Introduction 000 Specifications 00 BT Monitorability

Linear Time 000000 Tightness 0000

Finfinite O

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

The End(?) 00000

Adventures in Monitorability

Antonis Achilleos¹

joint work with:

Luca Aceto^{1,2} Adrian Francalanza³ Anna Ingólfsdóttir¹ Karoliina Lehtinen^{4,5}

1: Reykjavik University

3: ICT, University of Malta

NYCAC 2018

5. IOI, Oniversity of Maite

5: University of Liverpool

- 2: Gran Sasso Science Institute, L'Aquila
- 4: Christian-Albrechts University of Kiel

16 November 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Question: is your system behaving correctly?

- Question: is your system behaving correctly?
- Multiple verification techniques: Model-Checking, Theorem-Proving, Testing,...

- Question: is your system behaving correctly?
- Multiple verification techniques: Model-Checking, Theorem-Proving, Testing,...
- Issues: systems become (even) larger and more complicated, unexpected environments, opaque components

A D F A 目 F A E F A E F A Q Q

- Question: is your system behaving correctly?
- Multiple verification techniques: Model-Checking, Theorem-Proving, Testing,...
- Issues: systems become (even) larger and more complicated, unexpected environments, opaque components

A D F A 目 F A E F A E F A Q Q

• A post-deployment technique: Runtime Verification

Runtime Verification

- Runtime Verification uses monitors to detect at runtime whether a certain system satisfies/violates a specification.
- A monitor runs together with a process and it observes the events the process generates.
- When it detects a certain kind of behavior, it can reach a verdict (yes, no, or end).

うして ふゆ く は く は く む く し く

Automatic monitor synthesis from specifications

Plausible monitorability guarantees for classes of properties

To determine the limits of monitorability

Automatic monitor synthesis from specifications

Plausible monitorability guarantees for classes of properties

To determine the limits of monitorability

A choice to make:

properties of properties of infinite traces finite or infinite traces

A D F A 目 F A E F A E F A Q Q

troduction Specific

SpecificationsBT Monitorability●○○○○○

Linear Time 000000 Tightness 0000

Finfinite O

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

The End(?) 00000

Two Kinds of Models – Two Kinds of Properties Processes, Infinite Traces

 $\langle P, \operatorname{Act}, \rightarrow \rangle$

processes, actions, transitions

 $p \xrightarrow{\alpha_1} q \xrightarrow{\alpha_2} \cdots$

Introduction 000 Specifications

Linear Time 000000 Tightness 0000 Finfinite O

The End(?) 00000

Two Kinds of Models – Two Kinds of Properties Processes, Infinite Traces

 $\langle P, \operatorname{ACT}, \rightarrow \rangle$

processes, actions, transitions

 $p \xrightarrow{\alpha_1} q \xrightarrow{\alpha_2} \cdots$

 $\alpha_1 \alpha_2 \alpha_3 \dots \in \operatorname{ACT}^{\omega}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Processes, Infinite Traces

 $\langle P, \operatorname{ACT}, \rightarrow \rangle$

processes, actions, transitions

 $p \xrightarrow{\alpha_1} q \xrightarrow{\alpha_2} \cdots$

 $\alpha_1 \alpha_2 \alpha_3 \dots \in \operatorname{ACT}^{\omega}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Moral of the talk: The choice of model matters!

Monitorability 00 Linear Time

Tightness 0000

ss Finfinite O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The End(?)

The Language

$$\begin{split} \varphi, \psi \in \mu \mathrm{HML} ::= \mathtt{tt} & \mid \langle \alpha \rangle \varphi & \mid \varphi \lor \psi & \mid \min X.\varphi & \mid X \\ \mid \mathtt{ff} & \mid [\alpha] \varphi & \mid \varphi \land \psi & \mid \max X.\varphi \end{split}$$

00

Specifications BT Monitorability

The Language

 $\varphi, \psi \in \mu \text{HML} ::= \texttt{tt} \quad \mid \langle \alpha \rangle \varphi \quad \mid \varphi \lor \psi \quad \mid \min X.\varphi \quad \mid X$ $| \texttt{ff} | [\alpha] \varphi | \varphi \land \psi | \max X. \varphi$

A branching-time language...

ntroduction Specifications BT Monitorability

Linear Time 000000 Tightness 0000

ss Finfinite o

The End(?)

The Language

$$\begin{split} \varphi, \psi \in \mu \text{HML} ::= \texttt{tt} & \mid \langle \alpha \rangle \varphi & \mid \varphi \lor \psi & \mid \min X.\varphi & \mid X \\ \mid \texttt{ff} & \mid [\alpha] \varphi & \mid \varphi \land \psi & \mid \max X.\varphi \end{split}$$

A branching-time language...

... or, possibly, a linear-time language...

$$\begin{array}{ll} s\models[\alpha]\varphi: & s=\alpha \ s'\implies s'\models\varphi\\ s\models\langle\alpha\rangle\varphi: & s=\alpha \ s' \ and \ s'\models\varphi \end{array}$$

Introduction Specifications BT Monitorability Lin 000 000 000 000 000

Linear Time 000000 Tightness 0000

ss Finfinite o The End(?)

The Language

$$\begin{split} \varphi, \psi \in \mu \mathrm{HML} &::= \mathtt{tt} \quad \mid \langle \alpha \rangle \varphi \quad \mid \varphi \lor \psi \quad \mid \min X.\varphi \quad \mid X \\ \mid \mathtt{ff} \quad \mid [\alpha] \varphi \quad \mid \varphi \land \psi \quad \mid \max X.\varphi \end{split}$$

A branching-time language...

... or, possibly, a linear-time language...

$$\begin{array}{ll} s\models[\alpha]\varphi: & s=\alpha \ s'\implies s'\models\varphi\\ s\models\langle\alpha\rangle\varphi: & s=\alpha \ s' \ and \ s'\models\varphi \end{array}$$

... with recursion

 Specifications 0.

The Language

$$\begin{split} \varphi, \psi \in \mu \text{HML} ::= \texttt{tt} & \mid \langle \alpha \rangle \varphi & \mid \varphi \lor \psi & \mid \min X.\varphi & \mid X \\ \mid \texttt{ff} & \mid [\alpha]\varphi & \mid \varphi \land \psi & \mid \max X.\varphi \end{split}$$

An *expressive* language:

can encode LTL, CTL, CTL^{*}, BA,...

Shorthands from LTL on infinite traces:

 $\mathsf{X} \varphi := [\operatorname{ACT}] \varphi$ (next step) $\mathsf{F} \varphi := \min Y.(\varphi \lor \mathsf{X} Y)$ (in the future) $\mathsf{G} \varphi := \max Y . (\varphi \land \mathsf{X} Y)$ (generaly) $\varphi \cup \psi := \min Y.(\psi \lor (\varphi \land \mathsf{X} Y))$ (until)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Regular Monitors

Syntax:

 $m,n \in \mathrm{MON} ::= \mathrm{end} \ \mid \ \mathrm{no} \ \mid \ \alpha.m \ \mid \ m+n \ \mid \ \mathrm{rec} \ x.m \ \mid \ x$

Regular Monitors

Syntax:

 $m,n \in \mathrm{MON} ::= \mathrm{end} \ \mid \ \mathrm{no} \ \mid \ \alpha.m \ \mid \ m+n \ \mid \ \mathrm{rec} \ x.m \ \mid \ x$

Monitor LTS (verdicts are irrevocable):

$$\begin{array}{ll} \operatorname{ACT} & \operatorname{REC} \frac{m[\operatorname{rec} x.m/x] \xrightarrow{\alpha} n}{\operatorname{rec} x.m/x} & \operatorname{VRD} \frac{m}{\operatorname{no} \xrightarrow{\alpha} \operatorname{no}} \\ \operatorname{SELL} \frac{m \xrightarrow{\alpha} m'}{m+n \xrightarrow{\alpha} m'} & \operatorname{SELR} \frac{n \xrightarrow{\alpha} n'}{m+n \xrightarrow{\alpha} n'} & \operatorname{VRD} \frac{m}{\operatorname{end} \xrightarrow{\alpha} \operatorname{end}} \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Regular Monitors

Syntax:

 $m, n \in MON ::= end \mid no \mid \alpha.m \mid m+n \mid rec \ x.m \mid x$

Monitor LTS (verdicts are irrevocable):

$$\begin{array}{ll} \operatorname{ACT} & \operatorname{REC} \frac{m[\operatorname{rec} x.m/x] \xrightarrow{\alpha} n}{\operatorname{rec} x.m \xrightarrow{\alpha} n} & \operatorname{VRD} \frac{m}{\operatorname{no} \xrightarrow{\alpha} \operatorname{no}} \\ \operatorname{SELL} \frac{m \xrightarrow{\alpha} m'}{m + n \xrightarrow{\alpha} m'} & \operatorname{SELR} \frac{n \xrightarrow{\alpha} n'}{m + n \xrightarrow{\alpha} n'} & \operatorname{VRD} \frac{m}{\operatorname{end} \xrightarrow{\alpha} \operatorname{end}} \end{array}$$

Instrumentation (follow the trace):

$$\mathrm{IMON} \frac{p \xrightarrow{\alpha}_{L} q \quad m \xrightarrow{\alpha}_{M} n}{m \triangleleft p \xrightarrow{\alpha}_{I} n \triangleleft q} \qquad \qquad \mathrm{ITER} \frac{p \xrightarrow{\alpha}_{L} q \quad m \xrightarrow{\alpha}_{M}}{m \triangleleft p \xrightarrow{\alpha}_{I} \mathsf{end} \triangleleft q}$$

Formulas and Rejection-Monitors

- Formulas specify process properties: $p \models \varphi$
- Monitors run along a process and read its trace:

 $m \triangleleft p \xrightarrow{\alpha_1} n \triangleleft q \xrightarrow{\alpha_2} \cdots$

- A monitor can reach three possible verdicts: yes, no, end
- *m* accepts *p* when *m* rejects *p* when for some $\alpha_1 \cdots \alpha_r$ and *q* $m \triangleleft p \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_r} yes \triangleleft q$ $m \triangleleft p \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_r} no \triangleleft q$
- end is the inconclusive verdict.

Definition (Complete Monitorability)

m monitors completely for φ when

- *m* accepts exactly the processes that satisfy φ ; and
- *m* rejects exactly the ones that do not satisfy φ .

Specifications BT Monitorability 0000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Complete Monitorability is Impossible

say m accepts p and rejects q

say m accepts p and rejects q

p+q can produce all the traces of p and q

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

say m accepts p and rejects q

p+q can produce all the traces of p and q

m must both accept and reject p+q

Introduction	Specifications	BT Monitorability	Linear Time	Tightness	Finfinite	The End(?)
000	00	0000	000000	0000	0	00000

say m accepts p and rejects q

p+q can produce all the traces of p and q

m must both accept and reject p+q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

- *m* is *sound* (s.) for φ if it only accepts (rejects) processes that satisfy (violate) φ ;
- *m* is *satisfaction-complete* (s.c.) for φ when *m* accepts all the processes that satisfy φ ; and
- *m* is *violation-complete* (v.c.) for φ when *m* rejects all the processes that do not satisfy φ .

Introduction	Specifications	BT Monitorability	Linear Time	Tightness	Finfinite	The End(?)
000	00	0000	000000	0000	0	00000

say m accepts p and rejects q

p+q can produce all the traces of p and q

m must both accept and reject p+q

a sound monitor can either accept or reject, but not both

Definition (Partial Monitorability)

- *m* is *sound* (s.) for φ if it only accepts (rejects) processes that satisfy (violate) φ ;
- *m* is *satisfaction-complete* (s.c.) for φ when *m* accepts all the processes that satisfy φ ; and
- *m* is *violation-complete* (v.c.) for φ when *m* rejects all the processes that do not satisfy φ . We focus on violation.

We can monitor for sHML, the safety fragment of μ HML:

 $\varphi,\psi\in \mathrm{sHML}::= \ \mathrm{tt} \ \mid \mathrm{ff} \ \mid [\alpha]\varphi \ \mid \varphi\wedge\psi \ \mid \max X.\varphi \ \mid X.$

Monitor Synthesis Function: $\varphi \mapsto m(\varphi)$ (follow the syntax). Formula Synthesis Function: $m \mapsto f(m)$.

A D F A 目 F A E F A E F A Q Q

Theorem (Monitorability – Maximality)

 $m(\varphi)$ monitors for φ and m monitors for f(m). The basic monitoring system monitors for sHML.

We can monitor for sHML, the safety fragment of μ HML:

 $\varphi,\psi\in \mathrm{sHML}::= \ \mathrm{tt} \ \mid \mathrm{ff} \ \mid [\alpha]\varphi \ \mid \varphi\wedge\psi \ \mid \max X.\varphi \ \mid X.$

Monitor Synthesis Function: $\varphi \mapsto m(\varphi)$ (follow the syntax). Formula Synthesis Function: $m \mapsto f(m)$.

Theorem (Monitorability – Maximality)

 $m(\varphi)$ monitors for φ and m monitors for f(m). The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under disjunction?

A D F A 目 F A E F A E F A Q Q

We can monitor for sHML, the safety fragment of μ HML:

 $\varphi,\psi\in \mathrm{sHML}::= \ \mathrm{tt} \ \mid \mathrm{ff} \ \mid [\alpha]\varphi \ \mid \varphi\wedge\psi \ \mid \max X.\varphi \ \mid X.$

Monitor Synthesis Function: $\varphi \mapsto m(\varphi)$ (follow the syntax). Formula Synthesis Function: $m \mapsto f(m)$.

Theorem (Monitorability – Maximality)

 $m(\varphi)$ monitors for φ and m monitors for f(m). The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? $[\alpha] ff \lor [\beta] ff$

A D F A 目 F A E F A E F A Q Q

We can monitor for sHML, the safety fragment of μ HML:

 $\varphi,\psi\in \mathrm{sHML}::= \ \mathrm{tt} \ \mid \mathrm{ff} \ \mid [\alpha]\varphi \ \mid \varphi\wedge\psi \ \mid \max X.\varphi \ \mid X.$

Monitor Synthesis Function: $\varphi \mapsto m(\varphi)$ (follow the syntax). Formula Synthesis Function: $m \mapsto f(m)$.

Theorem (Monitorability – Maximality)

 $m(\varphi)$ monitors for φ and m monitors for f(m). The basic monitoring system monitors for sHML.

Question: Are violation-monitorable properties closed under
disjunction? $[\alpha] ff \lor [\beta] ff$ Question: How about diamonds? $\langle \alpha \rangle tt$

Introduction Specification 000 00

ations BT Mo 0000 ity Linear Time •00000

e Tightnes 0000

ess Finfinite O

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The End(?)

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Are v-monitorable properties closed under \lor ? $[\alpha] ff \lor [\beta] ff$

Introduction Specification 000 00

ations BT Moi 0000

itorability L

Linear Time •00000

Tightness 0000

ess Finfinite O

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The End(?) 00000

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Introduction Specificat 000 00

cations BT M 0000 Linear Time •00000

Tightnes
0000

ess Finfinit o The End(?)

 $\langle \alpha \rangle$ tt

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Are v-monitorable properties closed under \lor ? $[\alpha] ff \lor [\beta] ff$ G $[\alpha] ff \lor G [\beta] ff$

How about diamonds?

(日) (四) (三) (三) (三) (0)

Introduction	Specificatio
000	00

BT Monitorabi

Linear Time •00000

e Tightnes 0000

ess Finfinite O The End(?)

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Parallel monitors: we introduce two parallel operators, \otimes and \oplus

$\frac{m \xrightarrow{\alpha} m'}{m \odot n \xrightarrow{\alpha}}$	$\frac{n \xrightarrow{\alpha} n'}{\xrightarrow{\alpha} m' \odot n'}$	$\frac{m}{m \odot n}$	$\frac{\xrightarrow{\tau} m'}{\xrightarrow{\tau} m' \odot n}$	$\overline{ ext{end}\odot ext{end}}$	$\xrightarrow{\tau}$ end
$\overline{{\tt yes}\otimes m\xrightarrow{\tau}m}$	$\overline{{\tt no}\otimes m} { au\over -}$	no no	$\mathbf{p} \oplus m \xrightarrow{\tau} m$	$\overline{ extsf{yes}\oplus m}$	$\xrightarrow{\tau}$ yes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Introduction Specification 000 00

ations BT Mo 0000 Linear Time •00000

e Tightnes 0000

ess Finfinite O The End(?)

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Parallel monitors: we introduce two parallel operators, \otimes and \oplus

◆□▶ ◆□▶ ◆三≯ ◆三≯ ○○ のへぐ

Introduction	Specificatio
000	00

BT Monitorabi 0000 Linear Time ●00000

e Tightness 0000

s Finfinite O The End(?)

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Parallel monitors: we introduce two parallel operators, \otimes and \oplus

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ ・ り へ の ト

Linear Time 00000

On Infinite Traces

 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \cdots$

Are v-monitorable properties closed under \lor ? $[\alpha] ff \lor [\beta] ff$ $G[\alpha]$ ff $\vee G[\beta]$ ff How about diamonds? $\langle \alpha \rangle$ tt $F \langle \alpha \rangle tt$ How about lfp?

Parallel monitors: we introduce two parallel operators, \otimes and \oplus

 $\underline{m \xrightarrow{\alpha} m' \quad n \xrightarrow{\alpha} n'} \qquad \underline{m \xrightarrow{\tau} m'}$ $\overline{m \odot n \xrightarrow{\alpha} m' \odot n'} \quad \overline{m \odot n \xrightarrow{\tau} m' \odot n} \quad \overline{\text{end} \odot \text{end} \xrightarrow{\tau} \text{end}}$ $\operatorname{ves} \otimes m \xrightarrow{\tau} m$ $\operatorname{no} \otimes m \xrightarrow{\tau} \operatorname{no}$ $\operatorname{no} \oplus m \xrightarrow{\tau} m$ $\operatorname{ves} \oplus m \xrightarrow{\tau} \operatorname{ves}$ Examples: rec $x.(\alpha.no + \overline{\alpha}.x) \oplus rec x.(\beta.no + \overline{\beta}.x), \overline{\alpha}.no,$ $\texttt{rec} \ x.(\texttt{rec} \ y.(\alpha.\texttt{no} + \overline{\alpha}.y) \oplus (\beta.\texttt{no} + \gamma.x))$ うつつ 川 ヘボマ ヘボマ 予ママ
ntroduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and MAXHML

The monitorable syntactic fragments of $\mu {\rm HML}$ are now larger:

$$\begin{split} \varphi, \psi \in \text{MAXHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \max X.\varphi \\ \varphi, \psi \in \text{MINHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \min X.\varphi \end{split}$$

$$\begin{split} m(\langle \alpha \rangle \varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{no} \\ m([\alpha]\varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{yes} \end{split}$$

$$\begin{split} m(\varphi \wedge \psi) &= m(\varphi) \otimes m(\psi) \\ m(\varphi \vee \psi) &= m(\varphi) \oplus m(\psi) \end{split}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

ntroduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and MAXHML

The monitorable syntactic fragments of $\mu {\rm HML}$ are now larger:

$$\begin{split} \varphi, \psi \in \text{MAXHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \max X.\varphi \\ \varphi, \psi \in \text{MINHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \min X.\varphi \end{split}$$

$$\begin{split} m(\langle \alpha \rangle \varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{no} \qquad m(\varphi \wedge \psi) = m(\varphi) \otimes m(\psi) \\ m([\alpha]\varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{yes} \qquad m(\varphi \vee \psi) = m(\varphi) \oplus m(\psi) \end{split}$$

A D F A 目 F A E F A E F A Q Q

Concerns:

Are parallel monitors a reasonable model? infinite-state; more powerful than regular monitors(?)

ntroduction Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Parallel Monitors and MAXHML

The monitorable syntactic fragments of $\mu {\rm HML}$ are now larger:

$$\begin{split} \varphi, \psi \in \text{MAXHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \max X.\varphi \\ \varphi, \psi \in \text{MINHML} &::= \texttt{tt} & | \langle \alpha \rangle \varphi & | \varphi \lor \psi & | X \\ & | \texttt{ff} & | [\alpha] \varphi & | \varphi \land \psi & | \min X.\varphi \end{split}$$

$$\begin{split} m(\langle \alpha \rangle \varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{no} \qquad m(\varphi \wedge \psi) = m(\varphi) \otimes m(\psi) \\ m([\alpha]\varphi) &= \alpha.m(\varphi) + \overline{\alpha}.\texttt{yes} \qquad m(\varphi \vee \psi) = m(\varphi) \oplus m(\psi) \end{split}$$

Concerns:

Are parallel monitors a reasonable model? infinite-state; more powerful than regular monitors(?) MAXHML ∩ MINHML appears to be nontrivial

Regularization

Parallel monitors are convenient, but not more powerful:

Theorem (Regularization)

 $m(\varphi)$ is equivalent to a regular monitor of size $2^{O(|m(\varphi)| \cdot 2^{|m(\varphi)|})}$.

Regularization

Parallel monitors are convenient, but not more powerful:

Theorem (Regularization)

 $m(\varphi)$ is equivalent to a regular monitor of size $2^{O(|m(\varphi)| \cdot 2^{|m(\varphi)|})}$.

・ロト ・ 四ト ・ 日ト ・ 日

Complete monitorability *is* possible, after all

You cannot combine an accepting and a rejecting trace into one

 $m([\alpha][\beta]\texttt{ff} \land [\beta][\alpha]\texttt{ff}) \ \equiv \ \alpha.\beta.\texttt{no} + \beta.\alpha.\texttt{no} + \alpha.\alpha.\texttt{yes} + \beta.\beta.\texttt{yes}$

Complete monitorability *is* possible, after all

You cannot combine an accepting and a rejecting trace into one

 $m([\alpha][\beta]\texttt{ff} \land [\beta][\alpha]\texttt{ff}) \ \equiv \ \alpha.\beta.\texttt{no} + \beta.\alpha.\texttt{no} + \alpha.\alpha.\texttt{yes} + \beta.\beta.\texttt{yes}$

Theorem (Complete Monitorability)

For $\varphi \in HML$, $m(\varphi)$ monitors completely for φ over linear time.

Surprise!

Complete monitorability is possible, after all

You cannot combine an accepting and a rejecting trace into one

 $m([\alpha][\beta]\texttt{ff} \land [\beta][\alpha]\texttt{ff}) \ \equiv \ \alpha.\beta.\texttt{no} + \beta.\alpha.\texttt{no} + \alpha.\alpha.\texttt{yes} + \beta.\beta.\texttt{yes}$

Theorem (Complete Monitorability)

For $\varphi \in HML$, $m(\varphi)$ monitors completely for φ over linear time.

Furthermore, all completely monitorable μ HML trace-properties can be (constructively) written in HML — so, HML is (semantically) maximal.

ecifications B 0 Monitorability

Linear Time 0000€0 Tightness 0000

Finfinite

The End(?) 00000

Even Better: General Maximality of HML All trace properties, irrespective of the monitoring system can be expressed in HML:

Theorem (General Maximality for HML)

Let m be a monitor from a monitoring system such that:

1. *verdicts are irrevocable: if m accepts/rejects a finite trace, then it accepts/rejects all its extensions, and*

2. m accepts/rejects t iff, it accepts/rejects some finite prefix. For any property φ with a trace interpretation (not necessarily written in μ HML), if m is sound and complete for φ then φ can be expressed in HML.

Proof sketch.

Every trace either satisfies φ or not, so *m* accepts or rejects. By König's Lemma, there is a finite set of finite traces that determine φ . Describe these in HML.

and a collapse

Theorem (Partial Monitorability for Linear-Time)

For $\varphi \in MAXHML$ (MINHML), $m(\varphi)$ is sound and violation-(satisfaction-)complete for φ .

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

and a collapse

Theorem (Partial Monitorability for Linear-Time)

For $\varphi \in MAXHML$ (MINHML), $m(\varphi)$ is sound and violation-(satisfaction-)complete for φ . These fragments are maximal.

A D F A 目 F A E F A E F A Q Q

Proof of maximality.

We can transform: m to regular nn to $f(n) \in \text{sHML} \subseteq \text{MAXHML}.$

and a collapse

Theorem (Partial Monitorability for Linear-Time)

For $\varphi \in MAXHML$ (MINHML), $m(\varphi)$ is sound and violation-(satisfaction-)complete for φ . These fragments are maximal.

Proof of maximality.

We can transform: m to regular nn to $f(n) \in \text{sHML} \subseteq \text{MAXHML}.$

Corollary

 $MAXHML \equiv SHML$ and $MINHML \equiv CHML$ over traces.

and a collapse

Theorem (Partial Monitorability for Linear-Time)

For $\varphi \in MAXHML$ (MINHML), $m(\varphi)$ is sound and violation-(satisfaction-)complete for φ . These fragments are maximal.

Proof of maximality.

We can transform: m to regular nn to $f(n) \in \text{sHML} \subseteq \text{MAXHML}.$

Corollary

 $MAXHML \equiv SHML$ and $MINHML \equiv CHML$ over traces. Question: General maximality for MAXHML?

and a collapse

Theorem (Partial Monitorability for Linear-Time)

For $\varphi \in MAXHML$ (MINHML), $m(\varphi)$ is sound and violation-(satisfaction-)complete for φ . These fragments are maximal.

Proof of maximality.

We can transform: m to regular nn to $f(n) \in \text{sHML} \subseteq \text{MAXHML}.$

Corollary

 $MAXHML \equiv SHML$ and $MINHML \equiv CHML$ over traces.

Question: General maximality for MAXHML? No: μ HML properties are (ω -)regular and we can monitor with (say) PDAs.

How fast does your monitor return a verdict?

 $\langle a \rangle [a][b]$ tt b.no + a.(b.yes + a.(a.yes + b.yes)) $a \ a \ b \ a \ \cdots$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

How fast does your monitor return a verdict?

$\langle a \rangle [a][b]$ tt b.no + a.(b.yes + a.(a.yes + b.yes)) $a \ a \ b \ a \ \cdots$

Definition

A monitor m is *tight* when for every finite s, if m rejects all infinite extensions of s, then m rejects s.

We want to construct tight monitors.

Slim formulas:

$$\varphi ::= \operatorname{tt} | \operatorname{ff} | \bigwedge_{\alpha \in B} [\alpha] \varphi_{\alpha} | \bigvee_{\alpha \in D} \langle \alpha \rangle \psi \alpha,$$

where $B, D \neq \emptyset$, $\varphi_{\alpha} \neq \text{tt}$, $\psi_{\alpha} \neq \text{ff}$, and no $\bigwedge_{\alpha \in \text{ACT}} [\alpha]$ ff or $\bigvee_{\alpha \in \text{ACT}} \langle \alpha \rangle$ tt (i.e. nothing is immediately true or false, except tt and ff).

Slim formulas:

$$\varphi ::= \operatorname{tt} | \operatorname{ff} | \bigwedge_{\alpha \in B} [\alpha] \varphi_{\alpha} | \bigvee_{\alpha \in D} \langle \alpha \rangle \psi \alpha,$$

where $B, D \neq \emptyset$, $\varphi_{\alpha} \neq \text{tt}$, $\psi_{\alpha} \neq \text{ff}$, and no $\bigwedge_{\alpha \in A_{CT}} [\alpha] \text{ff}$ or $\bigvee_{\alpha \in A_{CT}} \langle \alpha \rangle$ tt

(i.e. nothing is immediately true or false, except tt and ff).

A D F A 目 F A E F A E F A Q Q

Proposition

If $\varphi \in HML$ is slim, then $m(\varphi)$ is tight.

Slim formulas:

$$\varphi ::= \operatorname{tt} | \operatorname{ff} | \bigwedge_{\alpha \in B} [\alpha] \varphi_{\alpha} | \bigvee_{\alpha \in D} \langle \alpha \rangle \psi \alpha,$$

where $B, D \neq \emptyset$, $\varphi_{\alpha} \neq \text{tt}$, $\psi_{\alpha} \neq \text{ff}$, and no $\bigwedge_{\alpha \in \text{Act}} [\alpha]$ ff or $\bigvee_{\alpha \in \text{Act}} \langle \alpha \rangle$ tt

(i.e. nothing is immediately true or false, except tt and ff).

Proposition

If $\varphi \in HML$ is slim, then $m(\varphi)$ is tight.

The dieting process is based on rewrite rules based on simple equivalences: $[ACT]ff \Rightarrow ff$, $\langle ACT \rangle tt \Rightarrow tt$, $\langle \alpha \rangle ff \Rightarrow ff$, $[\alpha]\varphi \wedge [\alpha]\psi \Rightarrow [\alpha](\varphi \wedge \psi)$, $[\alpha]\varphi \vee [\beta]\psi \Rightarrow tt$, $\langle \alpha \rangle \varphi \wedge [\beta]\psi \Rightarrow \langle \alpha \rangle \varphi$...

TightnessFinfinite00●00

nite The I 0000

Constructing Tight Monitors for MAXHML

Transform φ to $m(\varphi)$, and then

determinize $m(\varphi)$ to m;

Transform φ to $m(\varphi)$, and then

determinize $m(\varphi)$ to m;

 $\begin{array}{ll} \text{replace:} & \texttt{rec} \; x.\texttt{no} \Rrightarrow \texttt{no}, \; \sum_{\alpha \in \operatorname{ACT}} \alpha.\texttt{no} \Rrightarrow \texttt{no}, \\ \texttt{rec} \; x.\texttt{yes} \Rrightarrow \texttt{yes}, \; \text{and} \; \sum_{\alpha \in \operatorname{ACT}} \alpha.\texttt{yes} \Rrightarrow \texttt{yes}, \\ \text{until there is nothing to replace.} \end{array}$

A D F A 目 F A E F A E F A Q Q

Proposition

The result of the above process is tight.

Transform φ to $m(\varphi)$, and then

determinize $m(\varphi)$ to m;

 $\begin{array}{ll} \text{replace:} & \texttt{rec } x.\texttt{no} \Rrightarrow \texttt{no}, \ \sum_{\alpha \in \operatorname{ACT}} \alpha.\texttt{no} \Rrightarrow \texttt{no}, \\ \texttt{rec } x.\texttt{yes} \Rrightarrow \texttt{yes}, \ \text{and} \ \sum_{\alpha \in \operatorname{ACT}} \alpha.\texttt{yes} \Rrightarrow \texttt{yes}, \\ & \text{until there is nothing to replace.} \end{array}$

Proposition

The result of the above process is tight.

The resulting monitor can be triple-exponentially larger than φ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question: Can we have a nicer construction as for HML?

Question: Can we have a nicer construction as for HML?

Probably not: no is the tight monitor for φ iff φ is not satisfiable.

Proposition (Upper bound from Vardi, 1988)

MAXHML-satisfiability on infinite traces is PSPACE-complete (for |ACT| > 1).

Specifications BT Monitorability Linear Time Tightness Finfinite The End(?)

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

Linear Time Tightness Finfinite

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

Specifications BT Monitorability Linear Time Tightness Finfinite

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

Specifications BT Monitorability Linear Time Tightness Finfinite

A D F A 目 F A E F A E F A Q Q

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

 $\langle \alpha \rangle$ tt no longer monitorable for violation

Specifications BT Monitorability Linear Time Tightness **Finfinite** The End(?)

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

 $\langle \alpha \rangle$ tt no longer monitorable for violation

maximally monitorable fragments:

 $\varphi, \psi \in \text{UNHML} ::= \text{ tt } | \text{ ff } | [\alpha] \varphi$ $| \qquad \varphi \lor \psi \quad | \quad \varphi \land \psi \quad | \quad \max X.\varphi \quad | \quad X,$ $\varphi, \psi \in \text{EXHML} ::= \text{tt} | \text{ff} | \langle \alpha \rangle \varphi$ $| \varphi \lor \psi | \varphi \land \psi | \min X.\varphi | X.$

Specifications BT Monitorability Linear Time Tightness **Finfinite** The End(?)

Into the Finfinite: $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \cdots$? another possible model: finite or infinite traces

semantics similar to infinite traces

we lose complete monitorability

tightness becomes irrelevant

 $\langle \alpha \rangle$ tt no longer monitorable for violation

maximally monitorable fragments:

 $\varphi,\psi\in {\rm UNHML}::= {\rm \ tt} \qquad | {\rm \ ff} \qquad | {\rm \ } [\alpha]\varphi$ $| \qquad \varphi \lor \psi \quad | \quad \varphi \land \psi \quad | \quad \max X.\varphi \quad | \quad X,$ $\varphi, \psi \in \text{EXHML} ::= \text{tt} | \text{ff} | \langle \alpha \rangle \varphi$ $| \varphi \lor \psi | \varphi \land \psi | \min X.\varphi | X.$

 $\text{UNHML} \equiv \text{SHML}, \quad \text{EXHML} \equiv \text{CHML}$, over finfinite traces

Specifications 00

BT Monitora 0000 Linear Time 000000 Tightness 0000

Finfinite

A D F A 目 F A E F A E F A Q Q

The End(?) •0000

- Automatic monitor synthesis from l.t. MAXHML, MINHML
 - Either directly from MAXHML or MINHML, to construct a parallel monitor and then regularize, or from SHML or CHML, to directly give a regular monitor.
 - Can produce tight monitors.
 - For sHML, CHML, there are working tools (DetectEr). These can be used out-of-the box even for l.t.

Specifications 00

ns BT Monit 0000 Linear Time 000000 Tightness 0000

Finfinite O

A D F A 目 F A E F A E F A Q Q

The End(?) ●0000

- Automatic monitor synthesis from l.t. MAXHML, MINHML
 - Either directly from MAXHML or MINHML, to construct a parallel monitor and then regularize, or from SHML or CHML, to directly give a regular monitor.
 - Can produce tight monitors.
 - For sHML, cHML, there are working tools (DetectEr). These can be used out-of-the box even for l.t.
- Complete characterization of monitorable trace properties with respect to different monitorability guarantees.

Specifications

BT Monitorabil: 0000 Linear Time 000000 Tightness 0000

Finfinite

A D F A 目 F A E F A E F A Q Q

The End(?) ●0000

- Automatic monitor synthesis from l.t. MAXHML, MINHML
 - Either directly from MAXHML or MINHML, to construct a parallel monitor and then regularize, or from SHML or CHML, to directly give a regular monitor.
 - Can produce tight monitors.
 - For sHML, cHML, there are working tools (DetectEr). These can be used out-of-the box even for l.t.
- Complete characterization of monitorable trace properties with respect to different monitorability guarantees.
- Logical consequences: MAXHML collapses to SHML for l.t.

pecifications I

BT Monitorabi 0000 Linear Time 000000 Fightness 2000

Finfinite

A D F A 目 F A E F A E F A Q Q

The End(?) ●0000

- Automatic monitor synthesis from l.t. MAXHML, MINHML
 - Either directly from MAXHML or MINHML, to construct a parallel monitor and then regularize, or from SHML or CHML, to directly give a regular monitor.
 - Can produce tight monitors.
 - For sHML, cHML, there are working tools (DetectEr). These can be used out-of-the box even for l.t.
- Complete characterization of monitorable trace properties with respect to different monitorability guarantees.
- Logical consequences: MAXHML collapses to SHML for l.t.
- On the other hand, we see surprising differences
 - Complete monitorability, tightness
 - Monitorable formulas are closed under \land, \lor for l.t., but not for branching time.

fications BT 1 0000

Γ Monitorability 200 Linear Time 000000 Tightness 0000

Finfinite O The End(?) ●0000

- Automatic monitor synthesis from l.t. MAXHML, MINHML
 - Either directly from MAXHML or MINHML, to construct a parallel monitor and then regularize, or from SHML or CHML, to directly give a regular monitor.
 - Can produce tight monitors.
 - For sHML, cHML, there are working tools (DetectEr). These can be used out-of-the box even for l.t.
- Complete characterization of monitorable trace properties with respect to different monitorability guarantees.
- Logical consequences: MAXHML collapses to SHML for l.t.
- On the other hand, we see surprising differences
 - Complete monitorability, tightness
 - Monitorable formulas are closed under \land, \lor for l.t., but not for branching time.
- Moral: when you study the properties of monitorability, the choice of the model matters!

Future work

- More complexity bounds
- What *is* monitorability, after all? Relation to other concepts, the rest of the RV community?
- Relations to similar concepts: diagnosability, learning,...
- Distributed RV, fault tolerance, Epistemic Logic, evidence tracking.

- Real time
- . . .

More Variations for the Interested

- Silence and obscuring:
 - Sometimes we abstract away from internal system behaviour using a *silent* action τ .
 - Often, a silent transition is almost-visible due to evaluating conditions, system noise, or by design...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- A framework for grades of *obscuring* of silent actions and *reliable* monitorability [AAFI17]
- Monitoring with conditions [AAFI18]
- Sound/optimal monitorability [Leh]

Introduction 000 Specifications 00 T Monitorability

Linear Time

Tightness 0000

s Finfinite O The End(?) 000●0

The End

Time for questions

Thank you for your attention

This research was supported by the projects "TheoFoMon: Theoretical Foundations for Monitorability" (grant number: 163406-051) and "Epistemic Logic for Distributed Runtime Monitoring" (grant number: 184940-051) of the Icelandic Research Fund, by the BMBF project "AramisII" (project number: 01IS160253), and by the EPSRC project "Solving parity games in theory and practice" (project number: EP/P020909/1).

Short Bibliography for Further Reading

The TheoFoMon project page: http://icetcs.ru.is/theofomon/ This work will appear in POPL 2019.

- Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir, *Monitoring for silent actions*, FSTTCS (Dagstuhl, Germany), LIPIcs, vol. 93, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 7:1–7:14.
- Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir, *A framework for parametrized monitorability*, FOSSACS, Lecture Notes in Computer Science, vol. 10803, Springer, 2018, pp. 203–220.
- Karolina Lehtinen, Runtime verification of fixpoint logic: Synthesis of optimal monitors, https://www.informatik.uni-kiel.de/~leh/mon.pdf.