The Complexity of Online Bribery in Sequential Elections

Edith Hemaspaandra

Lane A. Hemaspaandra Jörg Rothe

My thanks to the organizers. The slides are thanks to Jörg (+ minor changes).
The 20-21 New York Colloquium on Algorithms and Complexity (virtually) New York, NY, March 19, 2021

(c) BuzzFeed

Elections and Voting Rules

Scoring Protocol: Plurality
$\alpha=$
(1,
0 ,
0 ,
0)

Voter 1:

Voter 2:

Voter 3:

Voter 4:

(C) G.R.R. Martin \& HBO

Elections and Voting Rules

Scoring Protocol: Plurality
$\alpha=$
(1,
0 ,
0 ,
0)

Voter 1:

Voter 2:

Voter 4:

Voter 3:

(c) G.R.R. Martin \& HBO

Elections and Voting Rules

Scoring Protocol: Borda
$\alpha=$
(4,
2,
1,
0)

Voter 1:

Voter 2:

Voter 3:

Voter 4:

(C) G.R.R. Martin \& HBO

Elections and Voting Rules

Scoring Protocol: Borda

$$
\alpha=(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:

Voter 2:

Voter 4:

(C) G.R.R. Martin \& HBO

Elections and Voting Rules

Scoring Protocol: Veto

$$
\alpha=(1, \quad 1, \quad 1, \quad 1, \quad 0)
$$

Voter 1:

Voter 2:

Voter 3:

Voter 4:

(C) G.R.R. Martin \& HBO

Elections and Voting Rules

Scoring Protocol: Veto
$\alpha=$
(1,
1 ,
1 ,
0)

Voter 1:

Voter 2:

Voter 4:

(C) G.R.R. Martin \& HBO

Manipulation

Scoring Protocol: Borda

$$
\alpha=(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:

Voter 2:

Voter 4:

(C) G.R.R. Martin \& HBO

Manipulation

Scoring Protocol: Borda
$\alpha=$
(4,
3,
2,
1 ,
0)

Voter 1:

Voter 2:

(C) G.R.R. Martin \& HBO

Control

Scoring Protocol: Borda

$$
\alpha=(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:

(c) IKEA

Voter 2:

Voter 3:

Voter 4:

Control by Deleting Voters

Scoring Protocol: Borda

$$
\alpha=\quad(4, \quad 3, \quad 2, \quad 1,
$$

Voter 1:
(c) IKEA

Voter 2:

(C) G.R.R. Martin \& HBO

Bribery

Scoring Protocol: Borda

α	$(4$,	3,	2,	1,

Bribery

Scoring Protocol: Borda

α	$(4$,	3,	2,	1,

More Details, Motivating Scenarios, Results, ... in

Online Manipulation in Sequential Elections

Scoring Protocol: Borda
$\alpha=$
(4,
3 ,
2,
1 ,
0)

Voter 1:
(manipulator)

Voter 2:

Voter 3:

Voter 4:
(manipulator)

Online Manipulation in Sequential Elections

Scoring Protocol: Borda

$$
\alpha=(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:
(manipulator)

Voter 2:

Voter 3:

Voter 4:
(manipulator)

Online Manipulation in Sequential Elections

Scoring Protocol: Borda

$$
\alpha=(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:
(manipulator)

Voter 2:

Voter 3:

Voter 4:
(manipulator)

The Complexity of Online Manipulation of Sequential Elections, JCSS 2014
(C) G.R.R. Martin \& HBO

Online Manipulation in Sequential Elections

Scoring Protocol: Borda

$$
\alpha=\quad(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:
(manipulator)

Voter 2:

Voter 3:

Voter 4:
(manipulator)

[^0]The Complexity of Online Manipulation of Sequential Elections, JCSS 2014
(C) G.R.R. Martin \& HBO

Online Manipulation in Sequential Elections

Scoring Protocol: Borda

$$
\alpha=\quad(4, \quad 3, \quad 2, \quad 1, \quad 0)
$$

Voter 1:
(manipulator)

Voter 2:

Voter 3:

Voter 4:
(manipulator)

[^1]The Complexity of Online Manipulation of Sequential Elections, JCSS 2014
(C) G.R.R. Martin \& HBO

Online Control in Sequential Elections

Scoring Protocol: Borda
$\alpha=$
(4,
3 ,
2,
1,
0)

(c) IKEA

Voter 3:

Voter 4:

Online Control in Sequential Elections

Scoring Protocol: Borda

$\alpha=$
(4,
3,
2,
1,
0)

Voter 1:
(c) IKEA

Voter 3:

Voter 4:

Online Control in Sequential Elections

Scoring Protocol: Borda
$\alpha=$
(4,
3 ,
2,
1,
0)

(c) IKEA

Voter 3:

Voter 4:

Online Control in Sequential Elections

Scoring Protocol: Borda

α	$(4$	3	2	1	0)
$\text { Woter } 1$					
$\text { Woter } 2$					

Voter 3:

Voter 4:

Online Control in Sequential Elections

Scoring Protocol: Borda

Online Control in Sequential Elections

Scoring Protocol: Borda

α	$(4$	3	2	1	0)
$\text { Voter } 1 \text { : }$					
$\text { Woter } 2$					

E. Hemaspaandra, L. Hemaspaandra \& J. Rothe:

The Complexity of Online Voter Control in Sequential Elections, JAAMAS 2017 Hemaspaandra, Hemaspaandra, \& Rothe

The Complexity of Online Bribery
c) G.R.R. Martin \& HBO

Online Control in Sequential Elections

Scoring Protocol: Borda

E. Hemaspaandra, L. Hemaspaandra \& J. Rothe:

The Complexity of Online Voter Control in Sequential Elections, JAAMAS 2017
(C) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

Scoring Protocol: Borda
$\alpha=$
(4,
2,
1 ,
0)

Voter 1:
(\$1, weight 1)

Voter 2:
(\$1, weight 1)

Voter 3:
(\$1, weight 1)

Voter 4:
(\$1, weight 1)

(C) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

Scoring Protocol: Borda

(c) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

Scoring Protocol: Borda

(C) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

Scoring Protocol: Borda
$\alpha=$
(4,
2,
1 ,
0)

Voter 1:
(\$1, weight 1)

Voter 2:
(\$1, weight 1)
bribed
Voter 3:
(\$1, weight 1)

Voter 4: (\$1, weight 1)

(C) Paul Cullen

(C) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

Scoring Protocol: Borda

$\alpha=$	(4,	3,	2,	1 ,	0)	
Voter 1: (\$1, weight 1)		53			(20)	
Voter 2: (\$1, weight 1)	(20)	5)	
bribed Voter 3: (\$1. weight 1)						
Voter 4: (\$1, weight 1)	(24)					

(C) G.R.R. Martin \& HBO

Online Bribery in Sequential Elections

- An online bribery setting (OBS) is a 5-tuple (C, V, σ, d, k), where
- C is a set of candidates;
- $V=\left(V_{<u}, u, V_{u<}\right)$ is an election snapshot for C and u;
- σ is the preference order of the briber;
- $d \in C$ is a distinguished candidate; and
- k is a nonnegative integer (the budget).

Online Bribery in Sequential Elections

- An online bribery setting (OBS) is a 5-tuple (C, V, σ, d, k), where
- C is a set of candidates;
- $V=\left(V_{<u}, u, V_{u<}\right)$ is an election snapshot for C and u;
- σ is the preference order of the briber;
- $d \in C$ is a distinguished candidate; and
- k is a nonnegative integer (the budget).
- If u is a voter and C is a candidate set, an election snapshot for C and u is specified as $V=\left(V_{<u}, u, V_{>u}\right)$, where
- $V_{<u}$ are the previous voters, in order, with their votes and information on whether they were bribed (and, if appropriate, at what cost);
- u is the current voter, with her (unless-we-bribe-her) vote; and
- $V_{>u}$ is simply a list, in the order they will vote, of the voters after u, each with or without prices and/or weights, depending on the model.

Online Bribery in Sequential Elections

online- \mathscr{E}-Bribery

Given: \quad An OBS (C, V, σ, d, k).
Question: Does there exist a legal choice by the briber on whether to bribe u and, if the choice is to bribe, of what vote to bribe u into casting, such that if the briber makes that choice then no matter what votes the remaining voters after u are (later) revealed to have, the briber's goal can be reached by the current decision regarding u and by using the briber's future (legal-only, of course) decisions (if any), each being made using the briber's then-inhand knowledge about what votes have been cast by then?

Online Bribery in Sequential Elections

online- \mathscr{E}-Bribery

Given: \quad An $\operatorname{OBS}(C, V, \sigma, d, k)$.
Question: Does there exist a legal choice by the briber on whether to bribe u and, if the choice is to bribe, of what vote to bribe u into casting, such that if the briber makes that choice then no matter what votes the remaining voters after u are (later) revealed to have, the briber's goal can be reached by the current decision regarding u and by using the briber's future (legal-only, of course) decisions (if any), each being made using the briber's then-inhand knowledge about what votes have been cast by then?

The briber's goal: $W_{\mathscr{E}}(C, U) \cap\left\{c \mid c \geq_{\sigma} d\right\} \neq \emptyset$, where U are the votes after this process and $W_{\mathscr{E}}(C, U)$ is the winner set of \mathscr{E} election (C, U).

Online Bribery in Sequential Elections

Variations of online bribery problems (with no limits on the number of bribes):

- online- \mathscr{E}-Bribery: as above (constructive, unpriced, unweighted),
- online- \mathscr{E}-Destructive-Bribery: $W_{\mathscr{E}}(C, U) \cap\left\{c \mid d \geq{ }_{\sigma} c\right\}=\emptyset$,
- online- $\mathscr{E}-\$$ Bribery: constructive, priced, unweighted,
- online- \mathscr{E}-Destructive-\$Bribery: destructive, priced, unweighted,
- online- \mathscr{E}-Weighted-Bribery,
- online- \mathscr{E}-Destructive-Weighted-Bribery,
- online- \mathscr{E}-Weighted-\$Bribery, and
- online- \mathscr{E}-Destructive-Weighted-\$Bribery.

Online Bribery in Sequential Elections

Variations of online bribery problems

 (with limits on the number of bribes):- online- \mathscr{E}-Bribery $[k]$: as above (constructive, unpriced, unweighted),
- online- \mathscr{E}-Destructive-Bribery[k]: $W_{\mathscr{E}}(C, U) \cap\left\{c \mid d \geq{ }_{\sigma} c\right\}=\emptyset$,
- online- $\mathscr{E}-\$$ Bribery $[k]$: constructive, priced, unweighted,
- online- \mathscr{E}-Destructive- $\$$ Bribery $[k]$: destructive, priced, unweighted,
- online- \mathscr{E}-Weighted-Bribery $[k]$,
- online- \mathscr{E}-Destructive-Weighted-Bribery[$k]$,
- online- \mathscr{E}-Weighted-\$Bribery $[k]$, and
- online- \mathscr{E}-Destructive-Weighted-\$Bribery[k].

General Upper Bound: No Limits on Number of Bribes

Theorem
(1) For each election system \mathscr{E} whose winner problem in the unweighted case is in polynomial time (or even in polynomial space), each of online- \mathscr{E}-Bribery, online- \mathscr{E}-Destructive-Bribery, online- \mathscr{E}-\$Bribery, and online- \mathscr{E}-Destructive-\$Bribery is in PSPACE.

General Upper Bound: No Limits on Number of Bribes

Theorem
(1) For each election system \mathscr{E} whose winner problem in the unweighted case is in polynomial time (or even in polynomial space), each of online- \mathscr{E}-Bribery, online- \mathscr{E}-Destructive-Bribery, online- \mathscr{E}-\$Bribery, and online- \mathscr{E}-Destructive-\$Bribery is in PSPACE.
(2) For each election system \mathscr{E} whose winner problem in the weighted case is in polynomial time (or even in polynomial space), each of online- \mathscr{E}-Weighted-Bribery,
online- \mathscr{E}-Destructive-Weighted-Bribery,
online- \mathscr{E}-Weighted-\$Bribery, and
online- \mathscr{E}-Destructive-Weighted-\$Bribery is in PSPACE.

A Result about Alternating Turing Machines

Definition

The weight of a path ρ in the tree of an ATM is its number of maximal existential segments such that the concatenation of the bits guessed in that segment is not the 1-bit string 0 .

A Result about Alternating Turing Machines

Definition

The weight of a path ρ in the tree of an ATM is its number of maximal existential segments such that the concatenation of the bits guessed in that segment is not the 1 -bit string 0 .

Theorem
Let $k \geq 0$ be fixed. Each polynomial-time ATM M such that on no input does M have an accepting path of weight strictly greater than k accepts a language in $\Pi_{2 k+1}^{p}$.

A Result about Alternating Turing Machines

Figure: A weight 0 path in the tree of an ATM.

General Upper Bound: With Limits on Number of Bribes

Theorem
(1) For each $k \in\{0,1,2, \ldots\}$, and for each election system \mathscr{E} whose winner problem in the unweighted case is in polynomial time, each of online- \mathscr{E}-Bribery $[k]$, online- \mathscr{E}-Destructive-Bribery $[k]$, online- \mathscr{E}-\$Bribery $[k]$, and online- \mathscr{E}-Destructive-\$Bribery $[k]$ is in $\Pi_{2 k+1}^{p}$.

General Upper Bound: With Limits on Number of Bribes

Theorem
(1) For each $k \in\{0,1,2, \ldots\}$, and for each election system \mathscr{E} whose winner problem in the unweighted case is in polynomial time, each of online- \mathscr{E}-Bribery [k], online- \mathscr{E}-Destructive-Bribery [k], online- \mathscr{E}-\$Bribery $[k]$, and online- \mathscr{E}-Destructive-\$Bribery $[k]$ is in $\Pi_{2 k+1}^{p}$.
(2) For each $k \in\{0,1,2, \ldots\}$, and for each election system \mathscr{E} whose winner problem in the weighted case is in polynomial time, each of online- \mathscr{E}-Weighted-Bribery $[k]$, online- \mathscr{E}-Destructive-Weighted-Bribery $[k]$, online- \mathscr{E}-Weighted-\$Bribery $[k]$, and online- \mathscr{E}-Destructive-Weighted-\$Bribery $[k]$ is in $\Pi_{2 k+1}^{p}$.

Matching Lower Bounds: No Limits on Number of Bribes

Theorem
(1) For each problem \mathfrak{B} from this list of problems:
online- \mathscr{E}-Bribery,
online- \mathscr{E}-Destructive-Bribery,
online- \mathscr{E}-\$Bribery,
online- \mathscr{E}-Destructive-\$Bribery,
online- \mathscr{E}-Weighted-Bribery,
online- \mathscr{E}-Destructive-Weighted-Bribery,
online- \mathscr{E}-Weighted-\$Bribery, and
online- \mathscr{E}-Destructive-Weighted-\$Bribery,
there exists an (unweighted) election system \mathscr{E}, whose winner problem in both the unweighted case and the weighted case is in polynomial time, such that \mathfrak{B} is PSPACE-complete.

Matching Lower Bounds: With Limits on Number of Bribes

Theorem
(2) For each $k \in\{0,1,2, \ldots\}$, and for each problem \mathfrak{B} from this list:
online- \mathscr{E}-Bribery $[k]$,
online- \mathscr{E}-Destructive-Bribery $[k]$,
online- \mathscr{E}-\$Bribery $[k]$,
online- \mathscr{E}-Destructive- $\$$ Bribery $[k]$,
online- \mathscr{E}-Weighted-Bribery $[k]$,
online- \mathscr{E}-Destructive-Weighted-Bribery $[k]$,
online- \mathscr{E}-Weighted-\$Bribery $[k]$, and
online- \mathscr{E}-Destructive-Weighted-\$Bribery $[k]$,
there exists an (unweighted) election system \mathscr{E}, whose winner problem in both the unweighted case and the weighted case is in polynomial time, such that \mathfrak{B} is $\Pi_{2 k+1}^{p}$-complete.

Manipulation versus Bribery

Theorem
(1) ("Regular") manipulation reduces to corresponding online bribery.
(2) Constructive manipulation in the unique winner model reduces to corresponding online destructive bribery.
(3) Online manipulation reduces to corresponding online priced bribery.

Manipulation versus Bribery

Theorem
(1) ("Regular") manipulation reduces to corresponding online bribery.
(2) Constructive manipulation in the unique winner model reduces to corresponding online destructive bribery.
(3) Online manipulation reduces to corresponding online priced bribery.

Observation
For unpriced, unweighted online bribery, it is always optimal to bribe the last k voters (we don't even have to handle u in a special way). This implies that unpriced, unweighted online bribery is certainly reducible to unweighted online manipulation, and so we inherit those upper bounds.

Plurality

Theorem
online-Plurality-Bribery,online-Plurality-Destructive-Bribery,online-Plurality-Weighted-Bribery,online-Plurality-Destructive-Weighted-Bribery,online-Plurality-\$Bribery, andonline-Plurality-Destructive-\$Bribery are in P .

Plurality

```
Theorem
online-Plurality-Bribery,
online-Plurality-Destructive-Bribery,
online-Plurality-Weighted-Bribery,
online-Plurality-Destructive-Weighted-Bribery,
online-Plurality-$Bribery, and
online-Plurality-Destructive-$Bribery are in P.
```

```
Theorem
online-Plurality-Weighted-$Bribery and
online-Plurality-Destructive-Weighted-$Bribery
are NP-complete, even when restricted to two candidates.
```


Proof that online-Plurality-Weighted-\$Bribery is NP-hard

We reduce from the standard NP-complete problem

Partition

Given: A sequence s_{1}, \ldots, s_{n} of nonnegative integers with $\sum_{i=1}^{n}=2 S$.
Question: Is there a subset $A \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in A} s_{i}=\sum_{i \notin A} s_{i}$?

Proof that online-Plurality-Weighted-\$Bribery is NP-hard

We reduce from the standard NP-complete problem

Partition

Given: A sequence s_{1}, \ldots, s_{n} of nonnegative integers with $\sum_{i=1}^{n}=2 S$.
Question: Is there a subset $A \subseteq\{1, \ldots, n\}$ such that $\sum_{i \in A} s_{i}=\sum_{i \notin A} s_{i}$?
Map an instance of Partition to OBS (C, V, σ, d, k), where

- $C=\{d, c\}$,
- $d>{ }_{\sigma} c$,
- the price and weight of the i th voter are both s_{i},
- u is the first voter and votes for c, and
- $k=S$.

Scoring Protocols

Theorem
For each scoring vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$,
(1) online- α-Weighted-\$Bribery and online- α-Destructive-Weighted-\$Bribery are in P if $\alpha_{1}=\alpha_{m}$ and NP-hard otherwise;

Scoring Protocols

Theorem
For each scoring vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$,
(1) online- α-Weighted-\$Bribery and online- α-Destructive-Weighted-\$Bribery are in P if $\alpha_{1}=\alpha_{m}$ and NP-hard otherwise;
(2) online- α-Weighted-Bribery and online- α-Destructive-Weighted-Bribery are in P if $\alpha_{2}=\alpha_{m}$ and NP-hard otherwise; and

Scoring Protocols

Theorem

For each scoring vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$,
(1) online- α-Weighted-\$Bribery and
online- α-Destructive-Weighted-\$Bribery
are in P if $\alpha_{1}=\alpha_{m}$ and NP -hard otherwise;
(2) online- α-Weighted-Bribery and online- α-Destructive-Weighted-Bribery are in P if $\alpha_{2}=\alpha_{m}$ and NP-hard otherwise; and
(3) online- α-Bribery,
online- α-Destructive-Bribery,
online- $\alpha-\$$ Bribery, and
online- α-Destructive-\$Bribery are in P .

3-candidate-Veto

Theorem

(1) online-3-candidate-Veto-Bribery, online-3-candidate-Veto-Destructive-Bribery, online-3-candidate-Veto-\$Bribery, and online-3-candidate-Veto-Destructive-\$Bribery are in P .

3-candidate-Veto

Theorem
(1) online-3-candidate-Veto-Bribery, online-3-candidate-Veto-Destructive-Bribery, online-3-candidate-Veto-\$Bribery, and online-3-candidate-Veto-Destructive-\$Bribery are in P .
(2) online-3-candidate-Veto-Destructive-Weighted-Bribery and online-3-candidate-Veto-Weighted-Bribery are $\mathrm{P}^{\mathrm{NP}[1]}$-complete.

3-candidate-Veto

Theorem
(1) online-3-candidate-Veto-Bribery, online-3-candidate-Veto-Destructive-Bribery, online-3-candidate-Veto-\$Bribery, and online-3-candidate-Veto-Destructive-\$Bribery are in P .
(2) online-3-candidate-Veto-Destructive-Weighted-Bribery and online-3-candidate-Veto-Weighted-Bribery are $\mathrm{P}^{\mathrm{NP}[1]}$-complete.
(3) online-3-candidate-Veto-Weighted-\$Bribery and online-3-candidate-Veto-Destructive-Weighted-\$Bribery are $\mathrm{P}^{\mathrm{NP}[1]}$-hard and in P^{NP} (and we conjecture that they are P^{NP}-complete).

Approval

In approval voting, each candidate scores a point when it is approved in a vote and the candidates with the most points are the winners.

Approval

In approval voting, each candidate scores a point when it is approved in a vote and the candidates with the most points are the winners.

Theorem
(1) online-Approval-Bribery, online-Approval-Destructive-Bribery, online-Approval-\$Bribery, online-Approval-Destructive-\$Bribery, online-Approval-Weighted-Bribery, and online-Approval-Destructive-Weighted-Bribery are each in P .

Approval

In approval voting, each candidate scores a point when it is approved in a vote and the candidates with the most points are the winners.

Theorem
(1) online-Approval-Bribery,
online-Approval-Destructive-Bribery,
online-Approval-\$Bribery,
online-Approval-Destructive-\$Bribery,
online-Approval-Weighted-Bribery, and
online-Approval-Destructive-Weighted-Bribery are each in P .
(2) online-Approval-Weighted-\$Bribery and online-Approval-Destructive-Weighted-\$Bribery are each NP-complete.

Conclusions and Open Questions

- We introduced a model for bribery in an online, sequential setting.

Conclusions and Open Questions

- We introduced a model for bribery in an online, sequential setting.
- All variants of online bribery can be complete for high levels of the polynomial hierarchy (with limit on the number of bribes) or even PSPACE (no limit on the number of bribes).

Conclusions and Open Questions

- We introduced a model for bribery in an online, sequential setting.
- All variants of online bribery can be complete for high levels of the polynomial hierarchy (with limit on the number of bribes) or even PSPACE (no limit on the number of bribes).
- For natural, important election systems, such a dramatic complexity increase does not occur, and we pinpoint the complexity of their online bribery problems in a sequential setting.

Conclusions and Open Questions

- We introduced a model for bribery in an online, sequential setting.
- All variants of online bribery can be complete for high levels of the polynomial hierarchy (with limit on the number of bribes) or even PSPACE (no limit on the number of bribes).
- For natural, important election systems, such a dramatic complexity increase does not occur, and we pinpoint the complexity of their online bribery problems in a sequential setting.
- Can we close the complexity gap between $\mathrm{P}^{\mathrm{NP}[1]}$-hardness and membership in P^{NP} for online-3-candidate-Veto-Weighted-\$Bribery and online-3-candidate-Veto-Destructive-Weighted-\$Bribery?

Conclusions and Open Questions

- We introduced a model for bribery in an online, sequential setting.
- All variants of online bribery can be complete for high levels of the polynomial hierarchy (with limit on the number of bribes) or even PSPACE (no limit on the number of bribes).
- For natural, important election systems, such a dramatic complexity increase does not occur, and we pinpoint the complexity of their online bribery problems in a sequential setting.
- Can we close the complexity gap between $\mathrm{P}^{\mathrm{NP}[1]}$-hardness and membership in P^{NP} for online-3-candidate-Veto-Weighted-\$Bribery and online-3-candidate-Veto-Destructive-Weighted-\$Bribery?
- Study online bribery for further natural voting rules!

Conclusions and Open Questions

- Who will be sitting on the Iron Throne?

The BIG Open Question!

- Who will be sitting on the Iron Throne?

The BIG Open Question!

- Who will be sitting on the Iron Throne?

Open Research Issue!

see https://www.change.org/p/hbo-remake-game-of-thrones-season-8-with-competent-writers, which already has 1.8 million signatures!

The BIG Open Question!

- Who will be sitting on the Iron Throne?

Open Research Issue!

See https://www.change.org/p/hbo-remake-game-of-thrones-season-8-with-competent-writers, which already has 1.8 million signatures!

The BIG Open Question!

- Who will be sitting on the Iron Throne?

Open Research Issue!

see https://www.change.org/p/hbo-remake-game-of-thrones-season-8-with-competent-writers, which already has 1.8 million signatures!

[^0]: E. Hemaspaandra, L. Hemaspaandra \& J. Rothe:

[^1]: E. Hemaspaandra, L. Hemaspaandra \& J. Rothe:

