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Formal Verification

• Question: is your system behaving correctly?

• Multiple verification techniques: Model-Checking,
Theorem-Proving, Testing,. . .

• Issues: systems become (even) larger and more
complicated, unexpected environments, opaque components

• A post-deployment technique: Runtime Verification
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Runtime Verification

• Runtime Verification uses monitors to detect at runtime
whether a certain system satisfies/violates a specification.

• A monitor runs together with a process and it observes the
events the process generates.

• When it detects a certain kind of behavior, it can reach a
verdict (yes, no, or end).

Monitor e1 e2 e3 · · · System

?
3 7

exhibitsanalyzes
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Goals

Automatic monitor synthesis from specifications

Plausible monitorability guarantees for classes of properties

To determine the limits of monitorability

A choice to make:

properties of

processes
infinite traces
finite or infinite traces
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Two Kinds of Models – Two Kinds of Properties
Processes, Infinite Traces

〈P,Act,→〉
processes, actions, transitions

p
α1−→ q

α2−→ · · ·

trace of events

system graph
α1

α2

α3

α4

α5

α

β
α

β

α

α1α2α3 · · · ∈ Actω

Moral of the talk: The choice of model matters!
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The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ
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A branching-time language. . .

[α]ϕ
ϕ
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〈α〉ϕ
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. . . or, possibly, a linear-time language. . .

s |=[α]ϕ : s = α s′ =⇒ s′ |= ϕ

s |=〈α〉ϕ : s = α s′ and s′ |= ϕ

. . . with recursion
minX.ϕ holds iff ϕ[minX.ϕ/X] does and is a lfp

maxX.ϕ holds iff ϕ[maxX.ϕ/X] does and is a gfp



Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

The Language

ϕ,ψ ∈ µHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | minX.ϕ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

An expressive language:

can encode LTL, CTL, CTL∗, BA,. . .

Shorthands from LTL on infinite traces:

X ϕ :=[Act]ϕ (next step)

F ϕ := minY.(ϕ ∨ X Y ) (in the future)

G ϕ := maxY.(ϕ ∧ X Y ) (generaly)

ϕ U ψ := minY.(ψ ∨ (ϕ ∧ X Y )) (until)
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Regular Monitors

Syntax:

m,n ∈Mon ::= end | no | α.m | m+ n | rec x.m | x

Monitor LTS (verdicts are irrevocable):

Act
α.m

α−→ m
Rec

m[recx.m/x]
α−→ n

recx.m
α−→ n

Vrd
no

α−→ no

SelL
m

α−→ m′

m+ n
α−→ m′

SelR
n

α−→ n′

m+ n
α−→ n′

Vrd
end

α−→ end

Instrumentation (follow the trace):

iMon
p

α−→L q m
α−→M n

m / p
α−→I n / q

iTer
p

α−→L q m 6 α−→M
m / p

α−→I end / q
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Formulas and Rejection-Monitors
• Formulas specify process properties: p |= ϕ

• Monitors run along a process and read its trace:
m / p

α1−→ n / q
α2−→ · · ·

• A monitor can reach three possible verdicts: yes, no, end

• m accepts p when m / p
α1−→ · · · αr−→ yes / q

m rejects p when m / p
α1−→ · · · αr−→ no / q

for some α1 · · ·αr and q

• end is the inconclusive verdict.

Definition (Complete Monitorability)

m monitors completely for ϕ when

• m accepts exactly the processes that satisfy ϕ; and

• m rejects exactly the ones that do not satisfy ϕ.
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Complete Monitorability is Impossible

say m accepts p and rejects q

p+ q can produce all the traces of p and q

m must both accept and reject p+ q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

• m is sound (s.) for ϕ if it only accepts (rejects) processes
that satisfy (violate) ϕ;

• m is satisfaction-complete (s.c.) for ϕ when m accepts all
the processes that satisfy ϕ; and

• m is violation-complete (v.c.) for ϕ when m rejects all the
processes that do not satisfy ϕ. We focus on violation.
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Monitors for µHML (on processes)
FAI17, AAFI17

We can monitor for sHML, the safety fragment of µHML:

ϕ,ψ ∈ sHML ::= tt | ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ | X.

Monitor Synthesis Function: ϕ 7→ m(ϕ) (follow the syntax).
Formula Synthesis Function: m 7→ f(m).

Theorem (Monitorability – Maximality)

m(ϕ) monitors for ϕ and m monitors for f(m).
The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? [α]ff ∨ [β]ff
Question: How about diamonds? 〈α〉tt
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On Infinite Traces

α1 α2 α3 α4 α5 α6 · · ·

Are v-monitorable properties closed under ∨? [α]ff ∨ [β]ff

G [α]ff ∨ G [β]ff
How about diamonds? 〈α〉tt
How about lfp? F 〈α〉tt

Parallel monitors: we introduce two parallel operators, ⊗ and ⊕

m
α−→ m′ n

α−→ n′

m� n α−→ m′ � n′
m

τ−→ m′

m� n τ−→ m′ � n end� end
τ−→ end

yes⊗m τ−→ m no⊗m τ−→ no no⊕m τ−→ m yes⊕m τ−→ yes

Examples: rec x.(α.no + α.x)⊕ rec x.(β.no + β.x), α.no,
rec x.(rec y.(α.no + α.y)⊕ (β.no + γ.x))
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Parallel Monitors and maxHML

The monitorable syntactic fragments of µHML are now larger:

ϕ,ψ ∈ maxHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | maxX.ϕ

ϕ, ψ ∈ minHML ::= tt | 〈α〉ϕ | ϕ ∨ ψ | X
| ff | [α]ϕ | ϕ ∧ ψ | minX.ϕ

m(〈α〉ϕ) = α.m(ϕ) + α.no m(ϕ ∧ ψ) = m(ϕ)⊗m(ψ)

m([α]ϕ) = α.m(ϕ) + α.yes m(ϕ ∨ ψ) = m(ϕ)⊕m(ψ)

Concerns:

Are parallel monitors a reasonable model?
infinite-state; more powerful than regular monitors(?)

maxHML ∩minHML appears to be nontrivial
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Regularization

Parallel monitors are convenient, but not more powerful:

Theorem (Regularization)

m(ϕ) is equivalent to a regular monitor of size 2O(|m(ϕ)|·2|m(ϕ)|).

p-mon

AFA

r-mon

NFA DFA

det-mon

O(n)

O(2n)

2O(n·2n)

O(n)

O(2n)

2O(n)

22
Ω(

√
n log n)

– 2O(2n)

Ω(2n) – 2O(n logn)
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Surprise!

Complete monitorability is possible, after all

You cannot combine an accepting and a rejecting trace into one

m([α][β]ff ∧ [β][α]ff) ≡ α.β.no + β.α.no + α.α.yes + β.β.yes

Theorem (Complete Monitorability)

For ϕ ∈ HML, m(ϕ) monitors completely for ϕ over linear time.

Furthermore, all completely monitorable µHML
trace-properties can be (constructively) written in HML — so,
HML is (semantically) maximal.
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Even Better: General Maximality of HML
All trace properties, irrespective of the monitoring system can
be expressed in HML:

Theorem (General Maximality for HML)

Let m be a monitor from a monitoring system such that:

1. verdicts are irrevocable: if m accepts/rejects a finite trace,
then it accepts/rejects all its extensions, and

2. m accepts/rejects t iff, it accepts/rejects some finite prefix.

For any property ϕ with a trace interpretation (not necessarily
written in µHML), if m is sound and complete for ϕ then ϕ can
be expressed in HML.

Proof sketch.

Every trace either satisfies ϕ or not, so m accepts or rejects.
By König’s Lemma, there is a finite set of finite traces that
determine ϕ. Describe these in HML.



Introduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Maximality for Partial Monitorability
and a collapse

Theorem (Partial Monitorability for Linear-Time)

For ϕ ∈ maxHML (minHML), m(ϕ) is sound and violation-
(satisfaction-)complete for ϕ.

These fragments are maximal.

Proof of maximality.

We can transform:
m to regular n
n to f(n) ∈ sHML ⊆ maxHML.

Corollary

maxHML ≡ sHML and minHML ≡ cHML over traces.

Question: General maximality for maxHML?
No: µHML properties are (ω-)regular and we can monitor with
(say) PDAs.
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How fast does your monitor return a verdict?

〈a〉[a][b]tt b.no+a.(b.yes+a.(a.yes+ b.yes)) a a b a · · ·

Definition

A monitor m is tight when for every finite s, if m rejects all
infinite extensions of s, then m rejects s.

We want to construct tight monitors.
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Constructing Tight Monitors for HML

Slim formulas:

ϕ ::= tt | ff |
∧
α∈B

[α]ϕα |
∨
α∈D
〈α〉ψα,

where B,D 6= ∅, ϕα 6= tt, ψα 6= ff, and no
∧
α∈Act[α]ff

or
∨
α∈Act〈α〉tt

(i.e. nothing is immediately true or false, except tt and ff).

Proposition

If ϕ ∈ HML is slim, then m(ϕ) is tight.

The dieting process is based on rewrite rules based on simple
equivalences: [Act]ff V ff, 〈Act〉tt V tt, 〈α〉ff V ff,
[α]ϕ∧ [α]ψ V [α](ϕ∧ψ), [α]ϕ∨ [β]ψ V tt, 〈α〉ϕ∧ [β]ψ V 〈α〉ϕ
. . .
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Constructing Tight Monitors for maxHML

Transform ϕ to m(ϕ), and then

determinize m(ϕ) to m;

replace: rec x.no V no,
∑

α∈Act α.no V no,
rec x.yes V yes, and

∑
α∈Act α.yes V yes,

until there is nothing to replace.

Proposition

The result of the above process is tight.

The resulting monitor can be triple-exponentially larger than ϕ.
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Constructing Tight Monitors for maxHML

Question: Can we have a nicer construction as for HML?

Probably not: no is the tight monitor for ϕ iff ϕ is not
satisfiable.

Proposition (Upper bound from Vardi, 1988)

maxHML-satisfiability on infinite traces is PSPACE-complete
(for |Act| > 1).
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Into the Finfinite: α1 α2 α3 α4 · · ·?
another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

〈α〉tt no longer monitorable for violation

maximally monitorable fragments:

ϕ,ψ ∈ unHML ::= tt | ff | [α]ϕ

| ϕ ∨ ψ | ϕ ∧ ψ | maxX.ϕ | X,

ϕ, ψ ∈ exHML ::= tt | ff | 〈α〉ϕ
| ϕ ∨ ψ | ϕ ∧ ψ | minX.ϕ | X.

unHML ≡ sHML, exHML ≡ cHML over finfinite traces
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What we did
• Automatic monitor synthesis from l.t. maxHML, minHML

• Either directly from maxHML or minHML, to construct a
parallel monitor and then regularize, or from sHML or
cHML, to directly give a regular monitor.

• Can produce tight monitors.
• For sHML, cHML, there are working tools (DetectEr).

These can be used out-of-the box even for l.t.

• Complete characterization of monitorable trace properties
with respect to different monitorability guarantees.

• Logical consequences: maxHML collapses to sHML for l.t.

• On the other hand, we see surprising differences
• Complete monitorability, tightness
• Monitorable formulas are closed under ∧,∨ for l.t., but not

for branching time.

• Moral: when you study the properties of monitorability,
the choice of the model matters!
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Future work

• More complexity bounds

• What is monitorability, after all? Relation to other
concepts, the rest of the RV community?

• Relations to similar concepts: diagnosability, learning,. . .

• Distributed RV, fault tolerance, Epistemic Logic, evidence
tracking.

• Real time

• . . .
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More Variations for the Interested

• Silence and obscuring:
• Sometimes we abstract away from internal system

behaviour using a silent action τ .
• Often, a silent transition is almost-visible due to evaluating

conditions, system noise, or by design. . .
• A framework for grades of obscuring of silent actions and

reliable monitorability [AAFI17]

• Monitoring with conditions [AAFI18]

• Sound/optimal monitorability [Leh]
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The End
Time for questions

Thank you for your attention
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