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Science and technology have 
always amazed us with their 
powers and ability to trans-
form our world and our lives. 

However, many results, particularly 
over the past century or so, have dem-
onstrated that there are limits to the 
abilities of science. Some of the most 
celebrated ideas in all of science, such 
as aspects of quantum mechanics and 
chaos theory, have implications for 
informing scientists about what can-
not be done. Researchers have discov-
ered boundaries beyond which science 
cannot go and, in a sense, science has 
found its limitations. Although these 
results are found in many different 
fields and areas of science, mathemat-
ics, and logic, they can be grouped and 
classified into four types of limitations. 
By closely examining these classifica-
tions and the way that these limita-
tions are found, we can learn much 
about the very structure of science. 

Discovering Limitations 
The various ways that some of these 
limitations are discovered is in itself 
informative. One of the more interest-
ing means of discovering a scientific 
limitation is through paradoxes. The 
word paradox is used in various ways 
and has several meanings. For our 
purposes, a paradox is present when 
an assumption is made and then, with 
valid reasoning, a contradiction or fal-

sity is derived. We can write this as:
AssumptionàContradiction. 
Because contradictions and falsehoods 
need to be avoided, and because only 
valid reasoning was employed, it must 
be that the assumption was incorrect. 
In a sense, a paradox is a proof that 
the assumption is not a valid part of 
reason. If it were, in fact, a valid part of 
reason, then no contradiction or false-
hood could have been derived. 

A classic example of a paradox is 
a cute little puzzle called the barber 
paradox. It concerns a small, isolated 
village with a single barber. The vil-
lage has the following strict rule: If you 
cut your own hair, you cannot go to 
the barber, and if you go to the barber, 
you cannot cut your own hair. It is one 
or the other, but not both. Now, pose 
the simple question: Who cuts the bar-
ber’s hair? If the barber cuts his own 
hair, then he is not permitted to go to 
the barber. But he is the barber! If, on 
the other hand, he goes to the barber, 
then he is cutting his own hair. This 
outcome is a contradiction. We might 
express this paradox as:
Village with ruleàContradiction. 

The resolution to the barber paradox 
is rather simple: The village with this 
strict rule does not exist. It cannot exist 
because it would cause a contradic-
tion. There are a lot of ways of getting 
around the rule: The barber could be 
bald, or an itinerant barber could come 
to the village every few months, or the 
wife of the barber could cut the bar-
ber’s hair. But all these are violations 
of the rule. The main point is that the 
physical universe cannot have such a 
village with such a rule. Such playful 
paradox games may seem superficial, 
but they are transparent ways of ex-
ploring logical contradictions that can 

exist in the physical world, where dis-
obeying the rules is not an option.

A special type of paradox is called 
a self-referential paradox, which results 
from something referring to itself. The 
classic example of a self-referential 
paradox is the liar paradox. Consider 
the sentence, “This sentence is false.” 
If it is true, then it is false, and if it is 
false, then because it says it is false, it 
is true—a clear contradiction. This par-
adox arises because the sentence refers 
to itself. Whenever there is a system 
in which some of its parts can refer 
to themselves, there will be self-refer-
ence. These parts might be able to ne-
gate some aspect of themselves, result-
ing in a contradiction. Mathematics, 
sets, computers, quantum mechanics,  
and several other systems possess 
such self-reference, and hence have as-
sociated limitations. 

Some of the stranger aspects of 
quantum mechanics can be seen as 
coming from self-reference. For ex-
ample, take the dual nature of light. 
One can perform experiments in which 
light acts like a wave, and others in 
which it acts like a particle. So which 
is it? The answer is that the nature of 
light depends upon which experiment 
is performed. Was a wave experiment 
performed, or was a particle experi-
ment performed? This duality ushers 
a whole new dimension into science. 
In classical science, the subject of an 
experiment is a closed system that re-
searchers poke and prod in order to de-
termine its properties. Now, with quan-
tum mechanics, the experiment—and 
more important, the experimenter— 
become part of the system being mea-
sured. By the act of measuring the 
system, we affect it. If we measure for 
waves, we affect the system so that we 
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cannot measure for particles and vice 
versa. This outcome is one of the most 
astonishing aspects of modern science. 

The central idea of a paradox is the 
contradiction that is derived. Where 
the contradiction occurs tells us a lot 
about the type of limitation we found. 
The paradox could concern something 
concrete and physical. There are no 
contradictions or falsehoods in the 
physical universe. If something is true, 
it cannot be false, and vice versa. The 
physical universe does not permit con-
tradictions, and hence, if a certain as-
sumption leads to a contradiction in 
the physical universe, we can conclude 
that the assumption is incorrect. 

Although contradictions and false-
hoods cannot occur in the physical 
universe, they can occur in our men-
tal universe and in our language. Our 

minds are not perfect machines and 
are full of contradictions and falsities. 
We desire contradictory things. We 
want to eat that second piece of cake 

and also to be thin. People in relation-
ships simultaneously love and hate 
their partners. People even willfully 
believe false notions. Our language, 

a product of our mind, is also full of 
contradictions. When we meet a con-
tradiction in mental and linguistic 
paradoxes, we essentially are able to 

ignore it, because it is not so strange to 
our already confused minds. 

We cannot always be so cavalier 
about ignoring contradictions and  

In the 1986 movie Labyrinth, the main character is faced with a riddle. 
One door in the scene above leads to her destination, the other to “cer-
tain death.” She can only ask one of the door guards one question, and 
she’s told that one of them always tells the truth, whereas the other 
always lies. Although she thinks she finds the correct answer, she still 

falls into a trap, likely because the labyrinth itself isn’t fair.  Riddles are 
often linked to paradoxes, and our mental constructs, including movies, 
can be full of contradictions. Finding out where such paradoxes exist in 
the real world can help us understand the limits of what science can and 
cannot know.  (Image courtesy of the Jim Henson Company.)

Because science and mathematics are 
constructed to mimic the contradiction-
free physical universe, they also must 

not contain contradictions. 
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falsities in human thought and speech. 
There are times when we must be more 
careful. Science is a human language 
that measures, describes, and predicts 
the physical world. Because science is 
constructed to mimic the contradiction- 
free physical universe, it also must 
not contain contradictions. Similarly, 
in mathematics, which is formulated 
by looking at the physical world, we 
cannot derive any contradictions. If 
we did, it would not be mathematics. 
When a paradox is derived in science 
or mathematics, it cannot be ignored, 
and science and mathematics must re-
ject the assumption of the paradox. As 

an example of such a paradox, if we 
assume that the square root of two is a 
rational number, we get a contradiction 
(see box above). In this case, we must 
not ignore the paradox, but rather pro-
claim that the square root of two is not 
a rational number. 

In addition to paradoxes, there are 
other ways of discovering limitations. 
Simply stated, one can piggyback off 
of a given limitation that shows that a 
certain phenomenon cannot occur, to 
show that another, even harder phe-
nomenon also cannot occur. A simple 
example: When you are out of shape 
and climb four flights of steps, you 

will huff and puff. We can write this 
activity and its result as: 
Climb four flightsàHuff and puff. 
It is also obvious that if someone climbs 
five flights of steps, they also have 
climbed four flights of steps, that is: 
Climb five flightsàClimb four flights. 
Combining these two implications 
gives us:
Climb five flightsàClimb four flights 
àHuff and puff. 
We conclude with the obvious obser-
vation that if you huff and puff after 
climbing four flights of steps, you will 
definitely huff and puff after climbing 
five flights of steps. 

One of the oldest stories about a limitation of science 
in classical times concerns the square root of two, 
√2. In ancient Greece, Pythagoras and his school 

of thought believed that all numbers are whole numbers 
or ratios of two whole numbers, called rational numbers. A 
student of Pythagoras, Hippasus, showed that this view 
of numbers is somewhat limiting and that there are other 
types of numbers. He showed that √2 is not a rational num-
ber and is, in fact, an irrational number (generally defined as 
any number that cannot be written as a ratio or fraction). 

We do not know how Hippasus showed that the square 
root of two is irrational, but there is a pretty and simple 
geometric proof (attributed to American mathematician 
Stanley Tennenbaum in the 1950s) that is worth pondering. 
The method of proof is called a proof by contradiction, which 
is like a paradox. We are going to assume that the √2 is a 
rational number and then derive a contradiction: 
√2 is a rational numberàContradiction. 
From this contradiction we can conclude that √2 is not a 
rational number. 

First, assume that there are two positive whole numbers 
such that their ratio is the square root of two. Let us assume 
that the two smallest such whole numbers are a and b. That 
is, √2 = a/b.

Squaring both sides of this equation gives us 2 = a2/b2. 
Multiplying both sides by b2 gives us 2b2 = a2.

From a geometric point of view, this equation means that 
there are two smaller squares whose sides are each of size b, 

and they are exactly the same size as a large square whose 
side is of size a. That is, if we put the two smaller squares 
into the larger square, they will cover the same area. 

But when we actually place the two smaller squares into 
the larger, we find two problems. Firstly, we are missing 

two corners. Secondly, there is overlap in the middle. So for 
the area of the larger square to equal the areas of the two 
smaller squares, the missing areas must equal the overlap. 
That is, 2(missing) = overlap. 

But wait. We assumed that a and b were the smallest such 
numbers with which this result can happen; now we find 
smaller ones. So this result is a contradiction. There must 
be something wrong with our assumption that a and b are 
whole numbers. And thus the square root of two is not a 
rational number, but is irrational. Hippasus had shown 
that there was a number that did not follow the dictates of 
Pythagoras’s science. 

The followers of Pythagoras were fearful that the conclusion 
of Hippasus would be revealed and people would see the fail-
ings of the Pythagoras philosophy and religion. Legend has it 
that the other students of Pythagoras took Hippasus out to sea 
and threw him and his irrational ideas overboard.
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To generalize this simple example, 
assume that a limitation is found 
through a paradox: 
Assumption-AàContradiction. 
Thus, Assumption-A is impossible. If 
we further show that: 
Assumption-BàAssumption-A, 
we can combine these two implica-
tions to get: 
Assumption-Bà Assumption-Aà 
Contradiction. 
This result shows us that because  
Assumption-A is impossible, then the 
second factor, Assumption-B, is also 
impossible. 

With these methods of finding vari-
ous limitations, we can define the four 
actual classes of limitations. 

Physical Limitations 
The first and most obvious type of lim-
itation is one that says certain physical 
objects or processes cannot exist, like 
the village in the barber paradox. 

Another example of a physical pro-
cess that is impossible is time travel 
into the past. This limitation is usually 
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In a version of the traveling salesperson prob-
lem, computer scientist Robert Kosara cre-
ated a map of an estimated best route for U.S. 
presidental candidates to visit all of the na-
tion’s ZIP codes. The map uses an approxima-
tion technique called Hilbert curves, and is 
reported to be about 75 percent optimal. (For 
more on Hilbert curves, see “Crinkly Curves,” 
May–June 2013.) Finding the actual shortest 
route would take a computer essentially an 
infinite amount of time to compute. (Image 
courtesy of Robert Kosara, eagereyes.org.)

The Traveling Salesperson Prob-
lem is an easily stated comput-
er problem that is an example 

of a practical limitation. Consider a 
traveling salesperson who wants to 
find the shortest route, from all pos-
sible routes, that will visit 10 different 
specified cities. There are many dif-
ferent possible routes the salesperson 
can take. There are 10 choices for the 
first city, nine choices for the second 
city, eight choices for the third city, 
and so on, down to two choices for 
the ninth city, and one choice for the 
tenth city. In other words, there are 10 
× 9 × 8 × ... × 2 × 1 = 10! = 3,628,800 pos-
sible routes. A computer would have 
to check all these possible routes to 
find the shortest one. Using a mod-
ern computer, the calculation can be 
done in a couple of seconds. But what 
about going to 100 different cities? A 
computer would have to check 100 × 
99 × 98 × ... × 2 × 1 = 100! possible routes, 
which results in a 157-digit-long num-
ber: 93,326,215,443,944,152,681,699,238
,856,266,700,490,715,968,264,381,621,46
8,592,963,895,217,599,993,229,915,608,9
41,463,976,156,518,286,253,697,920,827,
223,758,251,185,210,916,864,000,000,00
0,000,000,000,000,000 potential routes. 

For each of these potential routes, the 
computer would have see how long 
the route takes, and then compare all of 
them to find the shortest route. A mod-
ern computer can check about a million 

routes in a second. That computation 
works out to take 2.9 × 10142 centuries, a 
long time to find the solution. 

Such a problem will not go away as 
computers get faster and faster. A com-
puter 10,000 times faster, able to check 
10 billion possible routes in a second, 
will still take 2.9 × 10138 centuries. Simi-
larly, having many computers work-
ing on the problem will not help too 
much. Physicists tell us that there are 
1080 particles in the visible universe. 
If every one of those particles were a 
computer working on our problem, it 
would still take 1062 centuries to solve 
it. The only thing that possibly can 
help this problem is finding a new al-
gorithm to figure out the shortest route 
without looking through all the pos-
sibilities. Alas, researchers have been 
looking for decades for such a magic 
algorithm. They have not found one, 
and most computer scientists believe 
that no such algorithm exists. 

The traveling salesperson problem 
can be solved for small inputs. Even 
for large inputs, a program can be writ-
ten that will solve it, but the program 
will demand an unreasonable amount 
of time to determine the solution. Al-
though there does exist a shortest pos-
sible route, the knowledge of that route 
is inherently beyond our ability to ever 
know, making it a practical limitation. 
(But see image above for a sample of 
one estimate of the answer.)

The Shortest Route
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shown through a self-referential para-
dox that is often called the grandfather 
paradox. In it, a person goes back in 
time and kills his bachelor grandfa-
ther. Thus his father will not be born, 
the time traveler himself will not be 
born—and hence the time traveler will 
not be able to kill his grandfather. One 
need not be homicidal to obtain such 
a paradox: In the 1985 movie Back to 
the Future, the main character starts 
to fade out of existence because he 
traveled back in time and accidentally 
stopped his mother and father from 
getting married. A time traveler need 
only go back several minutes and re-
strain the earlier version of himself 
from getting into the time machine. 

What is different about events in 
time travel that cause these paradoxes? 
Usually, an event affects another, later 
event: If I eat a lot of cake, I will gain 
weight. With the time travel paradox, 
an event affects itself. By killing his 
bachelor grandfather, the time traveler 
ensures that he cannot kill his bachelor 
grandfather. The event negates itself. 
The simple resolution to the grandfa-
ther paradox is that, in order to avoid 
contradictions, time travel is impos-
sible. Alternatively, if perchance time 
travel is possible, it is impossible to 
cause such a contradiction. 

Another example of a limitation that 
shows the impossibility of a physi-
cal process is the halting problem. Be-

fore engineers actually built modern 
computers, Alan Turing showed that 
there are limitations to what comput-
ers can perform. In the 1930s, prior to 
helping the Allies win World War II 
by breaking the Germans’ Enigma 
cryptographic code, he showed what 
computers cannot do by way of a self- 
referential paradox. As anyone who 
deals with computers knows, some-
times a computer “gets stuck” or goes 
into an “infinite loop.” It would be nice 
if there were a computer that could de-
termine whether a computer will get 
stuck in an infinite loop. Essentially, 
we are asking computers to be self- 
referential. Turing showed that no such 
computer could possibly exist. He 

Across various fields of science, mathemat-
ics, and logic, over the past century, some 
of the greatest minds have discovered in-
stances in which research cannot find the 
answer, demonstrating a limit on science 
itself. Albert Einstein (top left) showed 
limitations related to relativity theory. Kurt 
Gödel (with Einstein) found that there are 
mathematical statements that are true but 
not provable. Alan Turing (above) showed 
limits to what computers can compute. 
Georg Cantor (far left) showed that not 
all infinite sets are the same size, altering 
the concept of infinity. And Bertrand Rus-
sell (left) showed a limit in what types of 
mathematical sets can exist, without caus-
ing a contradiction that cannot be present 
in mathematics. (Albert Einstein and Kurt 
Gödel photograph by Oskar Morgenstern, 
courtesy of The Shelby White and Leon 
Levy Archives Center, Institute for Ad-
vanced Study, Princeton, NJ.)
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showed that if such a computer could 
exist, he would make a computer that 
would negate its own “haltingness.” 
Such a program would perform the fol-
lowing task: “When asked if I will halt 
or go into an infinite loop, I will give 
the wrong answer.” However, comput-
ers cannot give wrong answers because 
they do exactly what their instructions 
tell them to do, hence we have a con-
tradiction, which occurs because of the 
assumption that we made about a com-
puter that can determine whether any 
computer will go into an infinite loop. 
That assumption is incorrect. Many oth-
er problems in computer science, math-
ematics, and physics are shown to be 
unsolvable by piggybacking off the fact 
that the halting problem is unsolvable. 

There are many other examples of 
physical limitations. For instance, Ein-
stein’s special theory of general relativ-
ity tells us that a physical object cannot 
travel faster than the speed of light. 
And quantum theory tells us that the 
action of individual subatomic par-
ticles is probabilistic, so no physical 
process can predict how a given sub-
atomic particle will act. 

Mental Construct Limitations 
Recall that although our minds are 
full of contradictions, we must, when 
dealing with science and mathemat-
ics, steer clear of them, and that 
means restricting certain mental and 
linguistic activities. 

In the first years of elementary 
school, we learn an easy mental con-
struct limitation: We are not permitted 
to divide by zero. Despite the reasons 
for this rule being so obvious to us now, 
let us justify it. Consider the equation 
3 × 0 = 4 × 0. Both sides of the equation 
are equal to zero and hence the state-
ment is true. If you were permitted to 
divide by zero, you could cancel out the 
zeros on both sides of the equation and 
get 3 = 4. This outcome is a clear false-
hood that must be avoided. 

A more advanced result in which 
one sees the mental construct limitation 
more clearly is in what’s called Russell’s 
paradox. In the first few years of the 20th 
century, British mathematician Ber-
trand Russell described a paradox that 
shook mathematics to its core. At the 
time, it was believed that all of math-
ematics could be stated in the language 
of sets, which are collections of abstract 
ideas or objects. Sets can also contain 
sets, or even have themselves as an ele-
ment. This idea is not so far-fetched: 

Consider the set of ideas that are con-
tained in this article. That set contains 
itself. The set of all sets that have more 
than three elements contains itself. The 
set of all things that are not red contains  

itself. The fact that sets can contain 
themselves makes the whole subject 
ripe for a self-referential paradox. 

Russell said that we should consider 
all sets that do not contain themselves 

and call that collection R (for Russell). 
Now simply pose the question: Does 
R contain R? If R does contain R, then 
as a member of R that is defined as 
containing only those sets that do not 

contain themselves, R does not contain 
R. On the other hand, if R does not 
contain itself, then, by definition, it be-
longs in R. Again we arrive at a contra-
diction. The best method of resolving 

A fractal illustration, which is self-similar across length scales and infintely complex, is used to 
illustrate the concept of quantum chromodynamics, the interactions between quarks and gluons, 
which make up protons, neutrons, and other subatomic particles. The forces between quarks and 
gluons are classified as colors—hence the name of the concept. Quantum mechanical properties at 
these subatomic scales are often at the heart of paradoxes and thus limitations on science.

The mathematical formulation of  
“This statement is not provable” negates 

its own provability.

David Parker/Science Photo Library



172     American Scientist, Volume 104 © 2016 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

Russell’s paradox is to simply declare 
that the set R does not exist. 

What is wrong with the collection of 
elements we called R? We gave a seem-
ingly exact statement of which types 
of objects it contains: “those sets that 
do not contain themselves.” And yet, 
we have declared that this collection is 
not a legitimate set and cannot be used 
in a mathematical discussion. Mathe-
maticians are permitted to discuss the 
green apples in my refrigerator but are 
not permitted to discuss the collection 
R. Why? Because the collection R will 
cause us to arrive at a contradiction. 
Mathematicians must restrain them-
selves because we do not want contra-
dictions in our mathematics. 

In 1931, Austrian mathematician 
Kurt Gödel, then 25 years old, proved 
one of the most celebrated theorems 
of 20th-century mathematics. Gödel’s 
Incompleteness Theorem shows that 
there are statements in mathematics 
that are true but are not provable. Gödel 
showed this result by demonstrating 
that mathematics can also talk about 
itself. Mathematical statements about 
numbers can be converted into num-
bers. Using this ability to self-reference,  
he formulated a mathematical state-
ment that essentially says: “This math-
ematical statement is not provable.” It’s 
a mathematical statement that negates 
its own provability. If you analyze this 
statement carefully, you realize that it 
cannot be false (in which case it would 
be provable), and hence it would be 
true and contradictory. But since it is 
true, it must also be unprovable. Gödel 
showed that not everything that is true 
has a mathematical proof. 

Throughout mathematics and sci-
ence, there are many other examples 
of mental construct limitations. For in-
stance, one cannot consider the square 
root of two to be a rational number (see 
box on page 168). Zeno’s famous para-

doxes, created by Greek mathematician 
Zeno of Elea around 450 bce and in-
volving such conundrums as motion 
being an illusion, can also be seen as ex-
amples of mental construct limitations. 

Practical Limitations 
So far we have seen limitations that 
show it is impossible for something or 
some process (physical or mental) to 
exist. In a practical limitation, we are 
dealing with things that are possible, 
albeit extremely improbable. That is, 
it is impossible to make some predic-
tion or find some solution in a nor-
mal amount of time or with a normal 
amount of resources. 

The classical example is the but-
terfly effect from chaos theory. The 
phrase comes from the title of a 1972 
presentation by mathematician Ed-
ward Lorenz of the Massachusetts In-
stitute of Technology: “Predictability: 
Does the flap of a butterfly’s wings in 

Brazil set off a tornado in Texas?” Lo-
renz was a meteorologist and a math-
ematician. He was discussing the fact 
that weather patterns are extremely 
sensitive to slight changes in the envi-
ronment. A small flap of a butterfly’s 

wing in Brazil might cause a change 
that causes a change that eventually 
causes a tornado in Texas. Of course, 
one should not go out and kill all the 
butterflies in Brazil; the butterfly flap 
might instead send a coming tornado 
off course and save a Texas city. The 
point of the study is that because there 
is no way we can keep track of the 
many millions of butterflies in Bra-
zil, we can never predict the paths of 
tornados or of the weather in general. 
This thought experiment shows a limi-
tation of our predictive ability. 

Many other problems from chaos 
theory show limitations. Predicting 
tomorrow’s lottery numbers is also 
beyond our ability. If you wanted to 
know the numbers, you would have 
to keep track of all the atoms in the 
bouncing ball machine—far too many 
for us to ever be able to do. 

Perpetual motion machines are an-
other example of a practical limitation. 

How much is beyond our abil-
ity to solve? In general, such 
things are hard to measure. 

However, in computer science there is 
an interesting result along these lines. 
We all know of many different tasks 
that computers perform with ease. 
However, there are many problems 
that are beyond the ability of comput-
ers. We can examine whether there are 
more solvable problems than unsolv-
able problems. 

First, a bit about infinite sets. Math-
ematicians have shown that there are 
different levels of infinity. The small-

est infinity corresponds to the natural 
numbers: {0, 1, 2, 3 …}. We say that this 
set of numbers is “countably infinite.” 
Although we can never finish counting 
the natural numbers, we can at least 
begin listing them. In contrast, the set 
of all real numbers—that is numbers 
such as –473.4562372... and pi—are 
“uncountably infinite.” We cannot 
even begin to count them. After all, 
what is the first real number after 0? 
0.000001? What about 0.0000000001? 
It can be shown easily that uncount-
ably infinite sets are vastly larger than 
countably infinite sets. 

Now let us turn to computers that 
solve problems. There are a countably 
infinite number of potential computer 
programs for solvable computer prob-
lems. In contrast, there are uncountably 
infinite computer problems. If one takes 
all the uncountably infinite computer 
problems and subtracts the countably 
infinite solvable problems, one is left 
with uncountably infinite unsolvable 
problems. Thus the overwhelming vast 
majority of computer problems cannot 
be solved by any computer. Computers 
can only solve a small fraction of all the 
problems there are. 

There are reasons to believe that there 
is a lot more “out there” that we cannot 

know than what we can know.

Estimating the Unsolvable
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There is essentially no way that one 
can make a machine that will continue 
to move without losing all its energy. 
One might be tempted to say that this 
limitation is really a physical one be-
cause it says that a perpetual motion 
machine cannot exist in the physical 
universe. But by the second law of 
thermodynamics, it is extremely im-
probable for there to be a machine that 
does not dissipate its energy. Improb-
able, but not impossible. 

The theory of thermodynamics and 
statistical mechanics is about large 
groups of atoms and the heat and en-
ergy they can create. Because in such 
systems there are too many elements to 
keep track of, the laws in such theories 
are given as probabilities, and are ripe 
for finding other examples of practical 
limitations. In computer science, an ex-
ample of a problem that is theoretically 
solvable, but for large inputs will never 
practically be solved, is called the trav-
eling salesperson problem (see box on page 
169). There are many more. 

Limitations of Intuition 
The fourth type of limitation is more 
of a problem with the way we look at 
the world. Science has shown that our 
naive intuition about the universe that 
we live in needs to be adjusted. There 
are many aspects of reality that seem 
obvious, but are, in fact, simply false. 

One of the most shocking examples 
of this false perception comes from Ein-
stein’s special theory of relativity. The 
notion of space contraction says that if 
you are not moving and you observe an 
object moving near the speed of light, 
then you will see the object shrink. This 
observation is not an optical illusion: 
The object actually shrinks. Similarly, 
the phenomenon of time dilation says 
that when an object moves close to 
the speed of light, all the processes of 
the object will slow down. Of course, 
an observer traveling with the object 
will see neither space contraction nor 
time dilation. Thus our naive view that 
objects have fixed sizes and processes 
have fixed duration is faulty. 

Some of the most counterintui-
tive aspects of modern science occur 
within quantum mechanics. Since the 
beginning of last century, physicists 
have been showing that the subatomic 
world is an extremely strange place. 
In addition to finding that the proper-
ties of things (such as a photon acting 
like a wave or a particle) depend on 
how they are measured, researchers 

have found that rather than a particle 
having a single position, it can be in 
many places at one time, a property 
called superposition. Indeed, not only 
position, but many other properties 
of a subatomic particle, might have 
many different values at the same 
time. Heisenberg’s uncertainty prin-
ciple tells us that objects do not have 
definitive properties until they are 
measured. A famous concept called 
Bell’s theorem shows us that an ac-
tion here can affect objects across the 
universe, which is called entanglement. 
(For more on Bell’s theorem and en-
tanglement, see “Quantum Random-
ness,” July–August 2014.) 

One might think that mathematics 
is always intuitive and that our intu-
itions in that field at least might never 
need to be adjusted. But this assump-
tion is also not true. In the late 19th 
century, German mathematician Georg 
Cantor, a pioneer in set theory, showed 
us that our intuition about infinity is 
somewhat troublesome. The naive 
view is that all the infinite sets are the 
same size. Cantor showed that in fact 
there are many different sizes of infi-
nite sets. (See box on the opposite page.)

In the sciences, whenever there is a 
paradigm shift, all of our ideas about 
a certain subject have to be readjusted. 
We have to look at phenomena from a 
new viewpoint. 

The Unknowable
The classification of the limitations of 
science is only beginning, and many 
questions still arise. Is this classifica-
tion complete, or are there other limi-
tations that are of a different type? Is 
there a subclassification of each of the 
classes? How do the methods of find-
ing the limitations correspond to the 
types of limitation? Are there results 
that are in more than one classifica-
tion? Because some of the results in the 
other classes might also be counterin-
tuitive, there might be some overlap 
between categories. 

How widespread is this inabil-
ity to know? Most scientists work in 
the areas in which progress in know-
ing happens every day. What about 
what cannot be known? In general, 
the concept is hard to measure. There 
are reasons to believe that there is a 
lot more “out there” that we cannot 
know than what we can know. (See box 
on the opposite page for such a calcula-
tion in computer science.) Nevertheless, 
it is hard to speculate. Isaac Newton 

said, “What we know is a drop, what 
we don’t know is an ocean.” Similarly, 
Princeton University theoretical physi-
cist John Archibald Wheeler is quoted 
as saying, “As the island of knowledge 
grows, so does the shore of our igno-
rance.” Newton and Wheeler were 
talking about what we do not know. 
What about what we cannot know? 

Most of the limitations discussed 
here are less than a century old, a very 
short time in the history of science. 
As science progresses, it will become 
more aware of its own boundaries and 
limitations. By looking at these limi-
tations from a unified point of view, 
we will be able to compare, contrast, 
and learn about these many different 
phenomena. We can understand more 
about the very nature of science, math-
ematics, computers, and reason.  
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