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Abstract. We present an implementation of table constraints in CLP(FD).

For binary constraints, the supports of each value are represented as

a finite-domain variable, and action rules are used to propagate value

exclusions. The bit-vector representation of finite domains facilitates

constant-time removal of unsupported values. For n-ary constraints, we

propose pair-wise arc consistency (AC), which ensures that each value

has a support in the domain of every related variable. Pair-wise AC does

not require introducing new problem variables as done in binarization

methods and allows for compact representation of constraints. Never-

theless, pair-wise AC is weaker than general arc consistency (GAC) in

terms of pruning power and requires a final check when a constraint

becomes ground. To remedy this weakness, we propose adopting early

checks when constraints are sufficiently instantiated. Our experimenta-

tion shows that pair-wise AC with early checking is as effective as GAC

for positive constraints.

1 Introduction

A table constraint, or extensional constraint, over a tuple of variables specifies

a set of tuples that are allowed (called positive) or disallowed (called negative)

for the variables. Recently there has been a growing interest in this format of

constraints. This format is well suited to problems where relations are more

easily given in extension than in intension such as configuration problems in-

volving datasets (e.g., crossword puzzles). Another reason for the popularity

of this format is that certain intensional constraints, especially nonlinear and

global constraints, can be more cheaply maintained when tabulated. The table

format has been used in the CSP solver competitions and a good collection of

problem instances are available. Arc consistency has been generalized for table

constraints [5, 12] (called GAC) and several data structures have been proposed

for maintaining GAC for table constraints [2, 3, 6, 7, 9, 10].

No previous work has been reported on introducing table constraints into

CLP(FD). Because of the lack of sophisticated data structures such as multi-

dimensional arrays and the necessity of manipulation of tagged data in CLP(FD),

an efficient data structure designed for a low-level language may not be suited



to CLP(FD). In this paper, we propose an encoding for table constraints in

B-Prolog, a CLP(FD) system.

For a binary table constraint, the supports of each value are represented as a

finite-domain variable. When either variable in the constraint is bound to a value,

the other variable is unified with the finite-domain variable that represents the

supports of the value. Whenever a value is excluded from the domain of a variable

in the constraint, the supports of the value in the domain of the other variable

are examined and those values that are no longer supported are excluded. As

bit vectors are used to represent finite domains, the basic operations required in

propagation can be performed efficiently [11].

For an n-ary table constraint, we propose pair-wise arc consistency (AC),

which ensures that each value has a support in the domain of every related

variable. As for binary constraints, supports of each value are also represented as

a finite-domain variable. One of the advantages of pair-wise AC is that it, unlike

binarization methods [1], does not introduce new problem variables. The newly

introduced finite-domain variables are solely used as bit vectors to represent

supports of values. Since supports are not updated during search, no events can

occur in these new domain variables. This representation fits CLP(FD) since

bits are not tagged individually. Another advantage of pair-wise AC is that

constraints can be represented very compactly. Let n be the arity of an n-ary

contraint and d be the size of the maximum domain. Supports of values can be

represented with O(n2 × d2) space.

Nevertheless, pair-wise AC is weaker than GAC in terms of pruning power

because, understandably, it is impossible to use O(n2×d2) space to represent as

many as dn tuples. To remedy this weakness, we propose adopting early checks

to enforce GAC when constraints are sufficiently instantiated. Early checking

extends forward checking [8] because the number of variables contained in a

constraint can be more than one when the constraint is checked.

For each variable X in a table constraint, a propagator is used to watch the

ins(X) event which is posted when X is instantiated, and another propagator

is used to respond to the dom any(X,E) event which is posted whenever any

element E is excluded from the domain of X . Propagators are described using

action rules [16]. Our implementation propagates values like the AC-4 algorithm

[13], and hence can be classified as fine-grained.

The contribution of this paper is twofold. First, this paper presents an encod-

ing for table constraints which is suited to any CLP(FD) system that represents

finite-domains as bit vectors and handles domain value exclusions as events. Sec-

ond, this paper proposes pair-wise AC, which is a natural extension of AC but

has never received much attention before, and proposes to remedy the weakness

of pair-wise AC with early checking. We experimented with two different settings

for early checking and our experimental results showed that pair-wise AC with

early checking is as effective as GAC.
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This paper is organized as follows: Section 2 overviews table constraints,

consistency algorithms, CLP(FD), and action rules; Section 3 describes an en-

coding for binary constraints and gives the propagators as action rules; Section

4 gives the propagators for maintaining pair-wise AC; Section 5 proposes several

improvements on the propagators; Section 6 describes early checking; Section

7 presents the experimental results; Section 8 discusses the related and future

work.

2 Preliminaries

2.1 Table constraints and consistency

A table constraint is either positive or negative. A positive constraint takes the

form X in R and a negative constraint takes the form X notin R where X is

a tuple of variables (X1, . . . , Xn) and R is a table defined as a list of tuples of

integers where each tuple takes the form (a1, . . . , an). In order to allow multiple

constraints to share a table, we allow X to be a list of tuples of variables. In

theory, a negative constraint can always be represented as a positive constraint

by complementing the table, but in practice this is not always viable since the

resulting table can be prohibitively large.

A table constraint is said to be binary if each tuple has only two compo-

nents, and n-ary if each tuple has more than two components. A table con-

straint degenerates into a domain constraint in CLP(FD) if each tuple has only

one component.

Let (X1, X2) in R be a binary table constraint. A value x1 in the domain

of X1 is said to be supported in the constraint if there exists a value x2 in the

domain of X2 such that (x1, x2) is included in R. The constraint is said to be

AC (arc consistent) on X1 if every value in the domain of X1 is supported. The

constraint is said to be AC if it is AC on both X1 and X2.

Let (X1, . . . , Xn) in R be an n-ary table constraint. Let Rij denote the

projection of the table R over the ith and jth columns (i < j). The binary

projection of the constraint over Xi and Xj (i < j) is the binary constraint

(Xi, Xj) in Rij . The n-ary constraint is said to be pair-wise AC if all of its

binary projections are AC.

Consider the n-ary constraint (X1, . . . , Xn) in R again. A value xi in the

domain of variable Xi is gac-supported in the constraint if there exists a tuple

in R whose ith component is equal to xi. The constraint is said to be GAC if

every value in the domain of every variable is gac-supported. This condition can

be given more formally as:

∀i∈{1..n}∀xi∈Xi
∃x1∈X1,...,xi−1∈Xi−1,xi+1∈Xi+1,...,xn∈Xn

(x1, x2, . . . , xn) ∈ R

where variables are used to denote their domains.

In general, pair-wise AC is a weaker condition than GAC. For example, con-

sider the following constraint:
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(X,Y,Z) in [(0,1,1),

(1,0,1),

(1,1,0)]

After the assignment X=1, Y=1, and Z=1, the constraint is not GAC but it is still

pair-wise AC.

When a table constraint is generated, tuples of variables and values in the

form (X1, . . . , Xn) are all transformed into the form t(X1, . . . , Xn) that takes

less memory to store and is easier to manipulate.

2.2 CLP(FD)

CLP(FD) [8] is a constraint language that enhances Prolog with built-ins for

specifying domain variables, constraints, and strategies for assigning values to

variables (called labeling). The unification operator is enhanced to deal with

domain variables. For two domain variables X and Y , after unification X = Y

the elements that are not in both domains are removed and the two variables

become aliases.

The following built-ins are used in the implementation of table constraints:

– X in D: restricts X to take on a value from D, where D is a set of integers.

– X notin D: forbids X to take on any value from D.

– fd dom(X,D): D is the list of integers in the domain of X .

– fd disjoint(X,Y ): The domains of X and Y are disjoint.

– fd set false(X,E): excludes integer E from the domain of X . It is equiv-

alent to X#\=E but more efficient.

These built-ins are available in B-Prolog. Similar built-ins are also available in

other CLP(FD) systems or can be implemented using other primitives.

2.3 Action rules and events

The AR (Action Rules) language is designed to facilitate the specification of

event-driven functionality needed by applications such as constraint propagators

and graphical user interfaces where interactions of multiple entities are essential

[16]. It was originally implemented in B-Prolog and now has been introduced

into other Prolog systems [4].

An action rule takes the following form:

Agent, Condition, {Event} => Action

where Agent is an atomic formula that represents a pattern for agents, Condition

is a conjunction of conditions on the agents, Event is a non-empty disjunction

of patterns for events that can activate the agents, and Action is a sequence of

arbitrary subgoals. An action rule degenerates into a commitment rule if Event
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together with the enclosing braces are missing. In general, a predicate can be

defined with multiple action rules. For the sake of simplicity, we assume in this

paper that each predicate is defined with only one action rule possibly followed

by a sequence of commitment rules.

A subgoal is called an agent if it can be suspended and activated by events.

For an agent α, a rule “H, C, {E} => B” is applicable to the agent if there exists

a matching substitution θ such that Hθ = α and the condition Cθ is satisfied.

The reader is referred to [16] for a detailed description of the language and its

operational semantics.

The following event patterns are supported for programming constraint prop-

agators:

– generated: After an agent is generated but before it is suspended for the

first time. The sole purpose of this pattern is to make it possible to specify

preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.

– bound(X): when a bound of the domain of X is updated. There is no dis-

tinction between lower and upper bounds changes.

– dom(X ,E): when an inner value E is excluded from the domain of X . Since

E is used to reference the excluded value, it must be the first occurrence of

the variable in the rule.

– dom(X): same as dom(X ,E) but the excluded value is ignored.

– dom any(X ,E): when an arbitrary value E is excluded from the domain of

X . Unlike in dom(X ,E), the excluded value E here can be a bound of the

domain of X .

– dom any(X): equivalent to the disjunction of dom(X) and bound(X).

Note that when a variable is instantiated, no bound or dom event is posted.

Consider the following example:

p(X),{dom(X,E)} => write(dom(E)).

q(X),{dom any(X,E)} => write(dom any(E)).

r(X),{bound(X)} => write(bound).

go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and

bound.1 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the

outputs dom any(4) and bound are caused by X #\= 4. After the constraint

X #\= 1 is posted, X is instantiated to 3, which posts an ins(X) event but not

a bound or dom event.

1 In the current implementation of AR, when more than one agent is activated the one

that was generated first is executed first. This explains why dom(2) occurs before

dom any(2) and also why dom any(4) occurs before bound.
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3 Binary Constraints

Given a binary table constraint (X,Y) in R, we build a hashtable Hxy for sup-

ports of values of X.2 For each value Ex in the domain of X, there exists an entry

(Ex,Sx) in Hxy where Sx is a finite-domain variable that represents Ex’s set of

supports in the domain of Y. If Ex has only one support, then Sx is the support

itself. Similarly, we also build a hashtable Hyx for supports of values of Y. After

(X,Y) in R is posted, it is made AC by excluding all unsupported values from

the domains of X and Y. In the following, Hxy and Hyx are called support tables.

Consider, for example, the following constraint:

(X,Y) in [(1,2),(2,1),(3,4),(3,5),(4,4)]

The hashtable Hxy contains

(1,2),(2,1),(3,S3:[4,5]),(4,4)

and the hashtable Hyx contains

(1,2),(2,1),(4,S4:[3,4]),(5,3)

where S3:[4,5] and S4:[3,4] are two finite-domain variables. After the con-

straint is posted, X’s domain becomes [1,2,3,4] and Y’s domain becomes [1,2,4,5].

The two hashtables Hxy and Hyx are essentially two tries [6]. Each trie re-

quires, in the worst case, O(|X|×|Y|) space. This representation is compact

because of the indexing effect and the use of bit vectors for domain variables.

As will be shown below, supports are never updated during search. Therefore,

the domain variables used to represent supports never post any event.

For a binary constraint over (X,Y), we generate propagators to watch ins

and dom any events on X and Y. The propagation is very straightforward. When

X is bound to an integer, Y’s domain is reduced to retain only those elements

that are supported by X. Whenever a value is excluded from the domain of X,

the supports of the value in the domain of Y are examined and those values that

are no longer supported by X are excluded from the domain of Y.

The propagator watch ins(X,Y,Hxy), defined below, watches ins(X) events.

watch_ins(X,Y,Hxy),var(X),{ins(X)} => true.

watch_ins(X,Y,Hxy) =>

hashtable_get(Hxy,X,Sx),

Y=Sx

The propagator is suspended as long as X is a variable. The second rule is applied

after X becomes ground, which unifies Y with the set of supports of X.

The propagator watch dom(X,Y,Hxy,Hyx), defined in Figure 1, watches dom any

events on X.
2 Hashtables are not available in ISO-Prolog. The built-in hashtable get(H,K,Val)

in B-Prolog retrieves from the table H the value Val with the key K. In the real

implementation, a hashtable talored to tuples is used when the table is sparse or

contain negative integers, and a structure is used otherwise.
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watch_dom(X,Y,Hxy,Hyx),var(X),{dom_any(X,Ex)} =>

hashtable_get(Hxy,Ex,Sx), % Sx supports Ex

fd_dom(Sx,Eys),

find_support(X,Eys,Y,Hyx).

watch_dom(X,Y,Hxy,Hyx) => true.

find_support(X,[],Y,Hyx).

find_support(X,[Ey|Eys],Y,Hyx):-

hashtable_get(Hyx,Ey,Sy), % Sy supports Ey

(fd_disjoint(X,Sy)->fd_set_false(Y,Ey);true),

find_support(X,Eys,Y,Hyx).

Fig. 1. The propagator that watches dom any events.

Whenever a value Ex is excluded from the domain of X, Ex’s set of supports

Sx is retrieved from Hxy. The predicate find support examines every element

in Sx, and excludes it from the domain of Y if it is no longer supported by X.

In the real implementation, find support is encoded in C which uses bit-wise

operations to iterate through the elements of Sx.

4 Pair-wise AC for n-ary Constraints

Given an n-ary table constraint Vars in R, we build two hashtables Hxy and Hyx

for each pair of variables X and Y in Vars, and generate propagators to watch

ins and dom any events. In this way, pair-wise AC is maintained.

Since pair-wise AC does not guarantee GAC, an n-ary constraint needs to

be checked after it becomes ground. Let HashR be the hashtable representation

of the table R. This final check is described as follows:

final_check(HashR,Vars),n_vars_gt(1,0),{ins(Vars)} => true.

final_check(HashR,Vars) => hashtable_get(HashR,Vars,_).

The condition n vars gt(1,0) means that the last argument (namely Vars)

has more than 0 variables.3 The subgoal is suspended while at least one of the

variables in Vars is free. After all the variables are instantiated, hashtable get

checks if the tuple Vars is included in HashR.

3 In general the built-in n vars gt(m,n) in B-Prolog means that the number of vari-

ables in the last m arguments of the head is greater than n, where both m and n

are integer constants. Notice that the arguments are not passed to the built-in. The

system always fetches those arguments from the current frame. This built-in is well

used in constraint propagators to change the action when the number of variables

in the constraint reaches a certain threshold.
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register_pair(X,Term):- % Term=pair(Y,Hxy,Hyx)

get_attr(X,pairs,L),!,

attach(Term,L). % attach Term to the end of L

register_pair(X,Term):-

L=[Term|_], % create an open-ended list

put_attr_no_hook(X,pairs,L), % no default hook on X

watch_ins(X,L),

watch_dom(X,L).

watch_ins(X,L),var(X),{ins(X)} => true.

watch_ins(X,L) =>

... % for each term bin(Y,Hxy,Hyx) in L, enforce AC on Y

... % after X is instantiated.

watch_ins(X,L),var(X),{dom_any(X,Ex)} =>

... % for each term bin(Y,Hxy,Hyx) in L, enforece AC on Y

% after Ex is excluded from the domain of X.

watch_ins(X,L) => true.

Fig. 2. The registration procedure.

5 Improvements

In the encoding described above, two propagators are used for each variable in a

pair of variables, one watching ins and the other watching dom any events on the

variable. When a variable is involved in n pairs, 2×n propagators are generated.

One implementation technique for speeding-up propagation in CLP(FD) is to

combine the propagators that watch the same event and take similar actions.4

This technique can be used to speed-up propagation for table constraints too.

For a pair of variables (X,Y), let Hxy and Hyx be the two support tables.

The term pair(Y,Hxy,Hyx) is created and registered onto X under the attribute

name pairs. If the attribute pairs does not exist yet, the attribute is created

and two propagators are generated; if the attribute already exists, then the term

is attached to the end of the attribute value, which is an incomplete list with an

open end. Figure 2 gives part of the registration procedure. Similarly, the term

bin(X,Hyx,Hxy) needs to be registered onto Y.

The registration procedure is further improved as follows. For a pair (X,Y), if

the support tables Hxy and Hyx represent the Cartesian product of the domains

of the variables, it is unnecessary to do the registration at all because every value

is guaranteed a support no matter how the variables are instantiated.

Moreover, if a pair has been registered already, we merge the old support

tables with the new ones. Let pair(Y,Hxy,Hyx) be the term to be registered

onto X, and pair(Y,OldHxy,OldHyx) be a term that has been already registered

4 This technique is implemented in B-Prolog for constraints such as disequality con-

straints over two variables.
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on X. We construct two new support tables NewHxy and NewHyx where NewHxy

is the intersection of OldHxy and Hxy, and NewHyx is the intersection of OldHyx

and Hyx. Then we use the built-in setarg/3 to replace OldHxy with NewHxy and

OldHyx with NewHyx. This improvement allows inter-constraints sharing.

6 Early Checking

As shown above, pair-wise AC is weaker than GAC in terms of pruning power.

The propagators for maintaining pair-wise AC resort to a final check to ensure

that a constraint is indeed supported when it becomes ground. To remedy the

weak pruning power of pair-wise AC, we can advance this final check to a point

when the constraint still contain variables. An early check ensures that every

value in the domain of every variable has a supporting tuple. We consider early

checking for positive constraints, and similar ideas can be applied to negative

constraints too.

There are two possible approaches to checking a constraint: One is to iterate

through the values of the domains of the remaining variables in the constraint

and, for each combination, we check if it is included in the table; the other is

to iterate through the tuples in the table. Since the number of tuples in a given

table is normally significantly smaller than the possible combinations of domain

values when the number of variables is large, we follow the later approach.

To make it fast to iterate through the tuples in a table, we convert the

table to a trie such that common prefixes of the tuples need not be examined

more than once for each traversal. We only use one trie per table. The tuples

are indexed on the first argument first, then second, and so on. The following

defines a propagator that maintains GAC when variables are instantiated.

early_check(Trie,Vars),

{generated,ins(Vars)}

=>

enforce_gac(Trie,Vars).

The predicate enforce gac(Trie,Vars) is also called when the propagator is

first created. It first walks through the trie to record all the values that are

supported, and then it examines each value in the domain of each variable in

Vars and excludes it from the domain if it has no supporting tuple.

Since enforce gac does not respond to domain value exclusions, pair-wise

AC is still weaker than GAC even with this early checking. To always enforce

GAC, we could call ensure gac whenever a change occurs to the domain of any

variable.

early_check_gac(Trie,Vars),

{generated,ins(Vars),bound(Vars),dom(Vars)}

=>

enforce_gac(Trie,Vars).
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In addition to the generated and ins(Vars) events, this rule also watches

bound(Vars) and dom(Vars) events. Recall that bound(Vars) is posted when-

ever a bound of the domain of any variable in Vars is changed and dom(Vars)

is posted whenever an inner value is excluded from the domain of any variable.

The two events bound(Vars) and dom(Vars) can be equivalently encoded as

dom any(Vars).

Since ensure gac is expensive, calling it on every change may not pay off.

One compromise is to enforce GAC on domain value exclusions only when the

constraint contains a certain number of variables. The following gives the refined

propagator for early checking.

early_check_compromise(Trie,Vars),

n_vars_gt(1,2),

{generated,ins(Vars)}

=>

enforce_gac(Trie,Vars).

early_check_compromise(Trie,Vars) =>

early_check_bin(Trie,Vars).

early_check_bin(Trie,Vars),

{generated,ins(Vars),bound(Vars),dom(Vars)}

=>

enforce_gac(Trie,Vars).

Once the number of variables contained in the constraint is 2 or less (the con-

dition n vars gt(1,2) fails), the propagator is replaced with early check bin

which watches all changes to the domains of the variables.

Recall that the propagators for maintaining pair-wise AC already watch

dom any events. One may ask why we need to create a propagator to watch dom

events here when the constraint becomes binary. The answer is that the support

tables used in maintaining pair-wise AC are binary projections and they are

never reduced while variables are instantiated. Consider the following example:

(X,Y,Z) in [(0,1,1),

(0,2,2),

(0,3,3),

(1,1,2),

(1,2,3),

(1,3,1)]

The support table Hyz from Y to Z contains the following entries: (1,S1:[1,2]),

(2,S2:[2,3]), and (3,S3:[1,3]). When X is bound to 0, the support table should

be reduced to contain (1,1), (2,2), and (3,3). After that, when a value, say

2, is excluded from the domain of Y, the support 2 should be excluded from the

domain of Z. Nevertheless, because our solver does not reduce support tables,

this effect couldn’t be achieved without calling enforce gac(Trie,Vars).
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7 Experimental Results

The two built-ins, in/2 and notin/2, in B-Prolog have been extended to al-

low positive and negative table constraints.5 For positive constraints, pair-wise

AC is used with early checking, which maintains GAC when constraints become

ternary. For negative constraints, pair-wise AC is used with forward checking,

which maintains GAC only when constraints become unary. For negative con-

straints, support tables are constructed without complementing given relations.

Thanks to the availability of action rules, the extension was implemented

with relative ease. The extension contains about 300 lines of code in Prolog (and

action rules) and 1000 lines of code in C, most of which are for preprocessing

tables.

We compared pair-wise AC with and without early checking on a selected set

of benchmarks used for the N-ARY-EXT category in the CSP solver competitions.6

The problem instances were translated from XML into Prolog format. The first

5 instances in each of seven selected problem classes were chosen. Each of the

problem instances contains at least one positive constraint. Each instance was

given a time limit of 500 seconds and no memory limit was imposed. The label-

ing strategy ffc (first-fail, breaking tie by selecting a most constrained variable)

was used in all the runs. The machine used was a Pentium 3.0GHz with 1GB of

RAM running Windows XP.

Table 1 shows the CPU times. In each row, the first column gives the name

of a problem instance, the second column gives the maximum arity of the con-

straints in the instance, and each of the remaining columns gives the CPU time

taken by each of the four different settings: PAC maintains pair-wise AC with-

out early checking; PAC+ET1 triggers early checking after constraints become

binary; PAC+ET2 triggers early checking after constraints become ternary; and

GAC maintains GAC all the time as is done in early check gac shown above.

Both PAC+ET1 and PAC+ET2 trigger early checking on ins events. PAC solved

only 16 instances, PAC+ET1 solved 28 instances, and PAC+ET2 and GAC each

solved 30 instances. In general, PAC alone is too weak, but it turned out to be

the fastest on the bdd benchmarks. There is no remarkable difference between

PAC+ET2 and GAC for most of the instances, and PAC+ET2 is faster than

GAC on some for the instances such as crossword m1c lex vg10 11. Four of

the five instances of renault were not solved. Profiling the runs indicated that

these instances were very memory demanding and most of the execution time

was spent on garbage collection.

Table 2 shows the number of backtracks in each run. For those runs that were

terminated by time-out events, the numbers were also recorded. For instances

that contain only Boolean variables (bdd and jnh), there is no difference among

different settings for early checking since no dom or dom any event can occur on

5 Table constraints are supported in version 7.3 and up.
6 http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html
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Table 1. Comparison on CPU time (seconds).

Problem instance MAX-ARITY PAC PAC+ET1 PAC+ET2 GAC

bdd 21 133 18 78 10 18 1.50 2.70 2.82 2.67

bdd 21 133 18 78 11 18 9.25 31.00 31.00 31.00

bdd 21 133 18 78 12 18 7.85 24.00 24.00 23.00

bdd 21 133 18 78 13 18 9.32 69.00 69.00 69.00

bdd 21 133 18 78 14 18 11.00 33.00 33.00 33.00

crossword m1c lex vg10 11 11 >500 2.96 2.96 12.00

crossword m1c lex vg10 12 12 >500 0.61 0.59 2.61

crossword m1c lex vg11 12 12 >500 0.32 0.32 0.89

crossword m1c lex vg11 13 13 >500 0.12 0.12 0.25

crossword m1c lex vg11 15 15 0.31 0.47 0.47 0.12

jnh01 14 0.15 0.15 0.15 0.15

jnh02 10 0.16 0.16 0.16 0.15

jnh04 11 0.20 0.20 0.20 0.20

jnh05 11 0.15 0.15 0.15 0.15

jnh06 11 0.11 0.11 0.11 0.94

rand 10 20 10 5 10000 0 10 >500 1.42 1.42 1.43

rand 10 20 10 5 10000 10 10 >500 1.29 1.28 1.29

rand 10 20 10 5 10000 11 10 >500 1.87 1.82 2.46

rand 10 20 10 5 10000 12 10 >500 1.31 1.31 1.87

rand 10 20 10 5 10000 13 10 >500 1.37 1.37 1.92

renault mgd 10 2.50 2.57 2.54 2.57

renault mod 0 10 >500 >500 >500 >500

renault mod 10 10 >500 >500 >500 >500

renault mod 11 10 >500 >500 >500 >500

renault mod 12 10 >500 >500 >500 >500

ssa 0432 003 5 1.21 0.14 0.14 0.15

ssa 2670 130 5 >500 >500 >500 >500

ssa 2670 141 4 0.000 0.000 0.000 0.000

ssa 6288 047 6 0.40 0.40 0.40 0.40

ssa 7552 038 6 0.47 0.47 0.31 0.31

tsp 20 142 3 >500 >500 81.00 81.00

tsp 20 190 3 >500 286.00 11.00 11.00

tsp 20 193 3 >500 >500 36.00 36.00

tsp 20 1 3 >500 57.00 0.95 0.95

tsp 20 29 3 >500 2.31 0.29 0.29

Boolean variables. For instances that contain no constraint with more than 3

variables (tsp), there is no difference between PAC+ET2 and GAC.

We didn’t directly compare our solver with other solvers for table constraints.

The top ranked solvers, such as mddc, MDG, Mistral, and Abscon solved all the

selected instances under a time limit of 1800 seconds.7 We have to mention that

the Windows-XP PC we used is probably slower than the Linux server used

in the competition and our solver does not employ any restart strategy. Even

under the same condition, it would be unfair to compare a CLP(FD) solver with a

solver implemented directly in C or C++ because operations such dereferencing,

tagging, and untagging incur measurable overhead in CLP(FD).

7 http://www.cril.univ-artois.fr/CPAI08/results/results.php?idev=15
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Table 2. Comparison on backtracks.

Problem instance PAC PAC+ET1 PAC+ET2 GAC

bdd 21 133 18 78 10 0 0 0 0

bdd 21 133 18 78 11 532563 9734 9734 9734

bdd 21 133 18 78 12 321883 13438 13438 13438

bdd 21 133 18 78 13 535481 11154 11154 11154

bdd 21 133 18 78 14 552313 10235 10235 10235

crossword m1c lex vg10 11 91408432 675 675 193

crossword m1c lex vg10 12 11401605 140 140 57

crossword m1c lex vg11 12 10616917 61 61 22

crossword m1c lex vg11 13 2100191 19 19 12

crossword m1c lex vg11 15 0 0 0 0

jnh01 50 50 50 50

jnh02 8 8 8 8

jnh04 1611 1611 1611 1611

jnh05 41 41 41 41

jnh06 826 826 826 826

rand 10 20 10 5 10000 0 >268435455 1010 1010 999

rand 10 20 10 5 10000 10 >268435455 1000 1000 999

rand 10 20 10 5 10000 11 263869300 1003 1003 999

rand 10 20 10 5 10000 12 >268435455 1002 1002 997

rand 10 20 10 5 10000 13 >268435455 1882 1882 998

renault mgd 13 0 0 0

renault mod 0 >268435455 17614672 13761572 20704205

renault mod 10 80724776 9859177 4931019 2200586

renault mod 11 >268435455 8099239 3215349 1818967

renault mod 12 251771657 9082875 6301406 2128999

ssa 0432 003 318288 10126 10126 10126

ssa 2670 130 72698460 23508987 23994708 24034014

ssa 2670 141 7 0 0 0

ssa 6288 047 23 23 23 23

ssa 7552 038 476 38 38 38

tsp 20 142 17326326 207966 15036 15036

tsp 20 190 25459227 366646 5750 5750

tsp 20 193 17622012 207826 2814 2814

tsp 20 1 21302231 65937 229 229

tsp 20 29 29304024 2723 31 31

8 Related and Further Work

The key operation used in GAC algorithms is to find a support tuple for a value y

in the domain of a variable Y after a value x has been excluded from the domain

of a related variable X (X 6= Y ) [2]. Significant efforts have been made to speed-

up this operation by skipping irrelevant tuples that can never been supports for

a value [3, 6, 10]. Indexing is an effective technique. The trie data structure [6]

indexes tuples such that tuples that have the same prefix share nodes in the

trie. In order to facilitate propagating changes originated at every variable in an

n-ary constraint, the solver reported in [6] needs to build n tries, one for each

variable. An MDD (multi-valued decision diagram) [3] is more effective than a

trie in the sense that tuples that have the same suffix also share nodes. The

solver mddc-solv based on MDD was ranked top in the N-ARY-EXT category

in the third CSP solver competition.
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Our encoding of binary constraints is similar to the trie encoding. The dif-

ference is that the children (leaves) of each interior node are represented as a

finite-domain variable rather than a list or an array. This representation fits

CLP(FD) since bit-vectors are used in the representation of finite domains and

bits in bit vectors are not tagged individually. Any data structure that requires

tagging and untagging would incur considerable overhead.

It is well known that any n-ary constraint can be binarized by using a dual

representation (i.e., treating each constraint as a variable) or introducing hidden

variables for constraints [1]. Experiments have been done to compare various

binarization schemes [14]. Our previous solver [17], like the early version of the

Mistral solver [7]), introduces a new finite-domain variable for each n-ary con-

straint and encodes each tuple in the table as an integer. The main problem with

that solver was that newly introduced variables could have very bigger domains

and the solver could be flooded with events from these domains.

No previous work has been reported on introducing table constraints into

CLP(FD). The case constraint in SICStus Prolog is used to implement the

built-in table/2. Similar built-ins such as fd relation/2 in GNU-Prolog and

tuples in/2 in SWI-Prolog have been implemented, but no detail of the im-

plementation is published. None of these CLP(FD) systems directly supports

negative table constraints.

In our solver, supports of values are not updated during search. This makes

it possible for constraints to share tables and also renders it unnecessary to trail

or copy supports of values. The drawback is that the support tables created

for maintaining pair-wise AC for an n-ary constraint cannot be used to enforce

AC when the constraint becomes binary. The early-checking propagators in our

solver need to use the trie from the original table to enforce AC. Also the opera-

tion fd disjoint does not become as cheap as it is supposed to be because the

domain that represents supports of a value never shrinks. Recently, a new ap-

proach has been proposed that solves n-ary CSPs by reducing tables [10, 15]. It

is worthwhile to investigate if this approach can be integrated into our approach.

Further work needs to be done to investigate when and how early checking

should be performed. Our solver does not do any early checking on negative

constraints. Further investigation should cover negative constraints as well.

9 Conclusion

We have presented an encoding for table constraints in CLP(FD) based on pair-

wise AC. In the encoding, the supports of each value are represented as a finite-

domain variable, and action rules are used to propagate value exclusions. The

encoding is compact and requires no new problem variables. To remedy the weak

pruning power of pair-wise AC, we proposed integrating pair-wise AC with early

checking. Our experimental results showed that such an integration is effective.

Our approach differs from the major GAC algorithms in that it is based on pair-
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wise AC and is fine grained. More work remains to be done concerning when

and how early checking should be performed.
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