
 An Introduction to Software Engineering

Software engineering is concerned with all aspects of software production from the early
stages of system specification through to maintaining the system after it has gone into use.
In this chapter, we will explain the following:
• the definition of computer science and software engineering and how the two are

different
• software engineering is similar to other engineering disciplines and what that means

for software engineers
• the unique challenges of software engineering
• software development models and processes and their component parts, software

development practices

Software systems are perhaps the most intricate and complex . . . of the
things humanity makes. – Fred Brooks
(Brooks, 1995)

As a discipline, software engineering has progressed very far in a very short period of
time, particularly when compared to classical engineering field (like civil or electrical
engineering). In the early days of computing, not much more than 50 years ago,
computerized systems were quite small. Most of the programming was done by scientists
trying to solve specific, relatively small mathematical problems. Errors in those systems
generally had only “annoying” consequences to the mathematician who was trying to find
“the answer.” Today we often build monstrous systems, in terms of size and complexity.
What is also notable is the progression in the past 50 years of the visibility of the
software from mainly scientists and software developers to the general public of all ages.
“Today, software is working both explicitly and behind the scenes in virtually all aspects
of our lives, including the critical systems that affect our health and well-being.”
(Pfleeger, 1998)

Despite our rapid progress, the software industry is considered by many to be in a crisis.
Some 40 years ago, the term “Software Crisis” emerged to describe the software
industry’s inability to provide customers with high quality products on schedule. “The
average software development project overshoots its schedule by half; larger projects
generally do worse. And, some three quarters of all large systems are “operating failures”
that either do not function as intended or are not used at all.” (Gibbs, 1994) While the
industry can celebrate that software touches nearly all aspects of our daily lives, we can
all relate to software availability dates (such as computer games) as moving targets and to
computers crashing or locking up. We have many challenges we need to deal with as we
continue to progress into a more mature engineering field, one that predictably produces
high-quality products.

1 The Engineering of Software
Up until this point in your academic career, you have likely focused on being a
computer scientist. Consider the definition of computer science offered by CSAB,

© Laurie Williams 2004 Page 2 of 10

the organization that accredits Computer Science programs in the United States
(CSAB, 1997):

Computer science is a discipline that involves the understanding and design of
computers and computational processes. In its most general form it is concerned
with the understanding of information transfer and transformation. Particular
interest is placed on making processes efficient and endowing them with some
form of intelligence.

It is likely that your main focus thus far has been to get the computer to do what you want
it to do, as efficiently as possible. There are definitely other issues to consider. There are
many, many definitions of the term engineering. One that we feel captures the essence
has been proposed by Robert Baber (emphasis added) (Baber, 1997):

. . . the systematic and regular application of scientific and mathematical
knowledge to the design, construction, and operation of machines, systems, and
so on of practical use and, hence, of economic value. Particular characteristic of
engineers is that they take seriously their responsibility for correctness,
suitability, and safety of the results of their efforts. In this regard they consider
themselves to be responsible to their customer (including their employers where
relevant), to the users of their machines and systems, and to the public at large.

Computer science is one of the disciplines that provide a theory basis for the
profession of software engineering. (Some others are psychology, economics, and
management.) There are two important issues beyond “getting the computer to do
what you want, as efficiently as possible” when transitioning to software engineering.
The issues underlined in the above definition of engineering are further discussed
below:

• Practical use, economic value. Engineers need to produce products that
customers actually want and are willing to pay real money for. These
products need to help people do the things they need to do. Listening to the
customer is of prime importance. Engineers also need to produce these
products the customer wants as economically as possible. The best product in
the world won’t sell if it’s too expensive. And, if we develop products using
inappropriate practices and processes, our products will be too expensive. As
engineers, we need to determine the content and build the best product value
to our customers.

• Responsibility for correctness, suitability, and safety. Engineers are ethically

obligated to ensure their programs are correct and suitable for their customers.
In fact, there is a software engineering code of ethics (ACM/IEEE-CS Joint
Task Force on Software Engineering, 1999) that we are responsible for
adhering to. In some instances, our programs have safety critical implications,
where people might die if a program has errors. In other cases, whole
businesses could be at risk if a program is not correct. We are sure that you

© Laurie Williams 2004 Page 3 of 10

have always tried to get your programs to be correct and suitable in the past.
The new dimension now is that you must always consider your responsibility
and obligation to your customer. The work you do could impact their safety,
their business . . . and their well being!

• Regular application of scientific and mathematical knowledge. As was said,
in our field we are just beginning to build such knowledge that is common in
other engineering fields.

2 Software Development
Software engineering is the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software (IEEE, 1990). The “systematic, disciplined,
quantifiable approach” is often termed a software process model (in the general sense) or
a software development process (in the specific sense). Specific software development
processes consist of a particular set of software development practices which are often
performed by the software engineer in a predetermined order. Software development
practices, models, and methodologies will be introduced in the next two subsections.

2.1 Software Development Practices
Engineers adopt a systematic and organized approach to their work. As you learn
software engineering, you should be exposed to many specific practices (or techniques)
for developing software. By software development practice we refer to a requirement
employed to prescribe a disciplined, uniform approach to the software development
process (IEEE, 1990), in other words, a well-defined activity that contributes toward the
satisfaction of the project goals; generally the output of one practice becomes the input of
another practice. First, we provide one list of software development practices (but this
list may vary depending upon the process and its associated terminology):

• Requirements engineering
• System analysis
• High-level design/architecture
• Low-level design
• Coding
• Integration
• Design and code reviews
• Testing
• Maintenance
• Project management
• Configuration management

Most disciplines come to recognize some practices as best practices. A best practice is a
practice that, through experience and research, has proven to reliably lead to a desired
result and is considered to be prudent and advisable to do in a variety of contexts. Over
time, we accumulate information on whether new practices are good or not. This
information might be just stories of people succeeding with the practice, generally called

© Laurie Williams 2004 Page 4 of 10

anecdotal or qualitative evidence. Ideally, someone has done a controlled experiment
that shows that a new practice is better than some other practice. This is called empirical
or quantitative evidence. For example, before the damages of smoking were
quantitatively assessed, there were physicians who recommended their patients not to
smoke because there was some sort of evidence that the smoke was bad. Ultimately,
structured empirical analysis backed up these physicians advice.

Those of you familiar with music will understand the concept of an etude. An etude is a
musical composition written solely to improve technique. At the XP Universe
conference in 2001, Kent Beck, the originator of Extreme Programming (XP) (Beck,
2000) likened learning software best practices to etudes in music. When he was learning
to play a musical instrument, he was given etudes – short scores of music – to play over
and over and over again. He said these short scores were not pleasing to the ear. The
purpose of learning to play them was to really engrain in him how to play that kind of a
combination of notes. Then later, when that sort of combination of notes appears in the
midst of a larger beautiful composition, the notes will just flow off his fingers. Learning
each etude was fairly painful, but the practice led to beautiful music.

So, how does this relate to software development? As you study software engineering,
you will learn about many software development practices. You’ll learn each
individually, and (hopefully) you will “play” them over and over again. You will come
to understand and appreciate when a certain practice is very rigorous and probably good
for safety-critical software while a similar practice is not so painstaking and perhaps
better for small projects. Engineering is all about selecting the most appropriate method
for a set of circumstances – the right tool for the job. The goal is that when you are faced
with a project, you will understand what types of practices are appropriate for that kind of
project. You will then be able to include these practices into a suitable process just as an
etude in incorporated into a classical score. Then, you will be making beautiful software!

2.2 Software Process Models and Methodologies
In simplistic terms, if you string an appropriate set of specific software practices together
and this set accomplishes all the fundamental activities listed in 3.1, you create a software
development process. A software development process is the process by which user
needs are translated into a software product. The process involves translating user needs
into software requirements, transforming the software requirements into design,
implementing the design in code, testing the code, and sometimes installing and checking
out the software for operational use. Note: these activities might overlap or be
performed iteratively.

A software process model is a simplified, abstracted description of a software
development process. The primary purpose of a software process model is to determine
the order of stages involved in software development and to establish the transition
criteria for progressing from one stage to the next (Boehm, May 1988). Because of the
simplification, several software development methodologies may share one process
model – the differentiation is in the details of the process itself. Software methodologists
incorporate the general characteristics of software development models into specific

© Laurie Williams 2004 Page 5 of 10

software development processes that adhere to the spirit of these models. While software
development models have general characteristics, such as “having strong documentation
and traceability mandates across requirements, design and code” (Boehm and Turner,
2003), software development methodologies have specific practices that need to be
followed, such as code inspection.

Of recent, process models have begun to be characterized as plan-driven or agile (Boehm,
2002). The plan-driven models have an implicit assumption that a good deal of
information about requirements can be obtained up front and that information is fairly
stable. As a result, creating a plan for the project to follow is advisable. A long-standing
tenet of software engineering is that the longer a defect remains in a product, the more
expensive it is to remove it. (Boehm, 1981; Humphrey, 1995) An overriding philosophy
of plan-driven software models is that the cost of product development can be minimized
by creating detailed plans and by constructing and inspecting architecture and design
documents. As a result of these activities, there will be significant cost savings because
defects will be removed or prevented. Plan-driven models can be summarized as “Do it
right the first time.” These models are very appropriate for projects in which there is not
a great deal of requirements and/or technology changes anticipated throughout the
development cycle. Plan-driven models are also considered more suitable for safety- and
mission-critical systems because of their emphasis on defect prevention and elimination.
(Boehm, 2002) Some examples of plan-driven methodologies are the Personal Software
Process (Humphrey, 1995), the Rational Unified Process (Jacobson, Booch et al., 1999),
and Cleanroom Software Engineering (Mills, Linger et al., 1987).

Alternately, agile models are considered to be better suited for projects in which a great
deal of change is anticipated. (Boehm, 2002) Because of the inevitable change, creating
a detailed plan would not be worthwhile because it will only change. Spending
significant amounts of time creating and inspecting an architecture and detailed design
for the whole project is similarly not advisable; it will only change as well. The
methodologies of the agile model focus on spending a limited amount of time on
planning and requirements gathering early in the process and much more time planning
and gathering requirements for small iterations throughout the entire lifecycle of the
project. Some examples of agile methodologies are the Extreme Programming (XP)
(Beck, 2000), Scrum (Schwaber and Beedle, 2002), Crystal (Cockburn, 2001), FDD
(Coad, LeFebvre et al., 1999), and DSDM (Stapleton, 1997).

However, there need not be a dichotomy between the two models; hybrid models that
have both agile and plan-driven characteristics have been used successfully in many
projects.

3 Software Engineering Challenges
There are some unique and pressing issues to deal with in the software industry. Several
of these are now discussed:

• Tractable Medium. We are engineers, yet what we engineer is a logical and
tractable, not physical medium. The constraints of physical medium can serve to

© Laurie Williams 2004 Page 6 of 10

simplify alternatives. For example, in a house design you can’t put a kitchen and
a bathroom in the same place; batteries have standard voltages. Frederick Brooks,
notable software engineer and author of the legendary book The Mythical Man
Month, expresses an analogy,

The programmer, like the poet, works only slightly removed from pure
thought-stuff. He builds his castles in the air, from air, creating by
exertion of the imagination. (Brooks, 1995)

This tractability has its own pros and cons. On the positive side, as programmers
we have the ultimate creative environment. We can create grandiose programs
chock full of beautiful algorithms and impressive user interfaces. And we can
completely change this functionality or the look of the interface in mere seconds
and have a new creation! Conversely, because we are only dealing with “thought-
stuff,” our profession has a limited scientific and/or mathematical basis. In other
fields, the scientific and mathematic basis of physical, intractable mediums
constrain the solution to a problem -- only certain materials can withstand the
weight of a car, only certain paints can take the intensity of the UV rays on the top
of a mountain, etc. With software, the sky’s the limit!

Quite often programmers are also asked to fix hardware product problems
because people think that it is cheaper to fix the problems in the (tractable)
software than it is to re-design and re-manufacture physical parts. This presents
software engineers with the need to design and coding changes, often at the last
minute.

The software industry has been trying to formulate a sort of
scientific/mathematical basis for itself. Formal notations have been proposed to
specify a program; mathematical proofs have been defined using these formal
notations. The software community is also establishing analysis and design
patterns. (Gamma, 1995; Fowler, 1997) These patterns are general solutions to
recurring analysis and design problems; the patterns are proposed, proven and
documented by experts in the field. Engineers can become familiar with these
general solutions and learn to apply them appropriately in the systems and
programs under development.

• Changing requirements. Adapting for hardware changes is only one source of

requirements churn for software engineers. Unfortunately, requirements changes
come from many sources. It is often very hard for customers to express exactly
what they want in a product (software is only thought-stuff for them too!). They
often don’t know what they want until they see some of what they’ve asked for.
Requirements analysts may not understand the product domain as completely as
they need to early in the product lifecycle. As a result, the analysts might not
know the right questions to ask the customer to elicit all their requirements.
Lastly, the product domain can be constantly changing during the course of a
product development cycle. New technology becomes available. Competitors
release new products that have features that weren’t thought of. Innovators think
of wonderful new ideas that will make the product more competitive.

© Laurie Williams 2004 Page 7 of 10

• Schedule Optimism. Software engineers are an optimistic crew. In most

organizations, it is the software engineers who estimate how long it will take to
develop a product. No matter how many times we’ve taken longer than we
thought in the past, we still believe “Next time, things will go more smoothly.
We know so much more now.” As a result, we often end up committing to a date
we have no business committing to, giving the software industry a “never on
time” reputation.

• Schedule Pressure. We often make these aggressive commitments because of the

intensity of the people asking us for commitment. It seems that every product is
late before it’s even started, every feature is critical or the business will fold.
Products need to be created and updated at a constant, rapid pace lest competitors
take over the business.

4. Summary
There are some keys ideas to remember as you begin your study of software engineering.
These ideas are summarized in Table 1.

Table 1: Key Ideas for Software Engineering

 Computer science is concerned with getting the computer to do what you want it
to do, as efficiently as possible.

 Software engineers use their computer science skills to create products of
practical use and economic value. Software engineers are ethically responsible
for the correctness, suitability, and safety of their projects. When possible,
software engineers apply scientific and mathematical knowledge to their work.

 A software development process is a process by which user needs are translated
into a software product. Software development processes are comprised of
specific software development practices.

 A software process model is a generalized abstraction of a family of software
development processes.

 Plan-driven processes are best for projects with a low degree of change or those
with critical safety and security needs.

 Software engineering is especially challenging because software is a tractable
medium, requirements often change, and competitive pressures cause schedule
pressure.

Glossary of Chapter Terms

Word Definition Source
best practice a software development practice that, through experience

and research, has proven to reliably lead to a desired result

© Laurie Williams 2004 Page 8 of 10

and is considered to be prudent and advisable to do in a
variety of contexts

computer
science

A discipline that involves the understanding and design of
computers and computational processes. In its most
general form it is concerned with the understanding of
information transfer and transformation. Particular interest
is placed on making processes efficient and endowing
them with some form of intelligence

(CSAB,
1997)

engineering the systematic and regular application of scientific and
mathematical knowledge to the design, construction, and
operation of machines, systems, and so on of practical use
and, hence, of economic value. Particular characteristic of
engineers is that they take seriously their responsibility for
correctness, suitability, and safety of the results of their
efforts. In this regard they consider themselves to be
responsible to their customer (including their employers
where relevant), to the users of their machines and
systems, and to the public at large.

(Baber,
1997)

Software
development
practice (or
technique)

a disciplined, uniform approach to the software
development process

(IEEE,
1990)

Software
development
process (or
methodology
)

The process by which user needs are translated into a
software product. The process involves translating user
needs into software requirements, transforming the
software requirements into design, implementing the
design in code, testing the code, and sometimes installing
and checking out the software for operational use. Note:
these activities might overlap or be performed iteratively.

(IEEE,
1990)

Software
process
model

simplified, abstracted description of a software
development process

software
engineering

the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance
of software; that is, the application of engineering to
software

(IEEE,
1990)

References

ACM/IEEE-CS Joint Task Force on Software Engineering, "Software Engineering Code

of Ethics and Professional Practice."
Baber, R. L. (1997). "Comparison of Electrical "Engineering" of Heaviside's Times and

Software "Engineering" of our Times." IEEE Annals of the History of Computing
19(4): 5-17.

© Laurie Williams 2004 Page 9 of 10

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading,
Massachusetts, Addison-Wesley.

Boehm, B. (2002). "Get Ready for Agile Methods, with Care." IEEE Computer 35(1):
64-69.

Boehm, B. (May 1988). "A Spiral Model for Software Development and Enhancement."
Computer 21(5): 61-72.

Boehm, B. and R. Turner (2003). Balancing Agility and Discipline: A Guide for the
Perplexed. Boston, MA, Addison Wesley.

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, NJ, Prentice-
Hall, Inc.

Brooks, F. P. (1995). The Mythical Man-Month, Anniversary Edition, Addison-Wesley
Publishing Company.

Coad, P., E. LeFebvre, et al. (1999). Java Modeling in Color with UML, Prentice Hall.
Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts, Addison

Wesley Longman.
CSAB (1997). "Defining the Computing Sciences Professions."

http://www.csab.org/comp_sci_profession.html.
Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Menlo Park, CA,

Addison Wesley Longman, Inc.
Gamma, E. H., Richard; Johnson, Ralph; and Vlissides, John (1995). Design Patterns:

Elements of Reusable Object-Oriented Software. Reading, Massachusetts,
Addison-Wesley Publishing Company.

Gibbs, W. W. (1994). Software's Chronic Crisis. Scientific American: 86-95.
Humphrey, W. S. (1995). A Discipline for Software Engineering. Reading, MA, Addison

Wesley.
IEEE (1990). IEEE Standard 610.12-1990, IEEE Standard Glossary of Software

Engineering Terminology.
Jacobson, I., G. Booch, et al. (1999). The Unified Software Development Process.

Reading, Massachusetts, Addison-Wesley.
Mills, H. D., R. C. Linger, et al. (1987). "Box Structured Information Systems." IBM

Systems Journal 26(4): 395-413.
Pfleeger, S. L. (1998). Software Engineering: Theory and Practice. Upper Saddle River,

NJ, Prentice Hall.
Schwaber, K. and M. Beedle (2002). Agile Software Development with SCRUM,

Prentice-Hall.
Stapleton, J. (1997). DSDM: The Method in Practice, Addison Wesley Longman.

Chapter Questions

1. Describe the difference between a software process and a software process model.

2. What are the challenges of today’s SE? How do software engineers respond to these
challenges?

3. Software requirements change is inevitable. However, the requirements of some
software are not so volatile. Give three examples of such software. What are the
characteristics of this kind of software?

© Laurie Williams 2004 Page 10 of 10

4. For a commercial shrink-wrapped software product, what are the important goals the
software developers seek to achieve? List at least 5 items, and rank them in order.

5. Search the web, and find three software process models. Give some description for
each model.

6. Based on Baber’s definition about engineering and your personal experience, do you
think software is engineering? Why? How is software different from other kind of
engineering?

7. As a software professional, we must take our ethical responsibility. ACM
(Association of Computer Machinery) and IEEE (Institute of Electrical And
Electronic Engineers) have produced a code of ethics and professional practice. Find
it on the web, and describe in your word what ethical responsibilities we should take.

8. For more than 30 years, software engineers have been thinking how to improve the
process of software development. Today, we can find an army of software processes,
and new ones are being created. If you were a manager in a software consulting
company, would you adapt new software practices? If you would, what would be the
motivation? If not, what would be the concerns?

9. Why, in your opinion, are software engineers often over-optimistic?

