

# Cost-Sharing Methods for Scheduling Games under Uncertainty

Vasilis Gkatzelis, Drexel University

Joint work with:

Giorgos Christodoulou, Alkmini Sgouritsa,

University of Liverpool Max-Planck Institute

#### **Load Balancing**



- We have a set M of m machines and set N of n jobs
- Each job i has weight  $w_i$  and needs to be processed by some machine
- Each machine j has a non-decreasing cost function  $c_j(\ell)$ 
  - This cost depends on the load  $\ell = \sum_i w_i$  of the agents using it
  - For this talk, just assume that  $w_i = 1$  for every agent i
  - The cost function satisfies  $c_i(0) = 0$  for every machine j
  - Each cost function can be convex, concave, or more complicated
- A schedule s assigns each job to a machine
  - Let  $S_i(s)$  be the set of jobs assigned to machine j in schedule s
  - Let  $\ell_j(s) = \sum_{i \in S_j(s)} w_i$  be the total load of the jobs using j in s
  - Then the cost on each machine j is  $c_j(s) = c_j(\ell_j(s))$
- Our goal is to output a schedule s that minimizes  $C(s) = \sum_{j \in M} c_j(s)$















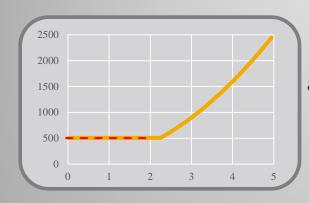






## **Oblivious Cost-Sharing**

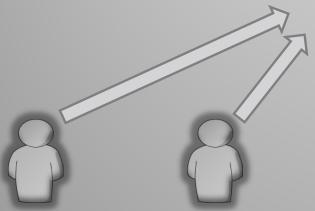




#### **Oblivious Cost-Sharing**

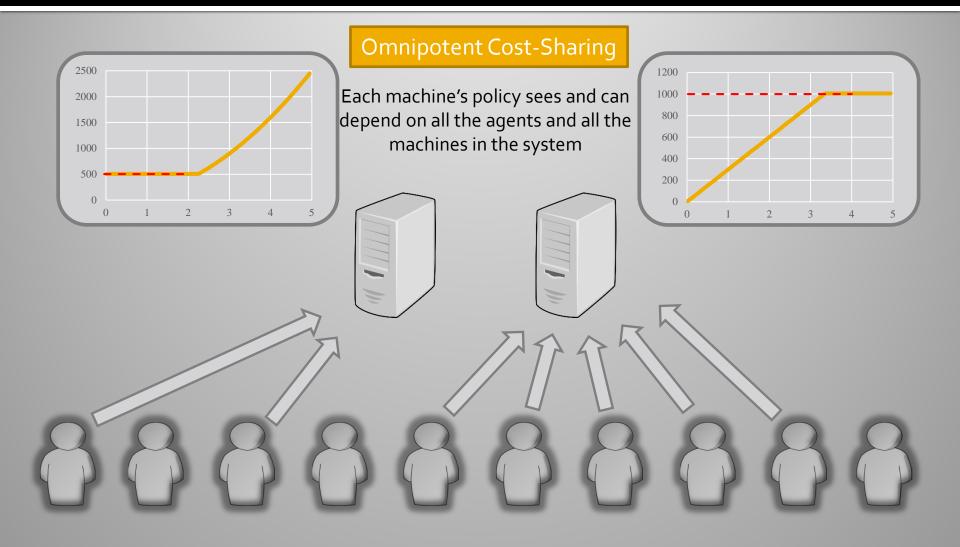
Each machine's policy sees only agents using it and is independent of other machines in the system





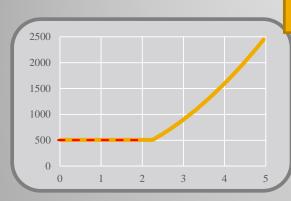
## **Omnipotent Cost-Sharing**





#### **Resource-Aware Cost-Sharing**



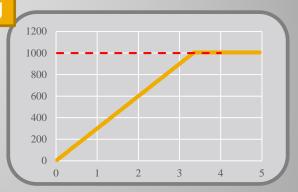


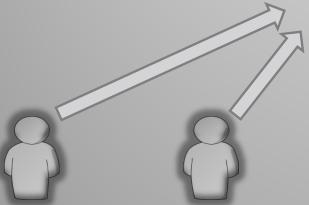
#### Resource-aware Cost-Sharing

Each machine's policy sees only agents using it but can depend on other machines in the system









### **Scheduling Games Model**



- Set M of m machines and set N of n agents
- Agent i needs **one machine** to process a job with weight  $w_i$
- Machine j has a cost function  $c_j(\ell)$ 
  - This cost depends on the load  $\ell = \sum_i w_i$  of the agents using it
  - The cost function satisfies  $c_i(0) = 0$  for every machine j
- Strategy  $s_i \in M$  from each job i leads to profile s
- Let  $S_i(s)$  be the set of jobs using machine j in profile s
- Let  $\ell_j(s) = \sum_{i \in S_j(s)} w_i$  be the total load of the jobs using j in s
- Cost-sharing method  $\xi_{ij}(s)$  defines cost of i in profile s
  - Budget-balanced if for every s and every j:  $\sum_{i \in S_i(s)} \xi_{ij}(s) = c_j(s)$
  - Stable if a pure Nash equilibrium exists for all sets M and N

#### Price of Anarchy



- We measure the efficiency of a schedule s using  $C(s) = \sum_{j \in M} c_j(s)$
- Given a class of games G, for each game  $G \in G$ :
  - Let F(G) be the set of all possible schedules
  - Let  $E(G) \subseteq F(G)$  be the set of pure Nash equilibria
- Price of anarchy (PoA) of a class  $\mathcal{G}$  is:  $\sup_{G \in \mathcal{G}} \frac{\max_{s \in E(G)} C(s)}{\min_{s^* \in F(G)} C(s^*)}$
- We may **overcharge** so that  $\sum_{i \in S_j(s)} \xi_{ij}(s) = \hat{C}(s) > C(s)$
- With overcharging, the PoA of a class  $\mathcal{G}$  becomes:  $\sup_{G \in \mathcal{G}} \frac{\max_{s \in E(\widehat{G})} \widehat{\mathcal{C}}(s)}{\min_{s^* \in F(G)} C(s^*)}$

### **Price of Anarchy**



- We measure the efficiency of a schedule s using  $C(s) = \sum_{j \in M} c_j(s)$
- Given a class of games G, for each game  $G \in G$ :
  - Let F(G) be the set of all possible schedules
  - Let  $E(G) \subseteq F(G)$  be the set of pure Nash equilibri

Price of Stability (PoS)

if we change max to min

- Price of anarchy (PoA) of a class  $\mathcal{G}$  is:  $\sup_{G \in \mathcal{G}} \frac{\sup_{s \in E(G)} C(s)}{\sup_{s^* \in F(G)} C(s^*)}$
- We may **overcharge** so that  $\sum_{i \in S_j(s)} \xi_{ij}(s) = \hat{C}(s) > C(s)$
- With overcharging, the PoA of a class  $\mathcal{G}$  becomes:  $\sup_{G \in \mathcal{G}} \frac{\max_{s \in E(\widehat{G})} \widehat{\mathcal{C}}(s)}{\min_{s^* \in F(G)} C(s^*)}$

#### Related work



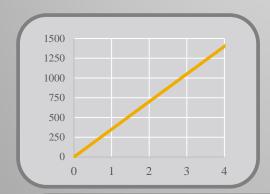
#### Many papers on cost-sharing and coordination mechanisms

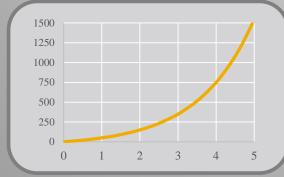
- Chen, Roughgarden, and Valiant 2010
  - Network design games (constant cost functions)
  - Agents can choose multiple machines
  - Characterization of stable cost-sharing protocols
- von Falkenhausen and Harks 2013
  - Studied general cost functions
  - Also considered extension to matroids
- Both of these papers are restricted to budget-balanced protocols and the omnipotent and oblivious models

#### **Convex Cost Functions**



- Assume all the cost functions are convex
- How inefficient can the outcome be if we use equal sharing?
- E.g., **2 machines**  $c_1(\ell) = 50 \cdot 2^{\ell-1}$  and  $c_2(\ell) = 350 \, \ell$  and **5 agents**















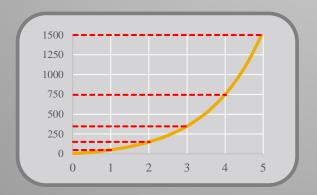
#### **Convex Cost Functions**



- Given global ordering  $\pi$  over the universe of agents
- Incremental cost-sharing protocol [Moulin '99]
  - Order the agents using a machine based on  $\pi$
  - Charge each agent for a cost equal to its marginal contribution

• 
$$\xi_{ij}(\mathbf{s}) = c_j \left( \ell_j^{< i}(\mathbf{s}) + \mathbf{w_i} \right) - c_j \left( \ell_j^{< i}(\mathbf{s}) \right)$$

 This protocol is stable, budget-balanced, and oblivious, and it achieves a PoA of 1 for unweighted agents and convex functions













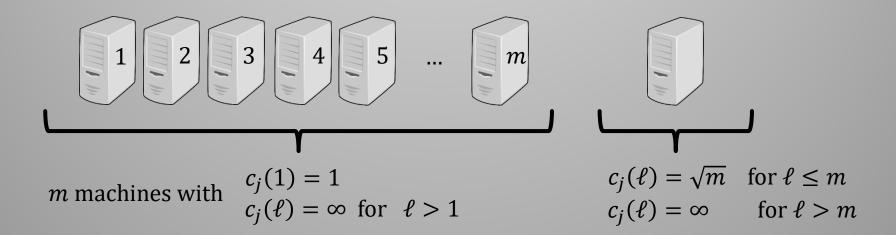
#### **General Cost Functions**



Theorem: Every stable, budget-balanced, resource-aware mechanism has a PoA of  $\Omega(m)$  for general cost functions

What if we allow the use of overcharging?

Theorem: Every stable, (non-budget-balanced,) resource-aware mechanism has a PoA of  $\Omega(\sqrt{m})$  for general cost functions

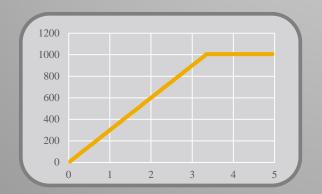


#### **Concave Cost Functions**



Theorem: Any stable, oblivious, and budget-balanced costsharing policy has  $PoA \ge n$  for strictly concave valuations

- Observation: optimal solution assigns all jobs to one machine, but which machine this is depends on the total load of the jobs
- The lower bound above is for unweighted, but our mechanism works for general weights as well













#### **Concave Cost Functions**



 $\boldsymbol{\phi}(\ell) = \min_{j \in M} c_j(\ell)$ :

- smallest cost over all machines at load  $\ell$
- set of machines with cost  $\phi(\ell)$  at load  $\ell$
- $X_{\min}(\ell) = \arg\min_{j \in M} c_j(\ell):$   $h_j(s) = \arg\min_{i' \in S_j(s)} \{\pi(i')\}:$
- highest priority agent on machine j

$$\xi_{ij}(s) = \begin{cases} c_j(\ell_j(s)) & \text{if } j \notin X_{min}(\ell_j(s)) \text{ and } i = h_j \\ 0 & \text{if } j \notin X_{min}(\ell_j(s)) \text{ and } i \neq h_j \\ \phi(w_i) & \text{if } j \in X_{min}(\ell_j(s)) \text{ and } i = h_j \\ w_i \frac{c_j(\ell_j(s)) - \phi(w_{h_j})}{\ell_j(s) - w_{h_j}} & \text{if } j \in X_{min}(\ell_j(s)) \text{ and } i \neq h_j \end{cases}$$

**Theorem**: This cost-sharing mechanism is **stable**, **budget-balanced**, resource-aware, and it achieves PoA of 1 for concave cost functions

#### **Convex & Concave Functions**



- No **budget-balanced** mechanism can guarantee a PoS better than  $O(\log m)$  even if it is omnipotent [vFH 13]
- If  $j \in M_{convex}$  and  $\ell \geq n_j^{max}$ , instead of  $c_j(\ell)$ , we use cost functions  $\hat{c}(\ell) = \max \left\{ \max_{j' \in M_{concave}} c_{j'}(1), c_j(\ell) \right\}$
- VC mechanism: Using the over-charged cost functions above
  - For convex machines use incremental cost-sharing protocol
  - For concave machines use our concave cost-sharing protocol

**Theorem**: This mechanism is **stable**, **resource-aware** and achieves a **PoA of 2** for instances with convex and concave functions

#### **Two-Machine Instances**



- Let  $\alpha(s)$  be highest priority agent using the first machine
- Let  $\beta(s)$  be lowest priority agent using second machine
- Increasing-Decreasing mechanism: For any profile s,
  - Charge agent  $\alpha(s)$  for the whole cost of the first machine
  - Charge agent  $\beta(s)$  for the whole cost of the second machine.

**Theorem**: This mechanism is **stable**, **budget-balanced**, **resource-aware**, and it achieves a **PoA of 2** for arbitrary cost functions

Note that this mechanism is stable, but not a Shapley value variant

Theorem: Any stable, (non-budget-balanced), resource-aware mechanism has PoA > 1.36, even for instances with just two machines with convex and concave cost functions

#### Conclusion



- Resource-aware cost-sharing
  - Well motivated middle-ground between omnipotent and oblivious
  - Non-trivial use of extra information may enable improvements
- Power of over-charging
  - Leads to improvements despite the additional costs
  - For omnipotent protocols, over-charging can yield PoA of 1
  - Budget-balanced omnipotent protocols have PoA  $\Omega(\log n)$  [vFH 13]
- Open problems
  - Weighted upper bounds in our setting
  - Applying the resource-aware model in other settings

Thank you!