
Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Adventures in Monitorability

Antonis Achilleos1

joint work with:

Luca Aceto1,2 Adrian Francalanza3 Anna Ingólfsdóttir1

Karoliina Lehtinen4,5

1: Reykjavik University 2: Gran Sasso Science Institute, L’Aquila

3: ICT, University of Malta 4: Christian-Albrechts University of Kiel

5: University of Liverpool

NYCAC 2018 16 November 2018

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Formal Verification

• Question: is your system behaving correctly?

• Multiple verification techniques: Model-Checking,
Theorem-Proving, Testing,. . .

• Issues: systems become (even) larger and more
complicated, unexpected environments, opaque components

• A post-deployment technique: Runtime Verification

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Formal Verification

• Question: is your system behaving correctly?

• Multiple verification techniques: Model-Checking,
Theorem-Proving, Testing,. . .

• Issues: systems become (even) larger and more
complicated, unexpected environments, opaque components

• A post-deployment technique: Runtime Verification

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Formal Verification

• Question: is your system behaving correctly?

• Multiple verification techniques: Model-Checking,
Theorem-Proving, Testing,. . .

• Issues: systems become (even) larger and more
complicated, unexpected environments, opaque components

• A post-deployment technique: Runtime Verification

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Formal Verification

• Question: is your system behaving correctly?

• Multiple verification techniques: Model-Checking,
Theorem-Proving, Testing,. . .

• Issues: systems become (even) larger and more
complicated, unexpected environments, opaque components

• A post-deployment technique: Runtime Verification

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Runtime Verification

• Runtime Verification uses monitors to detect at runtime
whether a certain system satisfies/violates a specification.

• A monitor runs together with a process and it observes the
events the process generates.

• When it detects a certain kind of behavior, it can reach a
verdict (yes, no, or end).

Monitor e1 e2 e3 · · · System

?
3 7

exhibitsanalyzes

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Goals

Automatic monitor synthesis from specifications

Plausible monitorability guarantees for classes of properties

To determine the limits of monitorability

A choice to make:

properties of

processes
infinite traces
finite or infinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Goals

Automatic monitor synthesis from specifications

Plausible monitorability guarantees for classes of properties

To determine the limits of monitorability

A choice to make:

properties of

processes
infinite traces
finite or infinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Two Kinds of Models – Two Kinds of Properties
Processes, Infinite Traces

〈P,Act,→〉
processes, actions, transitions

p
α1−→ q

α2−→ · · ·

trace of events

system graph
α1

α2

α3

α4

α5

α

β
α

β

α

α1α2α3 · · · ∈ Actω

Moral of the talk: The choice of model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Two Kinds of Models – Two Kinds of Properties
Processes, Infinite Traces

〈P,Act,→〉
processes, actions, transitions

p
α1−→ q

α2−→ · · ·

trace of events

system graph
α1

α2

α3

α4

α5

α

β
α

β

α

α1α2α3 · · · ∈ Actω

Moral of the talk: The choice of model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Two Kinds of Models – Two Kinds of Properties
Processes, Infinite Traces

〈P,Act,→〉
processes, actions, transitions

p
α1−→ q

α2−→ · · ·

trace of events

system graph
α1

α2

α3

α4

α5

α

β
α

β

α

α1α2α3 · · · ∈ Actω

Moral of the talk: The choice of model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

A branching-time language. . .

[α]ϕ
ϕ

ϕ

α

α
〈α〉ϕ

ϕα

α

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

A branching-time language. . .

[α]ϕ
ϕ

ϕ

α

α
〈α〉ϕ

ϕα

α

. . . or, possibly, a linear-time language. . .

s |=[α]ϕ : s = α s′ =⇒ s′ |= ϕ

s |=〈α〉ϕ : s = α s′ and s′ |= ϕ

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

A branching-time language. . .

[α]ϕ
ϕ

ϕ

α

α
〈α〉ϕ

ϕα

α

. . . or, possibly, a linear-time language. . .

s |=[α]ϕ : s = α s′ =⇒ s′ |= ϕ

s |=〈α〉ϕ : s = α s′ and s′ |= ϕ

. . . with recursion
minX.ϕ holds iff ϕ[minX.ϕ/X] does and is a lfp

maxX.ϕ holds iff ϕ[maxX.ϕ/X] does and is a gfp

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

An expressive language:

can encode LTL, CTL, CTL∗, BA,. . .

Shorthands from LTL on infinite traces:

X ϕ :=[Act]ϕ (next step)

F ϕ := minY.(ϕ ∨ X Y) (in the future)

G ϕ := maxY.(ϕ ∧ X Y) (generaly)

ϕ U ψ := minY.(ψ ∨ (ϕ ∧ X Y)) (until)

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Regular Monitors

Syntax:

m,n ∈Mon ::= end | no | α.m | m+ n | rec x.m | x

Monitor LTS (verdicts are irrevocable):

Act
α.m

α−→ m
Rec

m[recx.m/x]
α−→ n

recx.m
α−→ n

Vrd
no

α−→ no

SelL
m

α−→ m′

m+ n
α−→ m′

SelR
n

α−→ n′

m+ n
α−→ n′

Vrd
end

α−→ end

Instrumentation (follow the trace):

iMon
p

α−→L q m
α−→M n

m / p
α−→I n / q

iTer
p

α−→L q m 6 α−→M
m / p

α−→I end / q

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Regular Monitors

Syntax:

m,n ∈Mon ::= end | no | α.m | m+ n | rec x.m | x

Monitor LTS (verdicts are irrevocable):

Act
α.m

α−→ m
Rec

m[recx.m/x]
α−→ n

recx.m
α−→ n

Vrd
no

α−→ no

SelL
m

α−→ m′

m+ n
α−→ m′

SelR
n

α−→ n′

m+ n
α−→ n′

Vrd
end

α−→ end

Instrumentation (follow the trace):

iMon
p

α−→L q m
α−→M n

m / p
α−→I n / q

iTer
p

α−→L q m 6 α−→M
m / p

α−→I end / q

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Regular Monitors

Syntax:

m,n ∈Mon ::= end | no | α.m | m+ n | rec x.m | x

Monitor LTS (verdicts are irrevocable):

Act
α.m

α−→ m
Rec

m[recx.m/x]
α−→ n

recx.m
α−→ n

Vrd
no

α−→ no

SelL
m

α−→ m′

m+ n
α−→ m′

SelR
n

α−→ n′

m+ n
α−→ n′

Vrd
end

α−→ end

Instrumentation (follow the trace):

iMon
p

α−→L q m
α−→M n

m / p
α−→I n / q

iTer
p

α−→L q m 6 α−→M
m / p

α−→I end / q

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Formulas and Rejection-Monitors
• Formulas specify process properties: p |= ϕ

• Monitors run along a process and read its trace:
m / p

α1−→ n / q
α2−→ · · ·

• A monitor can reach three possible verdicts: yes, no, end

• m accepts p when m / p
α1−→ · · · αr−→ yes / q

m rejects p when m / p
α1−→ · · · αr−→ no / q

for some α1 · · ·αr and q

• end is the inconclusive verdict.

Definition (Complete Monitorability)

m monitors completely for ϕ when

• m accepts exactly the processes that satisfy ϕ; and

• m rejects exactly the ones that do not satisfy ϕ.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ. We focus on violation.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ. We focus on violation.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ. We focus on violation.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ.

We focus on violation.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ. We focus on violation.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Monitors for µHML (on processes)
FAI17, AAFI17

We can monitor for sHML, the safety fragment of µHML:

ϕ,ψ ∈ sHML ::= tt | ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ | X.

Monitor Synthesis Function: ϕ 7→ m(ϕ) (follow the syntax).
Formula Synthesis Function: m 7→ f(m).

Theorem (Monitorability – Maximality)

m(ϕ) monitors for ϕ and m monitors for f(m).
The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? [α]ff ∨ [β]ff
Question: How about diamonds? 〈α〉tt

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Monitors for µHML (on processes)
FAI17, AAFI17

We can monitor for sHML, the safety fragment of µHML:

ϕ,ψ ∈ sHML ::= tt | ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ | X.

Monitor Synthesis Function: ϕ 7→ m(ϕ) (follow the syntax).
Formula Synthesis Function: m 7→ f(m).

Theorem (Monitorability – Maximality)

m(ϕ) monitors for ϕ and m monitors for f(m).
The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction?

[α]ff ∨ [β]ff
Question: How about diamonds? 〈α〉tt

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Monitors for µHML (on processes)
FAI17, AAFI17

We can monitor for sHML, the safety fragment of µHML:

ϕ,ψ ∈ sHML ::= tt | ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ | X.

Monitor Synthesis Function: ϕ 7→ m(ϕ) (follow the syntax).
Formula Synthesis Function: m 7→ f(m).

Theorem (Monitorability – Maximality)

m(ϕ) monitors for ϕ and m monitors for f(m).
The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? [α]ff ∨ [β]ff

Question: How about diamonds? 〈α〉tt

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Monitors for µHML (on processes)
FAI17, AAFI17

We can monitor for sHML, the safety fragment of µHML:

ϕ,ψ ∈ sHML ::= tt | ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ | X.

Monitor Synthesis Function: ϕ 7→ m(ϕ) (follow the syntax).
Formula Synthesis Function: m 7→ f(m).

Theorem (Monitorability – Maximality)

m(ϕ) monitors for ϕ and m monitors for f(m).
The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? [α]ff ∨ [β]ff
Question: How about diamonds? 〈α〉tt

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff

G [α]ff ∨ G [β]ff
How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt

How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x),

α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,

rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff
G [α]ff ∨ G [β]ff

How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and maxHML

The monitorable syntactic fragments of µHML are now larger:

ϕ,ψ ∈ maxHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

ϕ, ψ ∈ minHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | minX.ϕ

m(〈α〉ϕ) = α.m(ϕ) + α.no m(ϕ ∧ ψ) = m(ϕ)⊗m(ψ)

m([α]ϕ) = α.m(ϕ) + α.yes m(ϕ ∨ ψ) = m(ϕ)⊕m(ψ)

Concerns:

Are parallel monitors a reasonable model?
infinite-state; more powerful than regular monitors(?)

maxHML ∩minHML appears to be nontrivial

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and maxHML

The monitorable syntactic fragments of µHML are now larger:

ϕ,ψ ∈ maxHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

ϕ, ψ ∈ minHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | minX.ϕ

m(〈α〉ϕ) = α.m(ϕ) + α.no m(ϕ ∧ ψ) = m(ϕ)⊗m(ψ)

m([α]ϕ) = α.m(ϕ) + α.yes m(ϕ ∨ ψ) = m(ϕ)⊕m(ψ)

Concerns:

Are parallel monitors a reasonable model?
infinite-state; more powerful than regular monitors(?)

maxHML ∩minHML appears to be nontrivial

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and maxHML

The monitorable syntactic fragments of µHML are now larger:

ϕ,ψ ∈ maxHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

ϕ, ψ ∈ minHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | minX.ϕ

m(〈α〉ϕ) = α.m(ϕ) + α.no m(ϕ ∧ ψ) = m(ϕ)⊗m(ψ)

m([α]ϕ) = α.m(ϕ) + α.yes m(ϕ ∨ ψ) = m(ϕ)⊕m(ψ)

Concerns:

Are parallel monitors a reasonable model?
infinite-state; more powerful than regular monitors(?)

maxHML ∩minHML appears to be nontrivial

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Regularization

Parallel monitors are convenient, but not more powerful:

Theorem (Regularization)

m(ϕ) is equivalent to a regular monitor of size 2O(|m(ϕ)|·2|m(ϕ)|).

p-mon

AFA

r-mon

NFA DFA

det-mon

O(n)

O(2n)

2O(n·2n)

O(n)

O(2n)

2O(n)

22
Ω(

√
n log n)

– 2O(2n)

Ω(2n) – 2O(n logn)

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Regularization

Parallel monitors are convenient, but not more powerful:

Theorem (Regularization)

m(ϕ) is equivalent to a regular monitor of size 2O(|m(ϕ)|·2|m(ϕ)|).

p-mon

AFA

r-mon

NFA DFA

det-mon

O(n)

O(2n)

2O(n·2n)

O(n)

O(2n)

2O(n)

22
Ω(

√
n log n)

– 2O(2n)

Ω(2n) – 2O(n logn)

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Surprise!

Complete monitorability is possible, after all

You cannot combine an accepting and a rejecting trace into one

m([α][β]ff ∧ [β][α]ff) ≡ α.β.no + β.α.no + α.α.yes + β.β.yes

Theorem (Complete Monitorability)

For ϕ ∈ HML, m(ϕ) monitors completely for ϕ over linear time.

Furthermore, all completely monitorable µHML
trace-properties can be (constructively) written in HML — so,
HML is (semantically) maximal.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Surprise!

Complete monitorability is possible, after all

You cannot combine an accepting and a rejecting trace into one

m([α][β]ff ∧ [β][α]ff) ≡ α.β.no + β.α.no + α.α.yes + β.β.yes

Theorem (Complete Monitorability)

For ϕ ∈ HML, m(ϕ) monitors completely for ϕ over linear time.

Furthermore, all completely monitorable µHML
trace-properties can be (constructively) written in HML — so,
HML is (semantically) maximal.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Surprise!

Complete monitorability is possible, after all

You cannot combine an accepting and a rejecting trace into one

m([α][β]ff ∧ [β][α]ff) ≡ α.β.no + β.α.no + α.α.yes + β.β.yes

Theorem (Complete Monitorability)

For ϕ ∈ HML, m(ϕ) monitors completely for ϕ over linear time.

Furthermore, all completely monitorable µHML
trace-properties can be (constructively) written in HML — so,
HML is (semantically) maximal.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Even Better: General Maximality of HML
All trace properties, irrespective of the monitoring system can
be expressed in HML:

Theorem (General Maximality for HML)

Let m be a monitor from a monitoring system such that:

1. verdicts are irrevocable: if m accepts/rejects a finite trace,
then it accepts/rejects all its extensions, and

2. m accepts/rejects t iff, it accepts/rejects some finite prefix.

For any property ϕ with a trace interpretation (not necessarily
written in µHML), if m is sound and complete for ϕ then ϕ can
be expressed in HML.

Proof sketch.

Every trace either satisfies ϕ or not, so m accepts or rejects.
By König’s Lemma, there is a finite set of finite traces that
determine ϕ. Describe these in HML.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ.

These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?
No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ. These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?
No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ. These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?
No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ. These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?

No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ. These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?
No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

How fast does your monitor return a verdict?

〈a〉[a][b]tt b.no+a.(b.yes+a.(a.yes+ b.yes)) a a b a · · ·

Definition

A monitor m is tight when for every finite s, if m rejects all
infinite extensions of s, then m rejects s.

We want to construct tight monitors.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

How fast does your monitor return a verdict?

〈a〉[a][b]tt b.no+a.(b.yes+a.(a.yes+ b.yes)) a a b a · · ·

Definition

A monitor m is tight when for every finite s, if m rejects all
infinite extensions of s, then m rejects s.

We want to construct tight monitors.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for HML

Slim formulas:

ϕ ::= tt | ff |
∧
α∈B

[α]ϕα |
∨
α∈D
〈α〉ψα,

where B,D 6= ∅, ϕα 6= tt, ψα 6= ff, and no
∧
α∈Act[α]ff

or
∨
α∈Act〈α〉tt

(i.e. nothing is immediately true or false, except tt and ff).

Proposition

If ϕ ∈ HML is slim, then m(ϕ) is tight.

The dieting process is based on rewrite rules based on simple
equivalences: [Act]ff V ff, 〈Act〉tt V tt, 〈α〉ff V ff,
[α]ϕ∧ [α]ψ V [α](ϕ∧ψ), [α]ϕ∨ [β]ψ V tt, 〈α〉ϕ∧ [β]ψ V 〈α〉ϕ
. . .

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for HML

Slim formulas:

ϕ ::= tt | ff |
∧
α∈B

[α]ϕα |
∨
α∈D
〈α〉ψα,

where B,D 6= ∅, ϕα 6= tt, ψα 6= ff, and no
∧
α∈Act[α]ff

or
∨
α∈Act〈α〉tt

(i.e. nothing is immediately true or false, except tt and ff).

Proposition

If ϕ ∈ HML is slim, then m(ϕ) is tight.

The dieting process is based on rewrite rules based on simple
equivalences: [Act]ff V ff, 〈Act〉tt V tt, 〈α〉ff V ff,
[α]ϕ∧ [α]ψ V [α](ϕ∧ψ), [α]ϕ∨ [β]ψ V tt, 〈α〉ϕ∧ [β]ψ V 〈α〉ϕ
. . .

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for HML

Slim formulas:

ϕ ::= tt | ff |
∧
α∈B

[α]ϕα |
∨
α∈D
〈α〉ψα,

where B,D 6= ∅, ϕα 6= tt, ψα 6= ff, and no
∧
α∈Act[α]ff

or
∨
α∈Act〈α〉tt

(i.e. nothing is immediately true or false, except tt and ff).

Proposition

If ϕ ∈ HML is slim, then m(ϕ) is tight.

The dieting process is based on rewrite rules based on simple
equivalences: [Act]ff V ff, 〈Act〉tt V tt, 〈α〉ff V ff,
[α]ϕ∧ [α]ψ V [α](ϕ∧ψ), [α]ϕ∨ [β]ψ V tt, 〈α〉ϕ∧ [β]ψ V 〈α〉ϕ
. . .

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for maxHML

Transform ϕ to m(ϕ), and then

determinize m(ϕ) to m;

replace: rec x.no V no,
∑

α∈Act α.no V no,
rec x.yes V yes, and

∑
α∈Act α.yes V yes,

until there is nothing to replace.

Proposition

The result of the above process is tight.

The resulting monitor can be triple-exponentially larger than ϕ.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for maxHML

Transform ϕ to m(ϕ), and then

determinize m(ϕ) to m;

replace: rec x.no V no,
∑

α∈Act α.no V no,
rec x.yes V yes, and

∑
α∈Act α.yes V yes,

until there is nothing to replace.

Proposition

The result of the above process is tight.

The resulting monitor can be triple-exponentially larger than ϕ.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for maxHML

Transform ϕ to m(ϕ), and then

determinize m(ϕ) to m;

replace: rec x.no V no,
∑

α∈Act α.no V no,
rec x.yes V yes, and

∑
α∈Act α.yes V yes,

until there is nothing to replace.

Proposition

The result of the above process is tight.

The resulting monitor can be triple-exponentially larger than ϕ.

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for maxHML

Question: Can we have a nicer construction as for HML?

Probably not: no is the tight monitor for ϕ iff ϕ is not
satisfiable.

Proposition (Upper bound from Vardi, 1988)

maxHML-satisfiability on infinite traces is PSPACE-complete
(for |Act| > 1).

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Constructing Tight Monitors for maxHML

Question: Can we have a nicer construction as for HML?

Probably not: no is the tight monitor for ϕ iff ϕ is not
satisfiable.

Proposition (Upper bound from Vardi, 1988)

maxHML-satisfiability on infinite traces is PSPACE-complete
(for |Act| > 1).

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Future work

• More complexity bounds

• What is monitorability, after all? Relation to other
concepts, the rest of the RV community?

• Relations to similar concepts: diagnosability, learning,. . .

• Distributed RV, fault tolerance, Epistemic Logic, evidence
tracking.

• Real time

• . . .

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

More Variations for the Interested

• Silence and obscuring:
• Sometimes we abstract away from internal system

behaviour using a silent action τ .
• Often, a silent transition is almost-visible due to evaluating

conditions, system noise, or by design. . .
• A framework for grades of obscuring of silent actions and

reliable monitorability [AAFI17]

• Monitoring with conditions [AAFI18]

• Sound/optimal monitorability [Leh]

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The End
Time for questions

Thank you for your attention

This research was supported by the projects “TheoFoMon:
Theoretical Foundations for Monitorability” (grant number:
163406-051) and “Epistemic Logic for Distributed Runtime
Monitoring” (grant number: 184940-051) of the Icelandic
Research Fund, by the BMBF project “AramisII” (project
number: 01IS160253), and by the EPSRC project “Solv-
ing parity games in theory and practice” (project number:
EP/P020909/1).

Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Short Bibliography for Further Reading

The TheoFoMon project page: http://icetcs.ru.is/theofomon/

This work will appear in POPL 2019.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna
Ingólfsdóttir, Monitoring for silent actions, FSTTCS (Dagstuhl,
Germany), LIPIcs, vol. 93, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 7:1–7:14.

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna
Ingólfsdóttir, A framework for parametrized monitorability,
FOSSACS, Lecture Notes in Computer Science, vol. 10803,
Springer, 2018, pp. 203–220.

Karoliina Lehtinen, Runtime verification of fixpoint logic:
Synthesis of optimal monitors,
https://www.informatik.uni-kiel.de/~leh/mon.pdf.

http://icetcs.ru.is/theofomon/
https://www.informatik.uni-kiel.de/~leh/mon.pdf

	Introduction
	Specifications
	BT Monitorability
	Linear Time
	Tightness
	Finfinite
	The End(?)

