Implementation of Propagation Rules for Set Constraints
Revisited

Neng-Fa Zhou
Department of Computer and Information Science
Brooklyn College & Graduate Center
The City University of New York
zhou@sci.brooklyn.cuny.edu

Joachim Schimpf
IC-PARC, Imperial College, London
j-schimpf@icparc.ic.ac.uk

Abstract

This paper presents a set constraint solver that is
the result from our attempt to improve the Coun-
junto solver. Our solver inherits the interval repre-
sentation scheme for set domains from Conjunto,
but represents the lower and upper bounds as two
finite domain variables rather than as two sorted
lists. Our solver is based on a set of propagation
rules that propagate changes of the bounds of set
variables. The advantage of our solver over Con-
junto is that updates of bounds can be performed
in constant time. Qur solver is implemented in
action rules, a high-level construct available in B-
Prolog for programming active agents. Our solver
is significantly faster than Conjunto and is compa-
rable in performance with the Ilog and Oz solvers,
two set solvers implemented in C++.

1 Introduction

Constraint Logic Programming (CLP) defines a
family of programming languages that extend Pro-
log to support constraint solving over certain do-
mains [4]. CLP(Set) is a member in the CLP fam-
ily where each variable can have a set as its value.
Set constraints over general sets are very hard to
solve or even impossible to solve if certain set ex-
pressions are allowed [8]. For this reason, most sys-
tems handle finite sets only. Several set constraint

solvers have been developed and incorporated into
systems such as Eclipse [9], Ilog [10], and Mozart
Oz [7]. These solvers employ constraint propaga-
tion, a constraint solving method originated in Ar-
tificial Intelligence [6] to maintain the consistency
of constraints. These solvers allow for more natural
modeling of certain combinatorial search problems.
Some problems, such as the set partition problem,
can be described in CLP(Set) with few variables
than in Integer Programming or CLP(FD). Some
other problems such as some scheduling problems
that are hard to model in Integer Programming
can be modeled naturally in CLP(Set).

The objective of this research is to improve the
performance of the Conjunto solver [2]. In Con-
junto, a set variable is represented as an interval
of sets where the lower bound contains definite
elements that must be in the set and the upper
bound contains possible elements for the set. Inter-
val bounds are set constants represented as sorted
lists. Propagation rules are used to dynamically
maintain the interval consistency of constraints.
For example, for the constraint R C S, whenever
the lower bound of R is updated the lower bound
of S must be updated as well and whenever the
upper bound of S is updated the upper bound of
R must be updated as well to keep the constraint
consistent. New bounds are computed from the
existing ones. Since the bounds are represented as
sorted lists, it takes linear time to update a bound

in the worst case. One question arises naturally:
“is it possible to find an efficient data structure for
the bounds that enable propagation rules to up-
date them in constant time?”.

This paper presents an affirmative answer to the
question. The idea is to represent bounds as finite-
domain variables from which an element can be
excluded in constant time. To accommodate this
representation, we reform the propagation rules
such that new bounds are computed from changes
rather than from the existing ones.

Our solver is implemented in action rules, a high-
level language available in B-Prolog for program-
ming active agents. The solver constantly outper-
forms the Conjunto solver. Although our solver is
implemented in a high-level language, it offers com-
parable performance with the ones in Ilog solver
and Mozart Oz that are implemented in C++.

This paper is organized as follows: Section 2 de-
fines the CLP(Set) language we implemented; Sec-
tion 3 presents the propagation rules for set con-
straints; Section 4 describes the implementation
in B-Prolog’s action rules; Section 5 compares the
performance of the solver with Conjunto and three
other solvers; and Section 6 compares our approach
with related ones and discusses further directions
of work.

2 CLP(Set)

CLP(Set) is a member in the CLP family where
each variable can have a set as its value. Although
a number of languages are named CLP(Set)[8],
they are quite different. Some languages allow
intentional and infinite sets, and some languages
allows user-defined function symbols in set con-
straints. To avoid confusion, we first define our
language.

We consider only finite sets of ground terms.
A set constant is either the empty set {} or
{T1,T2,...,Tn} where each Ti (i=1,2,...,n) is a
ground term.

We reuse some of the operators in Prolog and
CLP(FD) (e.g., /\, \/, \, #=, and #\=) and intro-
duce several new operators to the language to de-
note set operations and set constraints. Since most
of the operators are generic and their interpreta-

tion depends on the types of constraint expressions,
the users have to provide necessary information for
the system to infer the types of expressions.

The type of a variable can be known from its
domain declaration or can be inferred from its con-
text. The domain of a set variable is declared by a
call as follows:

V:: L..U

where V is a variable, and L and U are two set con-
stants indicating respectively the lower and upper
bounds of the domain. The lower bound contains
all definite elements that are known to be in V and
the upper bound contains all possible elements that
may be in V. All definite elements must be possi-
ble. In other words, L must be a subset of U. If
this is not the case, then the declaration fails. The
special set constant {I1..I2} represents the set of
integers in the range from I1 to 12, inclusive. For
example:

oV :: {}..{a,b,c}: Vis subset of {a,b,c}
including the empty set.

oV :: {1}..{1..3} : V is one of the sets of
{1},{1,23}, {1,3}, and {1,2,3}. The set
{2,3} is not a candidate value for V.

o V :: {1}..{2,3} : Fails since {1} is not a
subset of {2,3}.

We extend the notation such that V can be a list
of variables. So the call

[x,v,z] :: {¥..{1..3}

declares three set variables.
The following primitives are provided to test and
access set variables:

e clpset_var(V): Vis a set variable.

e clpset low(V,Low): The current lower

bound of V is Low.

e clpset_up(V,Up): The current upper bound
of V is Up.

e clpset_added(V,E): E is a definite element,
i.e., an element included in the lower bound.

e clpset_excluded(V,E): E has been forbidden
for V. In other words, E has been excluded
from the upper bound of V.

A set expression is defined recursively as follows:
(1) a constant set; (2) a set variable; (3) a compos-
ite expression in the form of S1 \/ 82, S1 /\ S2,
S1 \ S2,or \ S1, where S1 and S2 are set expres-
sions. The operators \/ and /\ represent union
and intersection, respectively. The binary opera-
tor \ represents difference and the unary operator
\ represents complement. The complement of a
set \ S1 is equivalent to U \ S1 where U is the
universal set. Since the universal set of a constant
is unknown, S1 in the expression \ S1 must be a
variable whose universal set has been declared.

We extend the syntax for finite-domain con-
straint expressions to allow the expression #S which
denotes the cardinality of the set represented by
the set expression S.

Let S, S1 and S2 be set expressions, and E be a
term. A set constraint takes one of the following
forms:

e S1 #= S2: S1 and S2 are two equivalent sets
(51=52).

e S1 #\= S2: S1 and S2 are two different sets
(S1#£82).

e S1 subset S2: S1 is a subset of S2 (S1CS2).
The proper subset relation S1 C S2 can be rep-
resented as S1 subset S2 and #S1 #< #S2
where #< represents the less-than constraint
on integers.

e S1 #<> S2: S1 and S2 are

(s1ns2=0).

disjoint

e E #<- S: E is a member of S (E€S).
e E #<\- S: E is a not member of S (E¢S).

Boolean constraint expressions are extended to
allow set constraints. For example, the constraint

(E #<- S1) #=> (E #<- S2)

says that if E is a member of S1 then E must also
be a member of S2.

As will be described later, we use constraint
propagation to maintain the consistency of con-
straints. Constraint propagation alone, however,
is inadequate for finding solutions for many prob-
lems. We need to use the divide-and-conquer or
relazation method to find solutions to a system of
constraints. The call

e indomain(V)

finds a value for V either by enumerating the values
in V’s domain or by splitting the domain. Instan-
tiating variables usually triggers related constraint
propagators.

Our CLP(Set) language is basically the same as
the one defined in Conjunto [2]. Our language is
not as powerful as many others found in the lit-
erature in the sense that sets are finite, and no
intentional set expressions or user-defined function
symbols are allowed in set expressions.

3 Propagation Rules

One of the key issues in implementing set con-
straints concerns how to represent set domains.
Since a set of size N has 2V subsets, it is unre-
alistic to enumerate all the values in a domain and
represent them explicitly when N is large. One
method is to use intervals to represent set domains
[2, 10]. We adopt the same method. Let V be a
set variable. We use the following notations to ref-
erence the attributes: V! for the lower bound, V*
for the upper bound, V¢ for the cardinality, and
Vuniv for the universal set.

We reform the propagation rules presented in
[2] for set constraints such that new bounds are
computed from changes rather than from existing
bounds. For each constraint, there is a group of
static rules that are applied when the constraint is
added to the constraint store and a group of dy-
namic rules that propagate changes. The static
rules achieve interval consistency when constraints
are generated and the dynamic rules maintain in-
terval consistency for constraints.

Definition 1 A binary constraint p(X1,X2) is in-
terval consistent on X1 if for whichever bound of X1
there exists a value in the domain of X2 such that

the constraint is satisfied. A constraint is interval
consistent if it is interval consistent on both of the
variables. This definition can be easily extended to
non-binary constraints.

For example, the constraint X C Y where X
is defined in the domain {1}..{1,2,3} and Y is
defined in the domain {}..{1,2} is not interval
consistent since the upper bound of X ({1,2,3})
does not have a supporting value in the domain of
Y and the lower bound of Y ({}) does not have
a supporting value in the domain of X either. To
make the constraint interval consistent, we must
exclude 3 from the upper bound of X and add 1
into the lower bound of Y.

In the following of this section, we give the prop-
agation rules for all types of constraints provided
in CLP(Set). Each rule takes the form %
where precedent is a constraint or an event which
may be followed a sequence of conditions, and
consequence is a sequence of constraints. For pre-
sentation purposes , we use in this section math-
ematical symbols instead of the operators in the
CLP(Set) language.

3.1 Domain declaration

A variable V becomes a set variable after the dec-
laration V L..U. The following rule updates
the attributes of the variable.

rl V . L.U
* VI=L, Vo=, Ve>[L], Ve<|U]

After the declaration V' :: L..U, the lower bound
of V is initialized to L, the upper bound is initial-
ized to U, and the cardinality is constrained to be
within the range of |L| and |U]|.

The following dynamic rules maintain the con-
sistency of the attributes of the variable V:

2 T€EV
T Vex||VE, Ve==|Vi|-V=V!

r3 ¢V
T VeV, Ve==|V¥|5V=V"

4 ins(V°)
C Vem=[VI[SV=VT, Ve==|Ve|5V=Ve

The first two rules ensure that the cardinality at-
tribute be in the range whenever an element is

added to the lower bound or an element is removed
from the upper bound. The third rule is triggered
when the cardinality is instantiated. All the three
rules instantiate the variable V when the cardi-
nality attribute becomes equal to the size of the
lower or upper bound. Here the operator== tests
whether or not the two operands are identical.

3.2 Unification of a set variable with a
constant

Let V be a set variable and ¢ be a set constant.
When the constraint V' = c¢ is posted, all the ele-
ments in the constant ¢ are added into V and the
cardinality of V' is constrained to be the same as c.

S=c
r5. 5°=[¢| Vocom€S
We assume in the following that no set constants
occur in constraints. Let C be a constraint and ¢
be a set constant. The constraint is translated into
one without the constant ¢ as follows.

6 C, Jcoccurs(c,C)
ro. Vi{}.e, C7, V=¢

where V is a new variable, C' is C with the con-
stant ¢ being replaced by V. The rule is repeatedly
applied to a constraint until the constraint does not
contain any more constants. Notice that the order
of the constraints in the consequence is important.
Placing V = c after C' guarantees that C’ does not
contain the constant ¢ when it is posted.

3.3 Subset

When the subset constraint R C S is added to the
store, the static rule ensures the following: (1) the
cardinality of R is not greater than that of S; (2)
all definite elements of R must be definite elements
of S; and (3) no impossible elements for S can be
permitted in R.

7 RCS
T RS,V pi(TES), Y, c puniv (2¢S* T R)

The following two rules dynamically maintain the
consistency of the constraint:

B

r8. ZER r9.

3
0)
w0
8

R
=

Whenever an element is added to the lower bound
of R it is added to S as well, and whenever an
element is removed from the upper bound of S it
is also removed from R.

3.4 Equality

The equality constraint R = S is equivalent to two
subset constraints: R C S and S C R.

3.5 Disequality

The disequality constraint R # S is delayed un-
til both R and S are instantiated. The constraint
succeeds when R and S are two different set con-
stants.

3.6 Intersection

For the intersection constraint RNS = T, the static
rule ensures the following: (1) 7T is a subset of both
R and S'; (2)the definite elements of both R and
S must also be definite in T; (3) any elements that
are definite in R (S) but impossible in 7" must be
forbidden for S (R); and (4) the constraint on the
cardinalities T¢ > R¢ + S¢ — |U| where U is the
union of universal sets of R and S.

rl0 RNS=T
* TCR, TCS, VmeRlnsl(meT)ﬂvmeRl

Vwesl(w ¢TI >z ¢ R),
T¢ > R° 4 S¢ — |U|

(z¢Tv—x¢S),

The dynamic rules for the subset constraints T' C
R and T' C S guarantee that whenever an element
is added to T it will be added to both R and S,
and that whenever an element is removed from R
or S it will be removed from T. We still need to
take care of the cases when elements are added to
R or S, and when elements are removed from 7.

Whenever an element is added to R, if it is def-
inite in .S, then it must be added also to T'. Sim-
ilarly, Whenever an element is added to S, if it
definite in R, then it must be added also to T.
The following two rules handle these two cases:

TER TES
rll. €Sl —zeT rl2. TER! —zeT

1For the sake of simplicity, we use the subset constraint
in the definition. In the real implementation, propagators
are defined directly.

Whenever an element is removed from the upper
bound of T, if the element is a definite element of
either one of R or S, then the element must be
forbidden for the other set variable.

z¢T
rl3. zER!—»z¢ S, z€S'—x¢R

3.7 Union

The propagation rules for the union constraint are
similar to those for the intersection constraint. For
the union constraint RUS = T, the static rule en-
sures the following: (1) R and S are subsets of T,
(2) any elements that are definite in 7" but impos-
sible in R (S) must be definite in S (R); and (3)
the constraint on the cardinalities T¢ < R¢ + S°.

rl4d RUS=T
© RCT, SCTI', V. q (x¢R*—z€S, 2¢S*—z€ER)
T¢ S RC + S¢

The dynamic rules for the subset constraints
R C T and § C T guarantee that whenever an
element is added to R or S it will be added to T
as well, and whenever an element is removed from
T, it will also be removed from both R and S. We
still need to take care of the cases when elements
are removed from R or S, and when elements are
added to T'.

Whenever an element is removed from R, if it
is known to be impossible in S, then it must be
removed from 7. Similarly, Whenever an element
is removed from S, if it is impossible in R, then it
must be removed also from 7. The following two
rules handle these two cases:

z¢ R z¢S
rls. ¢ Sv—adT rl6. ¢ R —zdT

Whenever an element is added into T, if the el-
ement is impossible in R or S, then the element
must be added to the other set variable.

€T
rl7. T¢R*—>z€S, 1¢S5 »zeR

3.8 Complement

Let R and S be two set variables with the same
universal set U, the complement constraint R = .5
is equivalent to:

RUS=URNS=10

While it is possible to define the complement con-
straint in terms of the intersection and union con-
straints, it is more efficient to use special propaga-
tion rules to maintain the complement relationship.

rl8. Z&S r19. ZEE

¢ R ¢S
S R
r19. gé r21. ZE8

Whenever an element is added into a set it must
be removed from the opposite set, and whenever
an element is removed from a set it must be added
to its opposite set.

3.9 Disjoint

Two sets R and S are disjoint iff RNS = (). Instead
of using intersection, we can use special propaga-
tion rules to maintain the relationship. When an
element is added to one set, it must be forbidden
for the other set.

R S
r22. % r23. ig—R

3.10 Difference

The difference of two set variables R — S is equiv-
alent to RN S in theory. Since the universal set
of § may not be known, it is impossible to define
difference in terms of complement in practice. For
this reason, we develop a set of propagation rules
specially for this constraint.

When the constraint R — S = T is generated,
the static rule achieves the following: (1) 7" is a
subset of R; (2) S and T' are disjoint; (3) all ele-
ments that are definite in R but impossible in §
must be definite in T; and (4) the constraint on
the cardinalities T¢ > R¢ — S°€.

r24 L=t
" TCR, TNS=0, V__ pi(agS —acT)

T¢ > Re — §¢

The constraints T C R and TN S = 0 entail
the following: (1) whenever an element is added
into 7' it is added into R and removed from S; (2)
whenever an element is removed from R it is also
removed from T'; and (3) whenever an element is
added to S it is removed from T'. We need rules to
take care of the cases when an element is added to
R and when an element is removed from S or T.

When an element is added to R, if it is known to be
impossible in § then it must be added to 7. When
an element is removed from S, if it is known to be
definite in R then it must be added to T. When
an element is removed from T, if it is definite in R
then it must be added to S. The following three
rules take care of these three cases:

TER
r25. ¢ Sv—aeT

26, — ¢S
zER! >z€T

z¢T
r27. TER! —»z€S

4 Implementation

In this section, we describe the implementation
in B-Prolog of a set constraint solver based on
the propagation rules given in the previous sec-
tion. B-Prolog provides a new language, called ac-
tion rules, which is useful for programming active
agents. An agent is like a sub-goal of Prolog but
behaves in an event-driven manner. As long as
constraint programming is concerned, a constraint
propagator is an agent that dynamically maintains
the consistency of the constraint. Before we de-
scribe how to implement the set constraint solver
in action rules, we briefly introduce the syntax and
semantics of action rules. The reader is referred to
[13] for the details.

4.1 Action rules and suspension vari-
ables

An action rule takes the following form:
<Agent> <Condition> {<Event>} ’=>’ <Action>

where Agent is an atomic formula that represents
a pattern for agents, Condition is a sequence of
conditions on the agents, Event is a set of patterns
for events that can activate the agents, and Action
is a sequence of actions performed by the agents
when they are activated.

All conditions in Condition must be in-line
tests. The event set Event together with the en-
closing braces is optional. If an action rule does not
have any event patterns specified, then the rule is
called a commitment rule. A set of built-in events is
provided for programming constraint propagators

and interactive graphical user interfaces. For ex-
ample, ins(X) is an event that is posted when the
variable X is instantiated and dom(X,E) is posted
when an inner element E is excluded from the do-
main of the finite-domain variable X. A user pro-
gram can create and post its own events and de-
fine agents to handle them. A user-defined event
takes the form of event (X,T) where X is a vari-
able, called a suspension wvariable, that connects
the event with its handling agents, and T is a Prolog
term that contains the information to be transmit-
ted to the agents. If the event poster does not have
any information to be transmitted to the agents,
then the second argument T can be omitted. The
built-in action post (E) posts the event E.

When an agent is created, the system searches
in its definition for a rule whose agent-pattern
matches the agent and whose conditions are sat-
isfied. This kind of rules is said to be applicable to
the agent. Notice that since one-directional match-
ing rather than full-unification is used to search for
an applicable rule and no variable in the conditions
can be instantiated, the agent will remain the same
after an applicable rule is found.

The rules in the definition are searched sequen-
tially. If there is no rule that is applicable, the
agent will fail. After an applicable rule is found,
the agent will behave differently depending on the
type of the rule.

If the rule found is a commitment rule in which
no event pattern is specified, the actions will be
executed. The agent will commit to the actions and
a failure of the actions will lead to the failure of the
agent. A commitment rule is similar to a clause in
concurrent logic languages, but an agent can never
be blocked while it is being matched against the
agent pattern.

If the rule found is an action rule, the agent will
be suspended until it is activated by one of the
events specified in the rule. When the agent is
activated, the conditions are tested again. If they
are met, the actions will be executed. A failure of
any action will cause the agent to fail. The agent
does not vanish after the actions are executed, but
instead turns to wait until it is activated again.
So, besides the difference in event-handling, the
action rule “H,C,E => B” is similar to the guarded

clause “H :— C | B, H”, which creates a clone of
the agent after the action B is executed.

Let post (E) be the selected sub-goal. After E is
posted, all agents waiting for E will be activated.
In practice, for the sake of efficiency, events are
postponed until before the execution of the next
non-inline call. At a point during execution, there
may be multiple events posted that are all expected
by an agent. If this is the case, then the agent has
to be activated once for each of the events.

There is no primitive for killing agents explicitly.
As described above, an agent never disappears as
long as action rules are applied to it. An agent
vanishes only when a commitment rule is applied
to it.

Suspension variables

A suspension variable is a variable to which there
are suspended agents and some other information
attached. Suspension variables are useful for im-
plementing user-defined domains. The call

susp_attach_term(X,T)

attaches the term T to the variable X. The formerly
attached term to X, if any, will be lost after this
operation. This operation is undone automatically
upon backtracking. In other words, the originally
attached term will be restored upon backtracking.
The call

susp_attached_term(X,T)

gets the current term T attached to the variable X.
In this paper, we use the notation X~attached for
the term attached to X.

Suspension variables are similar to attribute
variables [3], but do not rely on goal expansion to
define the behaviors associated with them. When-
ever a suspension variable X is bound to another
term, which may be another variable, the event
ins (X) will be posted. The user can specify the
action to be taken after a suspension variable is
bound, but not the action to be taken before uni-
fication takes place.

The following example illustrates the use of sus-
pension variables:

create_fd_variable(X,D) =>
susp_attach_term(X,D),
check_member (X,D).

check_member (X,D) ,var(X) ,{ins(X)} => true.
check_member (X,D) => member (X,D).

This is a simple implementation of finite-domain
variables. The agent check member (X,D) is sus-
pended when X is a variable. When X is instanti-
ated, the agent is activated to check whether the
value assigned to X is a member of D. In a real im-
plementation, unification of two finite-domain vari-
ables should be considered as well.

4.2 Representation of set variables

A set variable V is represented as a suspension vari-
able with an attached term of the following form:

set (Low,Up,Card,Univ)

where Low and Up are two finite domain variables
that represent respectively the lower and upper
bounds, Card is another finite domain variable that
represents the cardinality, and Univ is a term that
represents the universal set. For a declared set vari-
able, the universal set is the upper bound specified
in its declaration. Not all set variables need to be
declared. For a constraint such as R subset S, the
universal set of R is assumed to be that of S if R
is not declared as a set variable. The Univ field
is redundant since the universal set can be always
computed from Up. It is stored explicitly to facili-
tate the computation.

The idea of using two finite domain variables to
represent the bounds is novel. Low’s domain is the
complement of the set of elements that are known
to be in V, and Up’s domain contains those ele-
ments that are possible to be included in V. To
add an element into V, we exclude it from the
domain of Low, and to remove an element from
V, we exclude it from the domain of Up. In or-
der to prevent the finite domain variables Low and
Up from being instantiated when their domains
become singletons, we add two dummy elements
$d1 and $d2 into the domains. For example, af-
ter the call v :: {}..{a,b,c}, both Low and Up
have the domain [$d1,a,b,c,$d2]. If a is known

to be a member of V, then Low’s domain becomes
[$d1,b,c,$d2]. If c is known not to be a member
of V, then Up’s domain becomes [$d1,a,b,$d2].

4.3 Implementation of
rules

propagation

Let V be a set variable with the attached
term set(Low,Up,Card,Univ). The primitive
clpset_add(V,E) ensures that E is included in V
and clpset_exclude(V,E) ensures that E is not
included in V. The following gives the definitions.
Notice again that Low’s domain is the complement
of the set of definite elements plus two dummy el-
ements.

clpset_add(V,E),
V~attached=set (Low,Up,Card,Univ)
=>
fd_true(Up,E),
fd_exclude (Low,E).

clpset_exclude(V,E),
V- attached=set (Low,Up,Card,Univ),
fd_true (Up,E)
=>
fd_true(Low,E),
fd_exclude (Up,E).
clpset_exclude(V,E) => true.

where fd_true(X,E) succeeds iff E is in the
domain of the finite-domain variable X and
fd_exclude (X,E) excludes E from the domain of
X.

The primitive clpset_add(V,E) fails if E is not
possible for the set V, i.e., if fd_true (Up,E) fails.
Notice that the event dom(Low,E) will be posted
when E is excluded from Low’s domain.

The primitive clpset_exclude(V,E) does noth-
ing if E has already been forbidden for the
set V, i.e., if fd true(Up,E) fails. Otherwise,
fd_exclude (Up,E) excludes E from the domain of
Up if E hasn’t been added to the set V. Notice that
the event dom(Up,E) will be posted when E is ex-
cluded from Up’s domain.

The propagation rules presented in the previ-
ous section can be encoded in action rules quite
straightforwardly. For example, consider the fol-

lowing two rules that maintain the consistency of
the subset constraint R C S:

8 TER

S
€S r9. %%LR

These two rules can be encoded as follows:

propagate_subset_low(R,S),

R-attached = set(RLow,RUp,RCard,RUniv),

{dom(RLow,E)} =>
clpset_add(S,E).

propagate_subset_up(R,S),

S~attached = set(SLow,SUp,SCard,SUniv),

{dom(SUp,E)} =>
clpset_exclude(R,E).

The first rule says that whenever an element is
added to R, add it also to S and the second rule
says that whenever an element is removed from S,
remove it also from R.

Consider another propagation rule:

2 z€V
T Ve VY, Ve==|Vl|sV=V!

This rule is encoded as follows:

when_low_bound_updated(V),
V-attached = set(Low,Up,Card,Univ),
{dom(Low,_)}
=>
fd_size(Low,LowSize),
univ_size(Univ,UnivSize),
NewCardLow is UnivSize-LowSize+2,
Card #>= NewCardLow,
((integer(Card) ,Card=:=NewCardLow) ->

clpset_low(V,V);

true) .

Whenever an element is excluded from the lower
bound, this rule ensures that the cardinality is no
less than the number of definite elements. The
predicate fd_size gets the size of a given finite-
domain variable and the predicate univ_size re-
turns the size of the universal set. As the lower
bound is a finite-domain that contains the com-
plement of the set of definite elements plus two
dummy elements, the size of the lower bound is
computed as UnivSize-LowSize+2. When the car-
dinality is equal to the size of the lower bound,

the call clpset_low(V,V) instantiates V to be the
lower bound of V.

The primitive indomain(X) is implemented as
follows:

indomain (X) :-
clpset_var(X),!,
clpset_up(X,Up),
set_to_list(Up,UpList),
indomain(X,UpList).
indomain(X) .

indomain(X,_) :-nonvar(X),!.

indomain (X, []).

indomain(X, [E|Es]) :-
clpset_added(X,E),!,
indomain(X,Es).

indomain(X, [E|Es]) : -
(clpset_add(X,E);
clpset_exclude(X,E)),
indomain(X,Es).

For each element in the upper bound that is not
definite, it creates a fork of two branches, one lead-
ing the inclusion of the element in the set and the
other leading to the rejection of the element. With
elements being added into or excluded from the set,
one of the propagation rules of r2, r3, and r4 will
be activated. If the cardinality is equal to the size
of the lower bound or upper bound, the set vari-
able will be instantiated. Once X is instantiated,
indomain (X) will stop creating any further forks.

5 Performance Evaluation

Our solver has been implemented and incorporated
into B-Prolog [15]. In this section, we compare the
performance of our solver with that of the Con-
junto solver in Eclipse 5.3. Comparing two libraries
which run on different Prolog/CLP engines is not
very informative, since it is difficult to tell whether
a particular performance difference is caused by the
underlying engine or by the library’s algorithms
and implementation technique.

To obtain a somewhat better indication, we also
measure the performance of the fd_sets solver,
which is implemented in Eclipse, and uses ideas
similar to the ones used in our B-Prolog solver.

We also compare indirectly our solver with two
other solvers, the Ilog solver, and the solver in 0z.

We first conduct unit testing [12], comparing the
speed of the basic operations in the two solvers,
and then conduct benchmarking, comparing the
speed of the solvers on several benchmarks. All
the benchmarks used in the comparison are avail-
able from www.probp.com/bench/clpset.tar.gz.

5.1 The fd_sets solver

The fd sets solver that we use for comparison pur-
poses is completely implemented in Eclipse and
uses the same primitives as the Conjunto solver
(attributed variables and the suspension mecha-
nism). Neither Conjunto nor fd _sets use any com-
ponents implemented in a lower-level language, in
particular, they don’t rely on the finite domain
solver other than for implementing the cardinal-
ity constraint. Fd_sets uses a propagation system
based on the same dynamic rules that we have pre-
sented in section 3, but without the static rules.
The domain representation does not use finite do-
main variables, but a standard Prolog term with
one argument per set element. Comparing the
results for Conjunto and fd_sets is therefore use-
ful to appraise the impact of the new propagation
rules as such. The comparison between fd_sets and
B-Prolog can give an indication of the effects of
domain representation and underlying Prolog ma-
chine properties.

5.2 Unit testing

The performance of a constraint solver depends on
a set of basic operations. As long as set constraint
solving is concerned, the set of basic operations
includes wvariable creation, constraint installation,
constraint propagation, unification, and labeling.
The following defines these operations and shows
the programs we used in the test.

e Variable creation: The callX :: L..U turns
a Prolog variable X into a set variable. When
a set variable is created, its attributes are ini-
tialized. The following program is used to test
the operation:

create:-

10

S1 :: {}..{1..103},
S2 :: {}..{1..100}.

Constraint installation: When a constraint is
generated, the constraint is preprocessed to
achieve interval consistency and the propa-
gators are initialized. This operation is per-
formed only once for each constraint. The fol-
lowing program is used to test the operation:

install:-
[S1,82,83] :: {}..{1..10},
S1 /\ S2 #= S3.

Constraint propagation: Constraint propaga-
tion takes place when an element is added to
the lower bound or an element is excluded
from the upper bound of a variable. The fol-
lowing programs are used to test the opera-
tion. We use two different domain sizes be-
cause we expect the performance to be depen-
dent on domain size:

propagate :-
[81,82] :: {}..{1..10%},
S1 #<> S2,
1 #<- S1, 2 #<- S1, 3 #<- 81,
4 #<- S1, 5 #<- S1, 6 #<- S1,
7 #<- S1, 8 #<- S1, 9 #<- S1.

propagate_big :-
[s1,82] :: {}..{1..100},
S1 #<> 52,
10 #<- S1, 20 #<- S1, 30 #<- 81,
40 #<- S1, 50 #<- S1, 60 #<- S1,
70 #<- 81, 80 #<- S1, 90 #<- S1.

Unification: The following program is used to
test the unification of two variables and the
unification of a variable with a set constant.

unify:-
[S1,82,83,84] :: {}..{1..103},
S1 = 82,
S3 = 54,
st ={1,2,2,4,5,6,7,8,9,10},
S3= {%.

Membership: The following program is used:

Table 1: Comparison on basic operations
(CPU time (ms), Pentium-I11/933, Linux).

‘ Operation ‘ Conjunto ‘ fd_sets ‘ BP ‘
create 44 224 | 131
install 82 201 | 38

propagate 143 60 | 74
propagate_big 170 60 | 7.4
unification 23 342 | 21
add 83 46 | 24
remove 53 47 | 25
add :-

create(Set),

1 #<- Set, 9 #<- Set, 2 #<- Set,

8 #<- Set, 3 #<- Set, 7 #<- Set,

4 #<- Set, 6 #<- Set, 5 #<- Set.

remove :-—

create(Set),

1 #<\- Set, 9 #<\- Set, 2 #<\- Set,
8 #<\- Set, 3 #<\- Set, 7 #<\- Set,
4 #<\- Set, 6 #<\- Set, 5 #<\- Set.

Table 1 shows the CPU times taken by each op-
eration in both solvers on a Linux machine. Each
test program is run 10000 times and the mean is
taken. For each test program, the time spent in
operations that are irrelevant to the tested opera-
tion is deducted from the execution time. So for
example, the propagation cost does not include the
domain creation and constraint installation costs.

The results show that domain creation has be-
come much more expensive in both fd_sets and B-
Prolog. This is expected because the domain rep-
resentation is more complex: the ground represen-
tation of the bound sets has to be converted into a
bitmap-style representation.

Unification and instantiation requires the oppo-
site conversion and in addition the generation of
inclusion or exclusion events for every previously
uncertain set element. The fd_sets solver shows the
expected slowdown, but B-Prolog does not. This
requires further investigation.

Membership and non-membership however take
advantage from the constant time set-bound up-
dates and are faster than in Conjunto for both

fd_sets and B-Prolog. Speedup factors vary with
the position of the included/excluded element
within the domain, but will generally increase with
increasing domain size.

As expected, propagation is faster (a factor of 2-
3 for fd_sets) or even much faster (about 20 for B-
Prolog). Moreover, for both fd_sets and B-Prolog,
the cost of propagation is independent of the do-
main size, while in Conjunto it increases with do-
main size.

Constraint setup becomes somewhat more ex-
pensive, although for B-Prolog this is compensated
by the greater overall performance. Fd_sets may
also suffer in this respect from not using separate
static rules during constraint setup, but generating
dynamic updates instead. This choice may have to
be revisited.

5.3 Benchmarking

We compared the two solvers using the following
benchmarks:

e Clique Find the largest clique in a graph?. A
clique is a complete sub-graph in which ev-
ery two vertexes are connected. This program
employs the generate-and-test algorithm. Let
V be the set of vertexes in a given graph. For
each cardinality from |V| down to 1, the pro-
gram iterates until it finds a subset of V' that
comprises a clique.

e Steiner The ternary Steiner problem of or-
der n is to find n(n—1)/6 sets over {1,2,...,n}
such that each set contains three elements and
any two sets have at most one element in com-
mon. This program was taken from [2]. No
constraints for breaking symmetry is used.

e Golf This is taken from the Eclipse sample
program suite. It schedules a round-robin golf
tournament on which each player plays in a
group in every round and each player can only
play with the same person once.

Table 2 shows the CPU times taken by the two
solvers to run the programs. BP is faster than

2Taken from www.cs.sunysb.edu/” algorithm,/.

Table 2: Comparison on CPU times (Linux).
| Program | Conjunto (ms) | BP (ms) |

Clique 26,780 5,900
Steiner(9) 25,320 880
Golf 52,260 3,620

Table 3: Number of backtracks.

Program ‘ Conjunto ‘ BP ‘
Clique 379,730 | 379,730

Steiner(9) 6,924 6,924
Golf 1,808 1,808

Conjunto for all the benchmarks. The speed-up
for Golf is over 10 and that for Steiner is over 20.

In comparing CLP systems, it is inadequate
to just measure CPU times [12]. The data are
meaningless if the compared systems use different
heuristics to solve the problem. We measured the
number of backtracks that are made in the exe-
cution (see Table 3) and confirmed that the same
strategy is used in both solvers to instantiate vari-
ables.

The results are very encouraging. The Steiner
program, which spends over 99 percent of its time
in enumerating and propagating values, exceeds
the speedup shown by the unit propagation bench-
mark, even though the domain sizes are very small
(3). This could indicate that there is a factor in-
volved which we have not addressed in this paper,
probably related to differences in the propagation
order between Eclipse and B-Prolog. It could also
be caused by the performace of the cardinality con-
straint. which we have omitted from the unit tests.

5.4 Comparison with other solvers

Table 4 compares the speed of four solvers with
that of Conjunto. The fd_sets is another solver
that comes with the Eclipse system. The data
for Oz and Ilog are taken from Tobias Muller’s
thesis [7]. We agree that it is a dangerous prac-
tice to compare systems indirectly [12]. In [7],

12

Table 4: Speed-ups of four solvers over Conjunto

(Linux).
‘ Program ‘ fd_sets ‘ Oz* ‘ Tlog* ‘ BP ‘
Steiner 1.87 | 7.41%* | 35.04* | 28.77
Golf 4.56 | 16.34* | 37.41* | 14.44

*Adjusted data from [7]

the fd_sets package in Eclipse 5.2 is compared.
The results would favor Oz and Ilog if Eclipse 5.3
has any speed-up over 5.2 and would favor BP if
Eclipse 5.3 has any slow-down over 5.2. The fig-
ures only give a rough picture on the performance
of the compared systems.

Our solver is not as fast as that of the Ilog solver.
The solvers of Oz and Ilog are implemented in
C++, while our solver is implemented in action
rules which are compiled into byte code and in-
terpreted by an emulator. It is expected that our
solver can reach or even exceed the speed of Tlog if
some of the hot predicates are translated into C or
byte code is further compiled into native code.

6 Discussion

This paper presents a set constraint solver that is
the result from our attempt to improve the Coun-
junto solver. Our solver inherits the interval repre-
sentation scheme for set domains from Conjunto,
but represents the lower and upper bounds as two
finite domain variables rather than as two sorted
lists. This scheme was first used in [14] to illustrate
the implementation of propagators in action rules.
Our solver is based on the same set of propaga-
tion rules used in Conjunto, but the propagation
rules are reformed such that new bounds of affected
variables are computed from changes rather from
existing bounds. The advantage of our solver over
Conjunto is that updates of bounds can be done
in constant time. Our solver is implemented in a
high-level language called action rules. It is signif-
icantly faster than Conjunto and is comparable in
performance with the solvers in Oz and Ilog solver,
which are implemented in C++.

Our technique for achieving constant-time up-

dates of bounds is similar to the one used in the
AC-5 algorithm [5] that maintains arc consistency
of binary finite-domain constraints. The key idea
is to propagate not just the information that some
domain has been updated but the individual ele-
ment that has been excluded. According to [2],
the Ilog solver also implements an AC-5 like algo-
rithm. To our knowledge, the domain representa-
tion scheme and the propagation rules used in the
Tlog solver are not available in the public domain.

We have implemented in Eclipse [9] a set solver,
called fd sets, based on the set of propagation
rules presented in this paper. In fd_sets, set do-
main variables are represented as attribute vari-
ables and propagation rules are encoded in demons.
The fd_sets solver is not as fast as the one in B-
Prolog because of the sohisticated priority-based
scheduling strategy used in Eclipse. In addition,
the efficiency of the primitives on finite-domain
variables also makes a difference.

Azevedo and Barahona implemented in Eclipse
another set solver [1]. In the solver, the lower
bound of a set domain is represented as a sorted
list, and the upper bound is represented as the dif-
ference between the set of possible elements and
the set of definite elements. One novel feature of
the solver is that it performs cardinal reasoning,
i.e., reasoning about cardinalities of set variables.
Cardinal reasoning dramatically reduces the search
space for some problems such as circuit diagnostic
problems. The set of cardinal reasoning rules can
be easily integrated into our solver.

The set solver in Mozart Oz [7] is based on the
propagation rules of Conjunto and the cardinal rea-
soning rules by Azevedo and Barahona. The prop-
agation rules are implemented in CPI (Constraint
Propagator Interface) and the filters that reduce
the domains of variables are encoded in C++. It
is known that cardinal reasoning has no positive
effect on the two benchmarks Steiner and Golf.
The speed-up of the Oz solver over Conjunto may
come from the low level implementation language.

Thornary and Gensel [11] proposed a hybrid rep-
resentation scheme for set domains in which large
domains are represented as intervals and small do-
mains are represented vectors of candidate sets.
This scheme makes it possible to achieve higher-

13

level consistency such as arc consistency of set con-
straints if only small domains are involved. This
scheme would be very effective for the circuit di-
agnostic problem [1] since all the domains in the
problem are very small.

Set constraint solvers are far less mature than
solvers over other domains such as finite-domains,
reals, and rationals, and new implementation tech-
niques need to be further explored. Set constraint
solvers facilitate modeling of many kinds of com-
binatorial problems. Unfortunately only a few set
constraint programs are available now. We expect
that more application programs will be developed
once fast solvers become available. These appli-
cation programs will in return lead to new imple-
mentation and optimization techniques for set con-
straints.

Acknowledgement

We would like to thank Carmen Gervet for useful
comments on an early version of this paper and
Francisco Azevedo for explaining to us his cardinal
set solver.

References

[1] F. Azevedo and P. Barahona: Modelling Dig-
ital Circuits Problems with Set Constraints,
Proc. of the First International Conference on
Computational Logic, pp.414-428, 2000.

C. Gervet: Interval Propagation to Reason
about Sets: Definition and Implementation of
a Practical Language, Constraints, An Inter-
national Journal, vol.1, pp.191-246, 1997.

C. Holzbaur: Meta-structures Vs. Attribute
Variables in the Context of Extensible Unifica-
tion, Proc. PLLP’92, LNCS 631, pp.260-268,
1992.

J. Jaffar and J.-L. Lassez: Constraint Logic
Programming, Proc. Fourteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles
of programming languages, pp.111-119, 1987.

P. van Hentenryck, Y. Deville and C.M. Teng:
A Generic Arc-consistency Algorithm and its

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Specializations, Artificial Intelligence, Vol. 57,
pp-291-321, 1992.

A K. Mackworth and E.C. Freuder: The Com-
plexity of Some Polynomial Network Consis-
tency Algorithms for Constraint Satisfaction
Problems, Artificial Intelligence, 1985.

T. Muller: Constraint Propagation in Mozart,
PhD Thesis, Programming Systems Lab, Uni-
versit Saarlandes, http://www.ps.uni-sb.de/”
tmueller/thesis/, 2001.

L. Pacholski and A.Podelski: Set Constraints:
A Pearl in Research on Constraints, In Proc.
3rd International Conference on Constraint
Programming, 1997.

J. Schimpf, et al.: Fclipse User Manual,
version 5.8, www.icparc.ic.ac.uk/eclipse/, 1C-
PARC, 2001.

J.F. Puget: Finite Set Intervals, in Proc.
Workshop on Set Constraints, CP’96, 1996.

V. Thornary and J. Gensel: An Hybrid Rep-
resentation for Set Constraint Satisfaction
Problems, http://www.inrialpes.fr.

M. Wallace, J. Schimpf, K. Shen and W. Har-
vey: On Benchmarking Constraint Logic Pro-
gramming Platforms, to appear Constraints,
An International Journal.

N.F. Zhou: A High-Level Intermediate Lan-
guage and the Al-
gorithms for Compiling Finite-Domain Con-
straints, Proc. Joint International Conference
and Symposium on Logic Programming, 70-84,
MIT Press, 1998. A revised version is avail-
able from: http://www.sci.brooklyn.cuny/~

zhou/pappers/arule.pdyf.

N.F. Zhou: Programming Constraint Propa-
gation in Action Rules, in Proc. of Workshop
on Constraint Handling Rules, CL’2000.

N.F. Zhou: B-Prolog User’s Manual,
www. probp. com, 2002.

14

