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Load Balancing JS§ Drexel

UNIVERSITY

We have a set M of m machines and set N of n jobs

Each job i has weight w; and needs to be processed by some machine
Each machine j has a non-decreasing cost function ¢;(¥)

= This cost depends on the load ¢ = );; w; of the agents using it
= For this talk, just assume that w; = 1 for every agent i

= The cost function satisfies ¢;(0) = 0 for every machine j

Each cost function can be convex, concave, or more complicated

A schedule s assigns each job to a machine
= Let S;(s) be the set of jobs assigned to machine j in schedule s
= Let#;(s) = ZiESj(s) w; be the total load of the jobs usingjin s

= Then the cost on each machine jis ¢;(s) = ¢;j(£;(s))

Our goal is to output a schedule s that minimizes C(s) = X ey ¢;(S)
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Oblivious Cost-Sharing & Drexel
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Omnipotent Cost-Sharing & Drexel
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Scheduling Games Model & Drexel

Set M of m machines and set N of n agents
Agent i needs one machine to process a job with weight w;
Machine j has a cost function ¢; ()

= This cost depends on the load £ = );; w; of the agents using it
= The cost function satisfies ¢;(0) = 0 for every machine j

Strategy s; € M from each job i leads to profile s
Let S;(s) be the set of jobs using machine j in profile s

Let £;(s) = ZiESj(s) w; be the total load of the jobs using jin s

Cost-sharing method ¢;;(s) defines cost of i in profile s
= Budget-balanced if for every s and every j: Ziesj(s) ¢ij(s) = ci(s)

= Stable if a pure Nash equilibrium exists for all sets M and N

11/18/2018 Vasilis Gkatzelis - “Cost-Sharing Methods for Scheduling Games under Uncertainty"



Price of Anarchy & Drexel

UNIVERSITY

We measure the efficiency of a schedule s using C(s) = ey ¢ (5)

Given a class of games G, for each game G € G:
= Let F(G) be the set of all possible schedules
= Let E(G) S F(G) be the set of pure Nash equilibria

Price of anarchy (PoA) of a class G is: sup ———=2

GEG s*rEnI}'?G) C(s7)

We may overcharge so that Xcs (s) §ij(5) = C(s) > C(s)

max C (s)
With overcharging, the PoA of a class G becomes: sup -

GEG s*renf}'?G) CEg
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Price of Anarchy & Drexel

UNIVERSITY

We measure the efficiency of a schedule s using C(s) = ey ¢ (5)

Given a class of games G, for each game G € G:
= Let F(G) be the set of all possible schedules Price of Stability (PoS)
= Let E(G) S F(G) be the set of pure Nash equilibri if we change max to min

Price of anarchy (PoA) of a class G is: sup ———=2

GEG s*rEnI}'?G) ¢is7)

We may overcharge so that Xcs (s) §ij(5) = C(s) > C(s)

max C (s)
With overcharging, the PoA of a class G becomes: sup -

GEG s*renf}'?G) CCy
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Related work S§ Drexel

UNIVERSITY

Many papers on cost-sharing and coordination mechanisms

Chen, Roughgarden, and Valiant 2010

= Network design games (constant cost functions)
= Agents can choose multiple machines

= Characterization of stable cost-sharing protocols

von Falkenhausen and Harks 2013
= Studied general cost functions
= Also considered extension to matroids

Both of these papers are restricted to budget-balanced
protocols and the omnipotent and oblivious models
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Convex Cost Functions ¥ Drexel

Assume all the cost functions are convex
How inefficient can the outcome be if we use equal sharing?

E.g., 2 machines c¢;(#¥) = 50-2%! and c,(#) = 350 £ and 5 agents
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Convex Cost Functions ¥ Drexel

Given global ordering m over the universe of agents

Incremental cost-sharing protocol [Moulin ‘gqg]

= Order the agents using a machine basedonm

= Charge each agent for a cost equal to its marginal contribution

s §5() = (&7 () + wi) — ¢ (£7(9))

This protocol is stable, budget-balanced, and oblivious, and it
achieves a PoA of 1 for unweighted agents and convex functions

= | OO0

11/18/2018 Vasilis Gkatzelis - “"Cost-Sharing Methods for Scheduling Games under Uncertainty"



General Cost Functions ¥ Drexel

Theorem: Every stable, budget-balanced, resource-aware
mechanism has a PoA of Q(m) for general cost functions

What if we allow the use of overcharging?

Theorem: Every stable, (non-budget-balanced,) resource-aware
mechanism has a PoA of Q(y/m) for general cost functions

@ ) O
\ ] | )
! !

(1) =1 ci(f) =ym forf <m
¢j(f) = o for £>1 ¢i(f) = oo for? >m

m machines with
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Concave Cost Functions ¥ Drexel

Theorem: Any stable, oblivious, and budget-balanced cost-
sharing policy has PoA = n for strictly concave valuations

Observation: optimal solution assigns all jobs to one machine,
but which machine this is depends on the total load of the jobs

The lower bound above is for unweighted, but our mechanism
works for general weights as well
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Concave Cost Functions ¥ Drexel

P(f) = rjrélﬂr} ¢ (£): smallest cost over all machines at load #

Xmin(f) = arg 5%11\51 ¢j(£):  setof machines with cost ¢(£) atload ¢

h;(s) = arg i,rer}ijr(ls){n(i’)}: highest priority agent on machine j

f Cj (fj(s)) if j & Xmin(fj(s)) and i = h;

0 if j & Xmin(€;(s)) and i # h;

§ij(s) = 1 d(w;) if j € Xmin(¢;(s)) and i = h;
G (4() - pwn) |

\Wl- 2.05) - ™ if j € Xml-n({’j(s)) and i # h;

Theorem: This cost-sharing mechanism is stable, budget-balanced,
resource-aware, and it achieves PoA of 1 for concave cost functions
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Convex & Concave Functions ¥ Drexel

No budget-balanced mechanism can guarantee a PoS
better than O(logm) even if it is omnipotent [vFH 13]

Ifj € Mconvex and £ = nj", instead of ¢;(¥), we use cost

functions ¢(¥) = max{_, max ¢;(1) ,c-(f)}

Mconcave

VC mechanism: Using the over-charged cost functions above
= For convex machines use incremental cost-sharing protocol
= For concave machines use our concave cost-sharing protocol

Theorem: This mechanism is stable, resource-aware and achieves
a PoA of 2 for instances with convex and concave functions
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Two-Machine Instances ¥ Drexel

Let a(s) be highest priority agent using the first machine
Let S (s) be lowest priority agent using second machine

Increasing-Decreasing mechanism: For any profile s,
= Charge agent a(s) for the whole cost of the first machine
= Charge agent S(s) for the whole cost of the second machine.

Theorem: This mechanism is stable, budget-balanced, resource-
aware, and it achieves a PoA of 2 for arbitrary cost functions

Note that this mechanism is stable, but not a Shapley value variant
Theorem: Any stable, (non-budget-balanced), resource-aware

mechanism has PoA > 1.36, even for instances with just two
machines with convex and concave cost functions
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Conclusion ¥ Drexel

Resource-aware cost-sharing

= Well motivated middle-ground between omnipotent and oblivious

= Non-trivial use of extra information may enable improvements
Power of over-charging

= |eads toimprovements despite the additional costs
= For omnipotent protocols, over-charging can yield PoA of 1

= Budget-balanced omnipotent protocols have PoA Q(logn) [vFH 13]
Open problems

= Weighted upper bounds in our setting
= Applying the resource-aware model in other settings

Thank you!
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