = 0.

For the variable θ we have
d

dt

∂L

∂θ̇
=

d

dt
mρ2θ̇ = 2mρρ̇θ̇ +mρ2θ̈,

and
∂L

∂θ
= 0,

and the corresponding Euler-Lagrange equation is

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0 : −2mρρ̇θ̇ −mρ2θ̈ = 0.
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A boundary value problem. Consider the differential equation

(2) y′′ + f(x) = 0

on the interval [0, 1], that is, one wants to find a function y = y(x) satisfying the above equation
under the conditions that y(0) = a and y′(1) = b. This type of problem is called a boundary-value
problem, since constraints on y are at the two end points (the boundary) of the domain on which
we want to find y. It is easy to solve this problem explicitly; this is, however, a side issue here, since
we want to discuss a numerical method applicable to handling a group of problems, some of which
are not explicitly solvable.

In order to approach this problem, we will restate it with the aid of the calculus of variations.
First, consider an arbitrary nice (continuous, differentiable, etc.) function v(x) on [0, 1] such that
v(0) = 0. Then the above equation implies that

∫ 1

0

(y′′(x) + f(x))v(x) dx = 0.

Using integration by parts, we can see that

∫ 1

0

y′′(x)v(x) dx = y′(x)v(x)
∣

∣

∣

x=1

x=0
−
∫ 1

0

y′(x)v′(x) dx = bv(1)−
∫ 1

0

y′(x)v′(x) dx;

the second equation here holds because v(0) = 0 and y′(1) = b. Hence the above equation becomes

(3)

∫ 1

0

y′(x)v′(x) dx =

∫ 1

0

f(x)v(x) dx+ bv(1).

This equation needs to be satisfied for every nice function v(x). (2) is called the strong statement
of the problem, and (3) is the weak statement (or variational statement) of the same problem.
Equations (2) and (3) are equivalent as long as we require that y′′ be continuous at every point in
the interval [0, 1], since the argument used to obtain (3) from (2) can be reversed.190

We will not discuss here what kind of functions is v(x) can be in equation (3), but one important
point is that v′(x) does not need to exist at every point. The argument leading from (2) to (3)
will work for functions v(x) that are continuous on [0, 1] and differentiable everywhere with the
exception of finitely many points, and at these points v(x) is assumed only to have left and right
derivatives, but these need not be the same; this is because one can break up the interval [0, 1] into
finitely many parts, do the integration by parts argument on each subinterval. When adding up the
integrated-out terms, these will all cancel except those corresponding to the endpoints 0 and 1 of
the interval [0, 1].191

In order to obtain a numerical approximation of the solution of equation (3), in Galerkin’s approx-
imation method, we will restrict the functions y′ and v to certain subspaces of functions. Namely,
consider a partition

P : 0 = x0 < x1 < x2 < . . . < xN = 1

190There are some subtle points in reversing the argument that will not be discussed here. An obvious difference is
that equation (3) does not seem to require the existence of the second derivative of y. This is true, but if one relies on
modern integration theory, then the existence of the second derivative is not required for (2), either. What is needed

for (2) is that y′ be absolutely continuous, – we will not define here what meant by that; in any case, this assumption
allows for y′′ not to exist at many points.

Solutions of equation (2) are called strong solutions, and solutions of equation (3) are called weak solutions. There
are important situations in which certain differential equations originating in physics are only known to have weak

solutions, and no strong solutions.
191Using modern integration theory, this argument can be carried out more elegantly.
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of the interval [0, 1], and consider the functions Gi(x) for i with 1 ≤ i ≤ N−1 such that G(x) = 0 for
x outside the interval (xi−1, xi+1), Gi(xi) = 1, and G(x) is linear on each of the intervals [xi−1, xi]
and [xi, xi+1]. That is,

Gi(x) =























0 if x < xi−1,
x−xi−1

xi−xi−1
if xi−1 ≤ x < xi,

x−xi+1

xi−xi+1
if xi ≤ x < xi+1,

0 if xi+1 < x.

In addition, we define G0(x) to be 1 at 0, linear on the interval [0, x1], and 0 for x ≥ x1; that is,

G0(x) =











1 if x < 0,
x−x1

−x1
if 0 ≤ x < x1,

0 if xi ≤ x;

we defined G0(x) for all x, although G0x) outside the interval [0, 1] is of no interest. Finally, we
define GN (x) to be 1 at 1, linear on the interval [xN−1, 1], and 0 for x < xN−1; that is,

GN (x) =











0 if x < xN−1,
x−xN−1

1−xN−1
if xN−1 ≤ x < 1,

1 if 1 ≤ x;

we defined GN (x) for all x, although GN (x) outside the interval [0, 1] is of no interest. We will seek
y(x) in the form

y(x) = aG0(x) +

N
∑

j=1

cjGj(x) =

N
∑

x=0

cjGj(x),

where c0 = a and the cj for j ≥ 1 are constants to be determined in such a way that equation (3)
be satisfied for all v(x) such that

v(x) =

N
∑

k=1

λkGk(x),

These equations ensure that y(0) = a and v(0) = 0, as required. If we substitute these choices of
y(x) and v(x), equation (3) becomes

N
∑

k=1

λk

N
∑

j=0

cj

∫ 1

0

G′
k(x)G

′
j(x) dx =

N
∑

k=1

λk

∫ 1

0

f(x)Gk(x) dx+ bλN .

This equation must be satisfied for any choice of the λk; hence, the coefficient of λk on each side of
the equation must agree. To say this another way, for each i = 1, 2, . . . , N , pick λk = δik to see
that the coefficient of λk for k = i on each side of the equation agrees. That is, writing

aij =

∫ 1

0

G′
i(x)G

′
j(x) dx

and

bj =

∫ 1

0

f(x)Gj(x) dx+ bδjN ,

we have the equations

(4)

N
∑

j=1

aijcj = bj − aai0 (1 ≤ i ≤ N);
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the term −aai0 on the right-hand side comes from the term for j = 0 in the sum on the left-hand
side of the above equation, since we know that c0 = a. These equations represent N linear equations
for the unknowns c1, . . . , cN , and by solving them we will obtain an approximate solution

y(x) =

N
∑

j=0

cjGj(x)

of equation (3).
When considering methods to solve this equation, one might be guided by the following consider-

ations. First, most coefficients on the left-hand side of (4) are zero. Indeed, aij = 0 unless |i− j| ≤ 1
in view of the definitions of the functions Gi. A matrix (aij)

N
i,j=1 with this property is called a

tridiagonal matrix (since all elements outside the main diagonal and the diagonals adjacent to it are
zero).

Further, the matrix (aij)
N
i,j=1 is positive definite. Here, a matrix A is called positive definite if

for any nonzero column vector z the number zTAz is positive. To see that the matrix A = (aij)
N
i,j=1

does indeed have this property, observe that, for z = (z1, . . . , zn)
T , we have

xTAx =

N
∑

i=1

N
∑

j=1

ziaijzj =

∫ 1

0

N
∑

i=1

N
∑

j=1

G′
i(x)ziG

′
j(x)zj dx =

∫ 1

0

(

N
∑

i=1

G′
i(x)zi

)2

dx > 0;

strict inequality holds on the right-hand side, since not all zi are zero (because z is not the zero
vector). It is also immediately seen that the matrix (aij)

N
i,j=1 is symmetric, i.e., that aij = aji.

The fact that this matrix is positive definite and symmetric is important, since it is known that
a system of linear equations with a positive definite symmetric coefficient matrix can be solved
by Gaussian elimination without pivoting.192 Further, a such system of equations is also solvable
by Gauss-Seidel iteration.193 If one chooses to use Gaussian elimination, it is important to avoid
pivoting, since pivoting would destroy the tridiagonal nature of the coefficient matrix; the fact that
this matrix is tridiagonal allows one to store the matrix efficiently without storing the zero elements.

The method outlined above is an example of the finite element method. The finite element method
can be used to handle many boundary values problems involving partial differential equations. In two
dimensions, the domain over which the equation is considered is usually partitioned into triangles,
and the function element considered is usually linear on these triangles.

48. THE HEAT EQUATION

Chebyshev polynomials of the second kind. With x = cos θ, the Chebyshev polynomials of
the second kind are defined as

Un(x) = Un(cos θ) =
sin(n+ 1)θ

sin θ
(n ≥ −1);

for n = −1, this equation gives U−1 = sin 0θ
sin θ = 0, and for n = 0 it gives U0 = sin 1θ

sin θ = 1.
Using the de Moivre formula combined with the Binomial Theorem,

cos(n+ 1)θ + i sin(n+ 1)θ = (cos θ + i sin θ)n+1 =

n+1
∑

k=0

(

n+ 1

k

)

ik cosn+1−k θ sink θ.

192See the Corollary in Section 35, p. 162.)
193See the Theorem in Section 43, p. 226.)
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where i =
√
−1. Taking imaginary parts of both sides, we obtain an equation for sin(n+ 1)θ. The

imaginary part of the right-hand side will only involve odd values of k, i.e., only odd powers of sin θ.

After dividing by sin θ, we can see that sin(n+1)θ
sin θ involves only even powers of sin θ, that is only

integral powers of sin2 θ = 1 − cos2 θ. This shows that sin(n+1)θ
sin θ is indeed a polynomial of cos θ.

Using the identity

sinα cosβ =
1

2
(sin(α+ β) + sin(α− β))

With α = (n+ 1)θ and β = θ, we can conclude that

cos θ sin(n+ 1)θ =
1

2
(sin(n+ 2)θ + sinnθ)

for n ≥ 0. This can also be written as

xUn(x) =
1

2
(Un+1(x) + Un−1(x))

for n ≥ 0; in addition, we have U−1(x) = 0 and U0(x) = 1. These are the recurrence equations for the
Chebyshev polynomials of the second kind, It is worth recalling that these are the same recurrence
equations that define the Chebyshev polynomials (sometimes also called Chebyshev polynomials of
the first kind), with the exception that the latter satisfied a different equation for n = 1. It is not
hard to show that these polynomials are orthogonal on the interval [0.π] with respect to the weight

function
√
1− x2.

The heat equation. Heat conduction in a rod, with appropriate choice of the physical units,
can be described by the equation

(1)
∂2u(x, t)

∂x2
=
∂u(x, t)

∂t
,

subject boundary conditions u(x, 0) = f(x), u(0, t) = u(1, t) = 0. The function u(x, y) for x, t with
0 ≤ x ≤ 1 and t ≥ 0 describes the temperature of a rod represented by the interval [0, 1] at point
x and time t. The boundary value conditions indicate that at time zero the temperature of the
rod at point x is f(x), and the endpoints of the rod are kept at temperature 0 at all times. For
consistency, we must of course have f(0) = f(1) = 0. In order to solve this equation numerically,
the partial derivatives may be approximated by finite differences: choosing step sizes h and k for x
and t, respectively, one may write

(2)
∂u(x, t)

∂t
≈ u(x, t+ k)− u(x, t)

k

and

(3)
∂2u(x, t)

∂x2
=
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
;

the latter formula is related to the formula f ′′(x) ≈ ∆2f(x)/(2h2) with one-dimensional finite
differences. Taking a h = 1/N , and taking a grid xm = mh and tn = nk, one can approximate the
differential equation above with the difference equation

(4)
u((m+ 1)h, nk)− 2u(mh, nk) + u((m− 1)h, nk)

h2
=
u(mh, (n+ 1)k)− u(mh, nk)

k
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with the boundary conditions u(mh, 0) = f(mh) and u(0, nk) = u(Nh, nk) = 0 for m and n with
1 ≤ m ≤ N − 1 and n ≥ 0. This equation can be solved explicitly for u(m+ 1)h, nk):

u(mh, (n+ 1)k) =

(

1− 2k

h2

)

u(mh, nk) +
k

h2
(u((m+ 1)h, nk) + u((m− 1)h, nk)).

Using this equation, u(mh, (n + 1)k) can be calculated for n = 0, n = 1, n = 2, . . . and all m step
by step.

Unfortunately, this calculation is numerically unstable unless k ≤ h2/2. To see this, writing
vn = (u(h, nk), u(2h, nk), . . . , u((N − 1)h, nk))T , the above equation can be written as

(5) vn+1 = Avn,

where, writing s = k/h2, A = (aij) is the (N − 1) × (N − 1) matrix for which aii = 1 − 2s where
1 ≤ i ≤ N − 1, ai i−1 = ai−1 i = s where 2 ≤ i ≤ N − 1. With v = (v0, . . . , vN−2)

T , and writing
v−1 = vN−1 = 0, the equation Av = λv can be written as

λ− 1 + 2s

2s
vk =

1

2
(vk−1 + vn+1) (0 ≤ k ≤ N − 2)

If we add the equation v0 = 1 and temporary drop the equation vN−1 = 0, these equations uniquely
determine vk for k = 1, 2, . . . , N − 1. In fact, these equations are the same as those defining the
Chebyshev polynomial of the second kind at (λ− 1 + 2s)/(2s), and so we must have

vk = Uk

(

λ− 1 + 2s

2s

)

for k with 0 ≤ k ≤ N − 1.

Adding back the equation vN−1 now, this means that UN−1((λ−1+2s)/(2s)) = 0. With θ = arccosx,
TN−1(x) = sinNθ/ sin θ, so TN (x) = 0 if θ = kπ/N for k = 1, 2, . . . N − 1 (these are the values of k
that place θ in the interval [0, π], the range of the function arccos), i.e., we must have

λ− 1 + 2s

2s
= cos

kπ

N
,

that is,

λ = 1− 2s+ 2s cos
kπ

N
(k = 1, 2, . . . , N − 1).

The calculation using equation (5) will accumulate errors if any of these eigenvalues has absolute
value greater than one. Indeed, assume λ is the largest eigenvalue of A, associated with eigenvector
v. equation (5) can be written as vn = Anv0; because of roundoff errors, at the kth step, a small
component cv will appear as a part of the error in calculating vk. At the nth step, this error will
be increased to λn−kcv. As λn−k → ±∞ in case of |λ| > 1, the error in the calculation will tend to
infinity. As

lim
N→∞

cos
(N − 1)π

N
= −1,

we need 1 − 4s > −1, i.e., s < 1/2 to guarantee that |λ| < 1. That is, this method of calculating
u(x, y) is unstable unless s < 1/2, i.e., k < h2/2.

The requirement k < h2/2 severely limits the usefulness of the above method, since h must be
chosen small in order that the differences should closely approximate the derivatives, but then k
must be too small for practical calculations. Instead of the forward difference in (2), one can use
the backward difference

∂u(x, y)

∂t
≈ u(x, t)− u(x, t− k)

k
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to approximate the right-hand side of (1). By doing this, one obtains a method of solving equation
(1) that is useful in practice. With this approximation, equation (1) becomes

(6)
u((m+ 1)h, nk)− 2u(mh, nk) + u((m− 1)h, nk)

h2
=
u(mh, nk)− u(mh, (n− 1)k)

k
,

or else

−u((m+ 1)h, nk) +

(

h2

k
+ 2

)

u(mh, nk)− u((m− 1)h, nk) =
h2

k
u(mh, (n− 1)k).

With a fixed n > 0, for m = 1, 2, . . . , N − 1 this represent a system of equations for the quantities
u(m,nk), assuming that u(mh, (n − 1)k) is already known (recall that u(0, nk) = u(Nh, nk) = 0).
One starts out with the boundary conditions u(mh, 0) = f(mh) and u(0, nk) = u(Nh, nk) = 0,
and then uses the above equation to determine u(mh, nk) for n = 1, 2, 3, . . . . for m and n with
1 ≤ m ≤ N − 1 and n ≥ 0. This method is stable for all values of h and k; we will omit the proof
of this.

The Crank-Nicolson Method. One can combine the forward difference method and the back-
ward difference method by taking the average of equation (4) with n replaced by n− 1 and equation
(6):

u((m+ 1)h, (n− 1)k)− 2u(mh, (n− 1)k) + u((m− 1)h, (n− 1)k)

2h2

+
u((m+ 1)h, nk)− 2u(mh, nk) + u((m− 1)h, nk)

2h2
=
u(mh, nk)− u(mh, (n− 1)k)

k
.

Similarly to the backward difference method, this can be rearranged as a system of equations for the
quantities u(·, nk) when quantities u(·, (n−1)k are already known. One again obtains a method that
is stable for all values of h and k; this method was invented by John Crank and Phyllis Nicolson.
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LIST OF SYMBOLS

Page numbers usually refer to the place where the symbol in question was introduced. In certain
cases, where important discussion concerning the symbol occurs at several places, the number of the
page containing the main source of information is printed in italics.

an, bn, the coefficients in the three
term recurrence equation for orthog-
onal polynomials, 229
AT , the transpose of the matrix A,
175

bT , the transpose of the vector b, 135

∆, the forward difference operator, 28
δij , Kronecker’s delta, 34, 158, 213
det(A), the determinant of the matrix
A, 184
Dn(θ), Dirichlet Kernel, 236

E, the forward shift operator, 28

f [x1, x2, · · · , xi], divided difference,
18
f [x, x, · · · , x], divided difference, n-
fold, 23

γn, the leading coefficients of orthog-
onal polynomials, 227

I, the identity operator, 28

li(x), Lagrange’s fundamental poly-
nomials, 13
Λi = Λin, the Christoffel numbers,
233

∇, the backward difference operator,
28

O(f(x)), big O notation, 64

Rn(x, a), error term of Taylor’s for-
mula, 10
R, the set of real numbers, 10

Sk,j in Romberg integration, 94

(

t
i

)

, binomial coefficient, for real t, 30
Tn, Chebyshev polynomials, 234

‖v‖2, the l2 norm of v, 175
‖v‖∞, the l∞ norm of v, 143
‖v‖, the l∞ norm of v, 143
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SUBJECT INDEX

Page numbers in italics refer to the main source of information about whatever is being indexed.
Often, they refer to the statement of a theorem, while the other page numbers listed refer to various
applications of the same.

absolute error, see error, absolute
Adams-Bashforth predictor formula,
see predictor, Adams-Bashforth
Adams-Bashforth-Moulton correc-
tor formula, see corrector, Adams-
Bashforth-Moulton
Adams-Moulton corrector formula,
see corrector, Adams-Moulton
adaptive integration

compared with Romberg inte-
gration, see Romberg integration,
compared with adaptive integration

with Simpson’s rule, 80
C program for, 81

with trapezoidal rule, 76
C program for, 77

Aitken’s acceleration, 57
of fixed-point iteration
C program for, 58

back substitution, 134
backward difference operator, see
operator, backward difference
Bernoulli numbers, 85
Bernoulli polynomials, 85
Binomial Theorem

for shift operators, 29
bisection

C program for, 39
boundary value problem, see dif-
ferential equation, boundary value
problem

C program
compiling, 39

calculus of variations, 240

chain rule
multivariate, 105

characteristic
equation, 184
polynomial, 184

characteristic equation of a recur-
rence equation, see recurrence equa-
tion, characteristic equation of
characteristic polynomial of a re-
currence equation, see recurrence
equation, characteristic polynomial
of
Chebyshev polynomials, see polyno-
mial, Chebysev
Chebyshev, P. L., 234
Cholesky factorization, see Gaussian
elimination, Cholesky factorization
Christoffel numbers, 233
Christoffel-Darboux formula, 231
Clenshaw

—’s recurrence equation for
Chebyshev polynomials, 236

—’s summation method, 232
cofactor, see determinant, cofactor of
an entry in a
companion matrix, see matrix, com-
panion
condition number, see condition of a
function
condition of a function, 8
conjugate transpose, see matrix,
conjugate transpose of
connected set, see set, connected
corrector

Adams-Moulton, 117
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Cramer’s rule, 159
Crank, John, 248
Crank-Nicolson method, see heat
equation, Crank-Nicolson method
cubic spline, see spline, cubic
cycle, see permutation, cyclic
cyclic permutation, see permutation,
cyclic

de Moivre’s formula, 235, 245
deflation of a polynomial, 49
delta

Kronecker’s, see Kronecker’s
delta
Descartes, Reé, 241
determinant, see also determinants

cofactor of an entry in a –, 158
of a system of linear equations,

159
of an unknown, 159

determinants, see also determinant,
152–159

definition of, 154
expansion of, 157
Leibniz formula for, 154
multiplication of, 155
simple properties of, 156

difference equation, see recurrence
equation
differential equation

boundary value problem, 243
finite element method for, 245
Galerkin’s approximation, 243
strong statement, 243
variational statement, 243
weak statement, 243

initial value problem, 103
predictor-corrector method for,

126
Taylor method for, 103

differential operator, see operator,
differential
digit

significant, see significant digit
Dirichlet kernel, 236
distributive rule

generalized, 154
divided difference, 18

n-fold, 23
domain, 223

Doolittle algorith, see Gaussian
elimination, Doolittle algorithm,
see Gaussian elimination, Crout al-
gorithm

double precision, see precision, dou-
ble

eigenvalue, 184, 221

multiplicity of, 184

eigenvector, 184, 221

empty matrix, see matrix, empty

error

absolute, 8

mistake or blunder, 10

relative, 8

roundoff, 10

truncation, 10

Euler summation formula, 94

Euler, Leonhard, 4, 242

Euler-Maclaurin summation formula,
84, see Euler summation formula

even function, see function, even

even permutation, see permutation,
even

expansion of determinants, see de-
terminants, expansion of

Fermat

–’s principle, 241

Pierre de, 241

Feynman, Richard, 242

finite element method, see differen-
tial equation, boundary value prob-
lem, finite element method for

fixed-point iteration, 53

C program for, 54

Fizeau, Hippolite, 241

floating point number, 1

forward difference operator, see op-
erator, forward difference

forward shift operator, see operator,
forward shift

forward substitution, 135

full pivoting, see pivoting, full

function

even, 85

odd, 85

function element, 245
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Galerkin’s approximation, see dif-
ferential equation, boundary value
problem, Galerkin’s approximation
Gauss Quadrature Formula, 233
Gauss’s backward formula, 32
Gauss, Carl Friedrich, 134
Gauss-Jacobi Quadrature Formula,
see Gauss Quadrature Formula
Gauss-Seidel iteration, 164

convegence for a positive defi-
nite matrix, 226
Gaussian elimination, 133, 212

C program for, 138
Cholesky factorization, 162
Crout algorithm, 151
advantage over Doolittle algo-

rithm, 152
Doolittle algorithm, 150
implicit equilibration, 151

generalized distributive rule, see dis-
tributive rule, generalized
GNU C compiler, 39

Hamilton’s principle, 240
heat equation, 246

Crank-Nicolson method, 248
Hermite interpolation, see interpola-
tion, Hermite
Hermite, Charles, 225
Hermitian, see matrix, Hermitian
Hessenberg matrix

upper, see matrix, Hessenberg,
upper
holomorphic, 223
Horner’s rule, 46

to evaluate the derivative of a
polynomial, 47
Householder transformation, 176

identity operator, see operator, iden-
tity
ill-conditioned, 175
Illinois method, see secant method,
Illinois method
implicit differentiation, 104
instability, numerical, see numerical
instability
integral

–s with singularities, see numer-
ical integration, with singularities

adjective for integer, 235
Lebesgue, 230
Riemann, 230

intermediate-value property
of derivatives, 69, 92

interpolation
base points of, 16
error term
differentiating, 26

Hermite, 22
Lagrange form, 32
Newton form, 24

Lagrange, 13
error of, 15

Newton, 18
error of, 25

with equidistant points, 30
inverse power method, 197

C program for, 197
isometry, 175
iterative improvement, 137

Jacobi iteration, 164

Kronecker’s delta, 34, 158, 213

l2 norm, see norm, l2, of a vector
Lagrange fundamental polynomials,
13
Lagrange interpolation, see interpo-
lation, Lagrange
Lagrangian mechanics, 240
Landau, Edmund, 64
Laplace, Pierre-Simon, 157
least square solution, 176
Lebesgue, Henry, 230
Leibniz formula for determinants, see
determinants, Leibniz formula for
Leibniz, Gottfried Wilhelm, 157
Linux operating system, 38
loader, 39
long double precision, see precision,
long double
loss of precision, 1
lower triangular unit matrix, see ma-
trix, triangular unit, lower, upper
LU-factorization, 135

main solution of a recurrence equa-
tion, see recurrence equation, main
solution
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makefile, 6, 39
Mathematica, 220
matrix

resolvent of, see resolvent
companion, 186
conjugate transpose of, 224
eigenvalue of, see eigenvalue
eigenvector of, see eigenvector
empty, 162, 196
Hermitian, 225
Hessenberg
upper, 212

implementing in C, 139
minor
principal, 159

minor of, 159
orthogonal, 175
permutation, 136
inverse of, 137

positive definite, 159, 245
Hermitian, 225

row-diagonally dominant, 164
spectral radius of, see spectral

radius
spectrum of, see spectrum
symmetric, 187
transpose of, 135, 156
triangular
lower, 135
unit, lower, upper, 150
upper, 135

tridiagonal, 170
Mean-Value Theorem

for integrals, 69
Milne’s method, 131
minor, see matrix, minor of
monic polynomial, see polynomial,
monic
multiplication of determinants, see
determinants, multiplication of

Newton interpolation, see interpola-
tion, Newton
Newton’s forward formula, 30
Newton’s method, 36

as fixed-point iteration, 53
C program for, 42
for polynomial equations, 46
C program for, 47

speed of convergence of, 61

Newton-Hermite interpolation, see
interpolation, Hermite, Newton
form
Nicolson, Phyllis, 248
nonlinear equations

solution of, 36
norm

of a matrix
compatible, 222
consistent, 222

l2, of a vector, 224
numerical differentiation

of functions, 64
higher derivatives, 66

of tables, 62
error of, 62, 63

numerical instability, 131, 247
numerical integration

composite formulas, 71
on infinite intervals, 102
simple formulas, 68
with singularities, 101
subtraction of singularity, 101

numerically unstable, see numerical
instability

odd function, see function, odd
odd permutation, see permutation,
odd
operator

backward difference, 28
differential, 105
forward difference, 28
forward shift, 28
identity, 28

oracle, 136
orthogonal matrix, see matrix, or-
thogonal
orthogonal polynomials, see polyno-
mial, orthogonal
orthonormal, see polynomial, or-
thonormal
overdetermined system of linear
equations, see system of linear
equations, overdetermined

parasitic solution of a recurrence
equation, see recurrence equation,
parasitic solution
partial pivoting, see pivoting, partial



Subject index 257

Perl programming language, 38
permutation, 152

cyclic, 152
even, 153, 154
odd, 153, 154

permutation matrix, see matrix, per-
mutation
pivoting, 136

full, 136
partial, 136

plain rotation, 213
polynomial

Chebyshev, 234
C program for expansion with

—s, 238
orthonormal, 237
second kind, 245

monic, 227
orthogonal, 227
orthonormal, 227

positive definite matrix, see matrix,
positive definite
power method, 187

C program for, 188
precision

double, 1
long double, 1
loss of, see loss of precision
single, 1

predictor
Adams-Bashforth, 117

predictor-corrector method, 116, see
differential equation, predictor cor-
rector method for

Adams-Bashforth-Moulton, 119
step size control with Runge-

Kutta-Fehlberg, 119
step size control with Runge-

Kutta-Fehlberg, C program for, 119
principal minor of a matrix, see ma-
trix, minor, principal

QR algorithm, 212
C program for, 215

quadrature formula
Gauss, see Gauss’s quadrature

formula

Rømer, Ole, 241
recurrence equation, 126

characteristic equation of, 127
characteristic polynomial of, 127
homogeneous, 126
inhomogeneous, 126
parasitic solution, 133

recurrence formula
three term, 229

regula falsi, 37
relative error, see error, relative
resolvent, 222
Richardson extrapolation, 65

in Romberg integration, 94
Rolle’s theorem

repeated application of, 15
Romberg integration, 94

C program for, 95
compared with adaptive integra-

tion, 99
roundoff error, see error, roundoff
row-diagonally dominant matrix, see
matrix, row-diagonally dominant
Runge-Kutta methods, 106

Runge-Kutta-Fehlberg, 109
C program for, 110

Runge-Kutta-Fehlberg method, see
Rnge-Kutta methods, Runge-Kutta-
Fehlberg109

secant method, 36
C program for, 44
Illinois method, 37

set
connected, 223
simply connected, 223

significant digits, 1
similarity transformation, 212
simply connected, see set, simply
connected
Simpson’s rule

composite, 72
C program for, 72

simple, 70
single precision, see precision, single
spectral radius, 222
spectrum, 222
speed of light, 241
spline

cubic, 167, 168
C program for, 169
free boundary conditions, 168
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natural boundary conditions,
168
stationary path, 241
symmetric matrix, see matrix, sym-
metric
system of linear equations, 133

overdetermined, 174
C program for, 178

triangular, 134

Taylor series
Cauchy’s remainder term, 13
integral remainder term, 89
Lagrange’s remainder term, 12
Roche–Schlömilch remainder

term, 12
Taylor’s method

for differential equations, see
differential equation, Taylor method
for
teleology, 241
three term recurrence formula, see
recurrence formula, three term
transpose, see matrix, transpose of

transposition, 152
trapezoidal rule

composite, 71
for periodic functions, 86
simple, 69

triangular matrix, see matrix, trian-
gular
tridiagonal matrix, see matrix, tridi-
agonal
truncation error, see error, trunca-
tion

Unix operating system, 38
unstable, see numerical instability
upper Hessenberg matrix, see ma-
trix, Hessenberg, upper

vector
implementing in C, 139

velocity
generalized, 240

Wielandt’s deflation, 203
C program for, 206

wild card, 7


