
Theory and Practice of Logic Programming 1

Efficient Tabling of Structured Data with

Enhanced Hash-Consing

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

zhou@sci.brooklyn.cuny.edu

Christian Theil Have

Roskilde University

cth@ruc.dk

submitted ; revised ; accepted

Abstract

Current tabling systems suffer from an increase in space complexity, time complexity or
both when dealing with sequences due to the use of data structures for tabled subgoals
and answers and the need to copy terms into and from the table area. This symptom can
be seen in not only B-Prolog, which uses hash tables, but also systems that use tries such
as XSB and YAP. In this paper, we apply hash-consing to tabling structured data in B-
Prolog. While hash-consing can reduce the space consumption when sharing is effective, it
does not change the time complexity. We enhance hash-consing with two techniques, called
input sharing and hash code memoization, for reducing the time complexity by avoiding
computing hash codes for certain terms. The improved system is able to eliminate the extra
linear factor in the old system for processing sequences, thus significantly enhancing the
scalability of applications such as language parsing and bio-sequence analysis applications.
We confirm this improvement with experimental results.

1 Introduction

Tabling, as provided in logic programming systems such as B-Prolog (Zhou et al.

2008), XSB (Swift and Warren 2012), YAP (Santos Costa et al. 2012), and Mercury

(Somogyi and Sagonas 2006), has been shown to be a viable declarative language

construct for describing dynamic programming solutions for various kinds of real-

world applications, ranging from program analysis, parsing, deductive databases,

theorem proving, model checking, to logic-based probabilistic learning. The main

idea of tabling is to memorize the answers to subgoals in a table area and use

the answers to resolve their variant or subsumed descendants. This idea of caching

previously calculated solutions, called memoization, was first used to speed up the

evaluation of functions (Michie 1968). Tabling can get rid of not only infinite loops

for bounded-term-size programs but also redundant computations in the execution

of recursive programs. While Datalog programs require tabling only subgoals with

atomic arguments, many other programs such as those dealing with complex lan-

guage corpora or bio-sequences require tabling structured data. Unfortunately, none



2 N.F. Zhou and C. T. Have

of the current tabling systems can process structured data satisfactorily. Consider,

for example, the predicate is list/2:

:-table is_list/1.

is_list([]).

is_list([_|L]):-is_list(L).

For the subgoal is list([1,2,...,N]), the current tabled Prolog systems demon-

strate a higher complexity than linear in N: B-Prolog (version 7.6 and older) con-

sumes linear space but quadratic time; YAP, with a global trie for all tabled struc-

tured terms (Raimundo and Rocha 2011), consumes linear space but quadratic

time; XSB is quadratic in both time and space. The nonlinear complexity is due to

the data structure used to represent tabled subgoals and answers and the need to

copy terms into and from the table area.

The inefficiency of early versions of B-Prolog in handling large sequences has been

reported and a program transformation method has been proposed to index ground

structured data to work around the problem (Have and Christiansen 2012). In old

versions of B-Prolog, tabled subgoals and answers were organized as hash tables, and

input sharing was exploited to allow a tabled subgoal to share its ground structured

arguments with its answers and its descendant subgoals. Input sharing enabled B-

Prolog to consume only linear space for the tabled subgoal is list([1,2,...,N]).

Nevertheless, since the hash code was based on the first three elements of a list, the

time complexity for a query like is list([1,1,...,1])was quadratic in the length

of the list. B-Prolog didn’t support output sharing, i.e. letting different answers share

structured data. Therefore, on the tabled version of the permutation program that

generates all permutations through backtracking, B-Prolog would create n×n! cons

cells where n is the length of the given list.

This problem with tabling structured data has been noticed before and several

remedies have been attempted. One well known technique used in parsing is to

represent sentences as position indexed facts rather than lists. XSB provides tabled

grammar predicates that convert list representation to position representation by

redefining the built-in predicate ’C’/3.1 The position representation is also used

for PCFG parsing in PRISM (Sato and Kameya 2008). A program transformation

method has been proposed to index ground structured data to work around the

quadratic time complexity of B-Prolog’s tabling system (Have and Christiansen

2012). Nevertheless, these remedies have their limitations: the position represen-

tation disallows natural declarative modeling of sequences and the program trans-

formation incurs considerable overhead. Have and Christiansen advocate for native

support of data sharing in tabled Prolog systems for better scalability of their

bio-sequence analysis application (Have and Christiansen 2012).

We have implemented full data sharing in B-Prolog in response to the manifesto.

In the new version of B-Prolog, both input sharing and output sharing are exploited

to allow tabled subgoals and answers to share ground structured data. Hash-consing

1 Personal communication with David S. Warren, 2011.



Efficient Tabling of Structured Data with Enhanced Hash-Consing 3

(Ershov 1959), a technique originally used in functional programming to share val-

ues that are structurally equal (Goto 1974; Appel and de Rezende Goncalves 2003),

is adopted to memorize structured data in the table area. This technique avoids

storing the same ground term more than once in the table area. While hash-consing

can reduce the space consumption when sharing is effective, it does not change the

time complexity. To avoid the extra linear time factor in dealing with sequences,

we enhance hash-consing with input sharing and hash code memoization. For each

compound term, an extra cell is used to store its hash code. Thanks to these tech-

niques, B-Prolog demonstrates linear complexity in terms of both space and time

on the query is list(L) for any kind of ground list L.

Our main contribution in this paper is to apply hash-consing for the first time

to tabling and enhance it with techniques to make it time efficient. As another

contribution, we also compare tries with hash consing in the tabling context. As long

as sequences are concerned, a trie allows for sharing of prefixes while hash-consing

allows for sharing of ground suffixes. While we can build examples that arbitrarily

favor one over the other, for recursively defined predicates such as is list, it

is more common for subgoals to share suffixes than prefixes. The enhanced hash-

consing greatly improves the scalability of PRISM on sequence analysis applications.

Our experimental results on a simulator of a hidden Markov model show that

PRISM with enhanced hash-consing is asymptotically better than the previous

version that supports no hash-consing.

The remainder of the paper is structured as follows: Section 2 defines the primitive

operations on the table area used in a typical tabling system; Section 3 presents

the hash tables for subgoals and answers, and describes the copy algorithm for

copying data from the stack/heap to the table area; Section 4 modifies the copy

algorithm to accommodate hash-consing; Section 5 describes the techniques for

speeding up computation of hash codes; Section 6 evaluates the new tabling system

with enhanced hash-consing; Section 7 gives a survey of related work; and Section

8 concludes the paper.

2 Operations on the Table Area

A tabling system uses a data area, called table area, to store tabled subgoals and

their answers. A tabling system, whether it is suspension-based SLG (Chen and

Warren 1996) or iteration-based linear tabling (Zhou et al. 2008), relies on the

following three primitive operations to access and update the table area.2

Subgoal lookup and registration: This operation is used when a tabled subgoal

is encountered in execution. It looks up the subgoal table to see if there is a variant

of the subgoal. If not, it inserts the subgoal (termed a pioneer or generator) into

the subgoal table. It also allocates an answer table for the subgoal and its variants.

Initially, the answer table is empty. If the lookup finds that there already is a

variant of the subgoal in the table, then the record stored in the table is used

2 The interpretation of these operations may vary depending on implementations.



4 N.F. Zhou and C. T. Have

for the subgoal (called a consumer). Generators and consumers are dealt with

differently. In linear tabling, for example, a generator is resolved using clauses

and a consumer is resolved using answers; a generator is iterated until the fixed

point is reached and a consumer fails after it exhausts all the existing answers.

Answer lookup and registration: This operation is executed when a clause suc-

ceeds in generating an answer for a tabled subgoal. If a variant of the answer al-

ready exists in the table, it does nothing; otherwise, it inserts the answer into the

answer table for the subgoal. When the lazy consumption strategy (also called

local strategy) is used, a failure occurs no matter whether the answer is in the

table or not, which drives the system to produce the next answer.

Answer return: When a consumer is encountered, an answer is returned imme-

diately if any. On backtracking, the next answer is returned. A generator starts

consuming its answers after it has exhausted all its clauses. Under the lazy con-

sumption strategy, a top-most looping generator does not return any answer until

it is complete.

3 Hash Tables for Subgoals and Answers

The data structures used for the table area are orthogonal to the tabling mechanism,

whether it is suspension-based or iteration-based; they can be hash tables, tries,

or some other data structures. In this section, we consider hash tables and the

operations for the table area without data sharing.

A hash table, called a subgoal table, is used for all tabled subgoals. For each tabled

subgoal and its variants, there is a record in the subgoal table, which includes,

amongst others, the following fields:

AnswerTable: Pointer to the answer table for the subgoal

sym: The functor of the subgoal

A1...An: The arguments the subgoal

When a tabled predicate is invoked by a subgoal, the subgoal table is looked up to

see if a variant of the subgoal exists. If not, a record is allocated and the arguments

are copied from the stack/heap to the table area. The copy of the subgoal shares

no structured terms with the original subgoal and all of its variables are numbered

so that they have different identities from those in the original subgoal.

The record of a subgoal in the subgoal table includes a pointer to another hash

table, called an answer table, for storing answers produced for the subgoal. For each

answer and its variants, there is a record in the answer table, which stores amongst

others a pointer to a copy of the answer. When an answer is produced for a subgoal,

the subgoal’s answer table is looked up to see if a variant of the answer exists. If

not, a record is allocated and the answer is copied from the stack/heap to the table

area. The answers in a subgoal’s answer table are connected from the oldest one to

the newest one such that they can be consumed by the subgoal one by one through

backtracking.

In the implementation, a hash table is represented as an array. To add an item



Efficient Tabling of Structured Data with Enhanced Hash-Consing 5

into a hash table, the system computes the hash code of the item and uses the hash

code modulo the size of the array to determine a slot for the item. All items hashed

to the same slot are connected as a linked list, called a hash chain. A hash table is

expanded when the number of records in it exceeds the size of the array.

The WAM representation (Warren 1983) is used to represent both terms on the

heap and terms in the table area except that variables in tabled terms are numbered.

A term is represented by a word containing a value and a tag. The tag distinguishes

the type of the term. It may be REF denoting a reference, ATM an atomic value, STR

a structure, LST a cons, or NUMVAR a numbered variable. A STR-tagged reference to

a structure f(t1, . . . , tn) points to a block of n+1 consecutive words where the first

word points to the functor f/n in the symbol table and the remaining n words store

the n components of the structure. An LST-tagged reference to a list cons [H |T ]

points to a block of two consecutive words where the first word stores the car H

and the second word stores the cdr T .

Figure 1 gives the definition of the function copy term that copies a numbered

term from the stack/heap to the table area. The hash function is designed in such

a way that the hash code of a non-ground term is always 0. The function call

seq hcode(code1,code2) gives the combined hash code of the two hash codes

from two components:

int seq_hcode(int code1, int code2){

if (code1==0) return 0;

if (code2==0) return 0;

return code1+31*code2+1;

}

If either code is 0, then the resulting code is 0 too.3

It is assumed that all the variables in a subgoal have been numbered before the

arguments are copied. In the real implementation, variables are numbered inside the

function copy term. The function call copy subgoal args(src,des,arity) copies

the arguments of a numbered subgoal to the table area where (src-i) points to

the ith argument on the stack and (des+i) is the destination in the table area

where the argument is copied to. In the TOAM architecture (Zhou 2012) on which

B-Prolog is based, arguments are passed through the stack and the stack grows

downward from high addresses to low ones. That is why (src-1) points to the first

argument and (src-arity) points to the last argument of the subgoal. A similar

function is used to copy answers to the table area.

The function copy term is not tail recursive and can easily cause the native C

stack to overflow when copying large lists. In the real implementation, an iterative

version is used to copy a list and compute its hash code. For a cons, the function

needs to compute the hash codes of the car and the cdr before computing its hash

code. The function does this in two passes: in the first pass it reverses the list and

in the second pass it computes the hash codes while reversing the list back.

3 Note that this way of combing hash codes is for hash consing terms. For the subgoal and answer
tables, hash codes are combined in a different way.



6 N.F. Zhou and C. T. Have

int copy subgoal args(TermPtr src, TermPtr des, int arity){
hcsum = 0;
for (i=1;i<=arity;i++){

hcode = copy term(*(src-i), des+i);
hc sum = seq hcode(hc sum,hcode);

}
return hc sum;

}

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;
return 0;

case ATM:
*des = t;

return atomic hcode(t);
case LST:

p1 = untag(t);

p2 = allocate from table(2);
car code = copy term(*p1, p2);

cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);

t1 = add tag(p2,LST);
*des = t1;
return hcode;

case STR:
p1 = untag(t);

sym = *p1;
arity = get arity(sym);
p2 = allocate from table(arity+1);

hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));
t1 = add tag(p2,STR);

*des = t1;
return hcode;

} /* end switch */

} /* end copy term */

Fig. 1. Copy data to the table area with no sharing.

The function copy term exploits no sharing of data. Consider, for example, the

following program and the query is list([1,2]). After completion of the query,

the subgoal table contains three tabled subgoals, is list([1,2]), is list([2]),

and is list([]), and each subgoal’s answer table contains an answer that is just

a copy of the subgoal itself. No data are shared among the copies of the terms. So

there are two separate copies of [1,2] and two separate copies of [2] in the table

area. In the WAM representation of lists, a cons requires two words to store, so

12 words are used in total. In general, the query is list([1,2,...,N]) consumes

O(N2) space in the table area.

4 Hash-Consing of Ground Compound Terms

Hash-consing, like tabling, is a memoization technique which uses a hash table to

memorize values that have been created. Before creating a new value, it looks up

the table to see if the value exists. If so, it reuses the existing value, otherwise,

it inserts the value into the table. The concept of hash-consing originates from

implementations of Lisp that attempt to reuse cons cells that have been constructed



Efficient Tabling of Structured Data with Enhanced Hash-Consing 7

before (Goto 1974). This technique has also been suggested for Prolog (e.g., for

sharing answers of findall/3 (O’Keefe 2001)), but its use in Prolog implementations

is unknown, not to mention its use in tabling.

Let’s call the hash table used for all ground terms terms-table. Figure 2 gives an

updated version of copy term that performs hash-consing. If the term is a list or a

structure, the function copies it into the table area first. If the term is ground, it

then calls the function hash consing(t1,hcode) to look up the terms-table to see

if a copy of t1 already exists in the table. If so, hash consing(t1,hcode) returns

the copy; otherwise, it inserts t1 into the terms-table and returns t1 itself. If an

old copy in the terms-table is returned (t1 != t2), the function deallocates the

memory space allocated for the current copy.

With hash-consing, the query ?-is list([1,2]) only creates one copy of [1,2]

in the table area and the list is shared by the subgoals and the answers. As [2] is

the cdr of [1,2], no separate copy is stored for it. So, only 4 words are used in total

for the list. The number of words used for hashing the two lists varies, depending

on if there is a collision. If no collision occurs, two slots in the terms-table are used;

otherwise, one slot in the terms-table is used and one node with two words is used

to chain the two lists. So in the worst case, 7 words are needed in total.

5 Enhanced Hash-Consing

With hash-consing, the tabled subgoal is list([1,...,N]) consumes only linear

table space now. Nevertheless, its time complexity remains quadratic in N. This

is because for each descendant subgoal is list([K,...,N]) (K>1) the hash code

of the list [K,...,N] has to be computed and the terms-table has to be looked

up. We enhance hash-consing with two techniques to lower the time complexity of

is list([1,...,N]) to linear.4

5.1 Hash code memoization

The first technique is to table hash codes of structured terms in the table area.

For each structure or a list cons in the table area, we use an extra word to store

its hash code. The WAM representation of terms is not changed. The word for the

hash code of a compound term is located right before the term. So assume p is the

untagged reference to a structure or a list cons, then p-1 references the hash code.

Figure 3 gives a new version of copy term that tables hash codes. Tabled hash

codes are used for two purposes. Firstly, when searching for the term t1 in the hash

chain, the function hash consing(t1,hcode) always compares the hash codes first

and only when the codes are equal will it compare the terms. Secondly, the system

reuses the tabled hash codes of terms when it expands a hash table and rehashes

the terms into the new hash table.

With tabled hash codes, the subgoal is list([1,...,N]) still takes quadratic

4 The worst case time complexity is still quadratic in theory if a poorly designed hash function
is used.



8 N.F. Zhou and C. T. Have

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;

return 0;
case ATM:

*des = t;

return atomic hcode(t);
case LST:

p1 = untag(t);
p2 = allocate from table(2);

car code = copy term(*p1, p2);
cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);

t1 = add tag(p2,LST);
if (is ground hcode(hcode)){

t2 = hash consing(t1,hcode);
if (t1 != t2){

deallocate to table(2);

t1 = t2;
}

}
*des = t1;

return hcode;
case STR:

p1 = untag(t);

sym = *p1;
arity = get arity(sym);

p2 = allocate from table(arity+1);
hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));
t1 = add tag(p2,STR);

if (is ground hcode(hcode)){
t2 = hash consing(t1,hcode);

if (t1 != t2){
deallocate to table(arity+1);
t1 = t2;

}
}
*des = t1;
return hcode;

} /* end switch */

} /* end copy term */

Fig. 2. Copy data with hash-consing.

time since the list [1,...,N] resides on the heap and for each descendant subgoal,

the hash code of the argument is not available and hence has to be computed. To

avoid this computation, we introduce input sharing.

5.2 Input Sharing

Input sharing amounts to letting a subgoal share its ground terms with its an-

swers and descendant subgoals. Consider the tabled subgoal is list([1,2,3]).

The answer is the same as the subgoal, so it shares the term [1,2,3] with the

subgoal in the table area. The direct descendant subgoal is is list([2,3]). Since

the list [2,3] is a suffix of [1,2,3], the descendant subgoal should share it with

the original subgoal in the table area.

To implement input sharing, we let the copying procedure set the frame slot

of an argument of a tabled subgoal to the address of the copied argument in the



Efficient Tabling of Structured Data with Enhanced Hash-Consing 9

int copy term(Term t, TermPtr des){
deref(t);
switch (tag(t)){
case NUMVAR:

*des = t;

return 0;
case ATM:

*des = t;

return atomic hcode(t);
case LST:

p1 = untag(t);
if (!is heap reference(p1)){

*des = t;
return *(p1-1); /* return the tabled hash code */

}
p2 = allocate from table(3);
p2++;

car code = copy term(*p1, p2);
cdr code = copy term(*(p1+1), p2+1);
hcode = seq hcode(car code,cdr code);

*(p2-1) = hcode;
t1 = add tag(p2,LST);

if (is ground hcode(hcode)){
t2 = hash consing(t1,hcode);

if (t1 != t2){
deallocate to table(3);
t1 = t2;

}
}
*des = t1;
return hcode;

case STR:

p1 = untag(t);
if (!is heap reference(p1)){

*des = t;
return *(p1-1); /* return the tabled hash code */

}
sym = *p1;
arity = get arity(sym);

p2 = allocate from table(arity+2);
p2++;

hcode = *p2 = sym;
for (i=1;i<=arity;i++)

hcode = seq hcode(hcode, copy term(*(p1+i), p2+i));

*(p2-1) = hcode;
t1 = add tag(p2,STR);

if (is ground hcode(hcode)){
t2 = hash consing(t1,hcode);

if (t1 != t2){
deallocate to table(arity+2);
t1 = t2;

}
}
*des = t1;
return hcode;

} /* end switch */

} /* end copy term */

Fig. 3. Tabling hash codes while copying with hash-consing.

table area if the argument is a ground structured term. So for the tabled sub-

goal is list([1,2,3]), the frame slot of the argument initially references the list

[1,2,3] on the heap. After the subgoal is copied to the table area, the frame slot

is set to reference the copy of the list in the table area. In this way, the list will be

shared by answers and the descendant subgoals. For programs that do not use de-



10 N.F. Zhou and C. T. Have

int copy subgoal args(TermPtr src, TermPtr des, int arity){
hcsum = 0;
for (i=1;i<=arity;i++){

hcode = copy term(*(src-i), des+i);
if (is ground hcode(hcode)) *(src-i) = *(des+1);

hc sum = seq hcode(hc sum,hcode);
}
return hc sum;

}

Fig. 4. Input sharing by updating frame slots.

structive assignments, which is the case for tabled programs, updating frame slots

this way causes no problem.

The function copy subgoal args shown in Figure 4 implements input sharing.

When an argument is found to be ground, the function lets the stack slot of the

argument reference its copy in the table area. The function copy term (in Figure

3) tests the reference to a compound term to see if the term needs to be copied. If

it is not a heap reference, then the referenced term must reside in the table area

and thus can be reused.

Note that our input sharing scheme has its limitation in the sense that it fails

to facilitate sharing of ground components in non-ground arguments. Consider,

for example, the subgoal is list([X,2,3]). The suffix [2,3] will not be shared

through input sharing in our implementation since the argument is not ground.

It will eventually be shared through hash-consing, but its hash code needs to be

computed again when it occurs in a descendant subgoal or an answer.

6 Evaluation

The improved tabling system described in this paper has been implemented and

made available with B-Prolog version 7.7 (BP7.7). We evaluate the proposed ap-

proach by comparing BP7.7 with YAP (version 6.3.2) and XSB (version 3.3.6), and

also the previous version of B-Prolog, version 7.6 (BP7.6), which did not have en-

hanced hash-consing. We also compare it with indexed programs produced by the

transformation proposed in (Have and Christiansen 2012) running on B-Prolog 7.6

(indexed). We use the is list/1 predicate, the edit distance/35 program, and a

PRISM program to show the effectiveness of the proposed techniques. We also test

on a program that favors prefix sharing with tries more than suffix sharing with

hash-consing. In addition, we also show results for the CHAT suite and the ATR

parser, the traditional benchmarks used to evaluate tabling systems.

The results are obtained on a Linux machine with 16 2.4 GHz, 64 bit Intel

Xeon(R) E7340 processor cores and 64 GB of memory. For this evaluation, only

a single processor core is utilized. CPU times (in seconds) and table space (in

kilobytes) consumptions are measured using the statistics/1 built-in for BP and

XSB, and table statistics/1 for YAP.

5 The source code is available in (Have and Christiansen 2012).



Efficient Tabling of Structured Data with Enhanced Hash-Consing 11

Table 1. Results on is list([1,1,...,1])
BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space
500 0.000 33 0.098 43 0.001 39 0.007 90 0.003 399
1000 0.001 66 0.776 86 0.003 78 0.033 180 0.010 567
1500 0.001 99 2.608 128 0.004 117 0.073 269 0.019 735
2000 0.002 131 6.169 171 0.005 156 0.134 359 0.037 903
2500 0.001 164 12.034 214 0.006 195 0.186 449 0.058 1071
3000 0.002 197 20.777 257 0.008 234 0.282 539 0.078 1239
3500 0.002 229 32.975 300 0.009 273 0.384 629 0.108 1407
4000 0.003 264 49.204 343 0.011 312 0.498 719 0.139 1575
4500 0.003 297 70.048 386 0.011 351 0.571 809 0.177 1743
5000 0.003 330 96.112 429 0.013 390 0.729 898 0.217 1911

Table 2. Results on is list(L) where L contains random data.
BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space
500 0.000 33 0.000 43 0.002 39 0.008 90 0.024 9990
1000 0.001 66 0.001 86 0.002 78 0.032 180 0.063 39236
1500 0.001 99 0.001 128 0.004 117 0.082 270 0.142 87991
2000 0.001 132 0.002 171 0.005 156 0.134 360 0.252 156269
2500 0.001 164 0.003 214 0.007 195 0.218 450 0.387 244071
3000 0.002 197 0.003 257 0.008 234 0.341 540 0.559 351401
3500 0.002 229 0.004 300 0.010 273 0.401 630 0.766 478260
4000 0.003 264 0.005 343 0.011 312 0.537 719 0.978 624640
4500 0.003 297 0.006 386 0.012 351 0.703 809 1.244 790555
5000 0.004 330 0.008 429 0.013 390 0.894 899 1.504 975990

Table 1 shows the results on the query is list([1,1,...,1]) where N is the

number of 1s in the list. All the systems except for BP7.6 demonstrate a close-to-

linear complexity. The higher time complexity of BP7.6 is due to that fact that

BP7.6 only uses the first three elements of a list as the key and hashing degenerates

into linear search for the query because of hash collision. The difference in time

among BP7.7, YAP and XSB is at least a large constant factor. As mentioned

above, a trie allows for sharing of prefixes while hash-consing allows for sharing of

suffixes as long as lists are concerned. For a list that contains repeated data, there

are an equal number of prefixes and suffixes, and hence both types of sharing are

equally favored. The difference between BP7.7 and indexed is only a small constant

factor.

Table 2 shows the results on the query is list(L) where L is a list of random

constants.6 BP consumes linear space and linear time; YAP consumes linear space

thanks to the global trie for terms but takes quadratic time; XSB is quadratic in

both time and space. For random lists, suffix sharing with hash consing is clearly

more effective than prefix sharing with tries.

Tables 3 and 4 show the results on the edit distance program with repeated

6 A random number generator is used to generate the lists. For each size, the same list was used
for all the systems.



12 N.F. Zhou and C. T. Have

Table 3. Results on edit([1,1,...,1],[1,1,...,1],D).
BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space
30 0.000 60 0.026 97 0.003 90 0.005 213 0.006 1273
60 0.003 233 0.726 378 0.016 348 0.034 819 0.057 4341
90 0.007 519 5.189 841 0.036 776 0.107 1820 0.235 9435
120 0.015 917 21.216 1487 0.064 1372 0.266 3214 0.736 16554
150 0.022 1427 63.536 2316 0.102 2137 0.517 5002 1.635 25698
180 0.031 2051 156.072 3328 0.142 3071 0.942 7183 3.041 36868
210 0.047 2786 334.190 4523 0.208 4173 1.533 9759 5.035 50064
240 0.060 3634 646.550 5900 0.267 5445 2.367 12728 7.662 65285
270 0.074 4595 1159.182 7460 0.339 6885 3.081 16090 11.327 82531
300 0.095 5668 1955.331 9204 0.448 8493 4.401 19847 15.664 101803

Table 4. Results on edit(L1,L2,D) where L1 and L2 contain random data.
BP7.7 BP7.6 indexed YAP XSB

N time space time space time space time space time space
30 0.001 61 0.000 97 0.004 90 0.005 214 0.011 4148
60 0.003 234 0.006 378 0.020 348 0.045 822 0.099 27706
90 0.010 521 0.016 841 0.038 776 0.118 1823 0.313 89645
120 0.017 919 0.033 1487 0.067 1372 0.298 3218 0.759 209183
150 0.027 1430 0.057 2316 0.105 2137 0.591 5007 1.501 404752
180 0.038 2054 0.094 3328 0.148 3071 1.058 7190 2.771 695363
210 0.056 2790 0.156 4523 0.217 4173 1.695 9766 4.271 1099906
240 0.073 3639 0.219 5900 0.282 5445 2.687 12736 6.247 1637354
270 0.092 4600 0.297 7460 0.352 6885 3.782 16100 8.787 2327276
300 0.114 5674 0.435 9204 0.466 8493 5.248 19857 11.954 3187340

data and random data, respectively. The main predicate edit(L1,L2,D) in the

program computes the distance between L1 and L2, i.e., the number of substitutions,

insertions and deletions needed to transform L1 to L2. The tabled version finds all

solutions. BP7.7 is significantly faster than BP7.6 on the type of queries that use

repeated data. BP7.7 also outperforms YAP and XSB in both time and space on

both types of queries. Similar to the is list benchmark, enhanced hash-consing is

asymptotically more effective than tries on random data.

Table 5 compares BP7.7 and BP7.6 on the PRISM program that simulates a

two-state hidden Markov model (Sato et al. 2010). For our benchmarking purpose,

the training data of the form hmm([a,b,a,b,...]) are used, and only the time and

space required to find all the explanations are measured. While BP7.7 consumes

slightly more space than BP7.6 due to the overhead of hash-consing, it outperforms

BP7.6 in time by a linear factor.

Although it is more common for subgoals of recursive programs to share suffixes

than prefixes, it is possible to find programs on which prefix sharing with tries is

more effective than suffix sharing with hash-consing. The following gives such a

program:

:-table create_list/2.

create_list(N,L):-



Efficient Tabling of Structured Data with Enhanced Hash-Consing 13

Table 5. Results on the PRISM program HMM.
BP7.7 BP7.6

N time space time space
2000 0.002 222 1.164 179
3000 0.005 333 3.911 269
4000 0.006 444 9.249 359
5000 0.008 555 18.044 449
6000 0.010 666 31.150 539
7000 0.011 776 49.441 628
8000 0.013 889 73.774 718
9000 0.015 1000 105.049 808
10000 0.018 1111 144.140 898

Table 6. Results on create list(N,L).
BP7.7 BP7.6 YAP XSB

N time space time space time space time space
500 0.035 2417 0.107 990 0.039 3965 0.023 290
1000 0.201 9564 0.827 3937 0.201 15742 0.043 348
1500 0.654 21635 2.989 8831 0.523 35332 0.095 407
2000 0.969 37926 7.245 15679 0.962 62734 0.169 465
2500 2.151 60082 14.130 24480 1.699 97949 0.264 524
3000 2.660 85890 24.343 35249 2.630 140976 0.378 583
3500 3.276 116011 38.397 47956 3.739 191816 0.517 641
4000 4.011 150192 57.217 62616 5.071 250468 0.675 700
4500 7.319 194310 80.994 79229 6.978 316933 0.853 758
5000 8.316 238885 110.631 97796 9.267 391211 1.051 817

between(1,N,I),

range(1,I,L).

The query create list(N,L) creates N lists [1], [1,2], ..., and [1,2,...,N] that

have only common prefixes. As shown in Table 6, XSB consumes linear space, while

BP and YAP consume quadratic space. YAP tables all suffixes into the global trie

for terms and there areO(N2) suffixes. BP7.7 consumes more table space than BP7.6

since all the terms are hash-consed but none is shared. BP7.6 is slower than BP7.7

since the hash function used in BP7.6, which is based on the first three elements of

a list, results in more collisions than BP7.7.

Table 7 compares the systems on the CHAT benchmark suite and the ATR

parser. There is almost no difference between BP7.7 and BP7.6 in time and the

space overhead incurred by hash-consing is noticeable. Hash-consing has no positive

effect on these programs because the sequences used in the programs are very short.

7 Related Work

Since structure sharing (Boyer and Moore 1972) was discarded and the Warren

Abstract Machine (WAM) (Warren 1983) triumphed as the implementation model

of Prolog, there has been little attention paid to exploiting data sharing in Prolog



14 N.F. Zhou and C. T. Have

Table 7. Results on the CHAT benchmarks and the ATR parser.
BP 7.7 BP 7.6 YAP XSB

Benchmark time space time space time space time space
cs o 0.015 198 0.0129 11 0.009 26 0.011 285
cs r 0.025 332 0.026 11 0.019 27 0.022 286
disj 0.008 108 0.009 11 0.005 23 0.007 277
gabriel 0.011 111 0.012 9 0.006 20 0.008 272
kalah 0.008 90 0.008 15 0.006 35 0.008 304
pg 0.006 69 0.006 7 0.004 15 0.006 263
read 0.057 987 0.058 23 0.099 46 0.030 327
atr 0.509 15111 0.543 5947 0.325 52520 0.280 45400

implementations.7 In his Diploma thesis (Neumerkel 1989), Ulrich Neumerkel gave

several example Prolog programs that would consume an-order-of-magnitude less

space with data sharing than without sharing. He proposed applying hash-consing

and DFA-minimization to sharing terms including cyclic ones. The proposed ap-

proach would incur considerable overhead if every compound term is hash-consed

when created, and hence it is infeasible to incorporate the approach into the WAM.

Following Appel and Goncalves’s hash-consing garbage collector for SML/NJ (Ap-

pel and de Rezende Goncalves 2003), Nguyen and Demoen recently built a similar

garbage collector for hProlog (Nguyen and Demoen 2012). The garbage collector

hash-conses compound terms on the heap in one phase and performs absorption in

another phase such that for the replications of a compound term only one copy is

kept and all the others are garbage collected. Their experiment basically confirms

the disappointing result reported in Appel and Goncalves’s paper: the overhead

outweighs the gain except for special programs.

Hash-consing can be applied to the built-in predicate findall/3, as suggested

by O’Keefe (O’Keefe 2001), to avoid repeatedly copying the same term in different

answers. Currently, B-Prolog is the only Prolog system that supports hash-consing

for findall/3. It employs a hash table for ground terms in the findall area. The

algorithm and memory manager developed for the table area is reused for the findall

area. With hash-consing, the system copies a ground term only once when copying

answers from the findall area to the heap. Input sharing is exploited in the same way

as for tabled subgoals. For a findall call, the compiler converts it into a call to a

temporary predicate such that each argument of the generator occupies one slot in

the stack frame. At runtime, the system first copies the arguments of the generator

from the stack/heap to the findall area before the generator is executed. When

an argument of the generator is found to be a ground compound term, its frame

slot is set to reference the copy in the findall area. In this way, the argument and

its subterms can be reused by the answers and the descendant calls. Nguyen and

Demoen’s implementation of input sharing for findall/3 (Nguyen and Demoen

2012) distinguishes between old terms that are created before the generator and

new terms that are generated by the generator, and have answers share the old

7 A lot of work has been done on indexing Prolog terms, but indexing is a different kind of sharing
since it does not consider reuse of terms from different sources.



Efficient Tabling of Structured Data with Enhanced Hash-Consing 15

terms. Their scheme can exploit sharing of not only ground arguments but also

ground terms in non-ground arguments. Their scheme may not be suited for tabled

data since, unlike data in the findall area which live and die with the generator,

tabled data are permanent. Also, their implementation does not exploit output

sharing.

A trie has been a popular data structure for organizing tabled subgoals and

answers (Ramakrishnan et al. 1998). It is adopted by all the tabled Prolog systems

except B-Prolog. As far as lists are concerned, a trie facilitates sharing of the prefixes

while hash-consing allows for sharing of the suffixes. So for the two lists [1,2] and

[1,2,3], the former shares the same path as the latter in the trie, but they are

treated as separate lists when hash-consed; for the two lists [2,3] and [1,2,3],

however, a trie allows for no sharing while hash-consing allows for complete sharing.

Another advantage of tries is that they can be used to perform both variant

testing and subsumption testing, and thus can be used in both variant-based and

subsumption-based tabling systems. Hash-consing, on the other hand, can be used

to perform equivalence testing only and thus cannot directly be used for subsumption-

based tabling.

Terms stored in a trie have a different representation from terms on the heap. For

example, in the YAP system, tries are represented as trie instructions (Santos Costa

et al. 2012). For this reason, when an answer is returned, it must be copied from

its trie in the table area to the heap even if it is ground. In our system, structured

ground terms in the table area have exactly the same representation as on the heap,

so when they occur in an answer they do not need to be copied when the answer is

returned.

In the original implementation of XSB and YAP, one trie is used for all tabled

subgoals, and for each subgoal one trie is used for the answer table. To enhance

sharing, Raimundo and Rocha propose using a global trie for all tabled structured

terms (Raimundo and Rocha 2011). Due to the necessity of copying answers from

the table area to the heap, the time complexity remains the same even when the

space complexity drops.

To some extent, the idea of representing sentences as position indexed facts (Have

and Christiansen 2012; Swift et al. 2009) is similar to hash-consing in the sense that

a hash-consed term always is associated with a hash code. The translation from a

program that deals with sequences represented as lists into one that uses position

representation is not trivial. When difference lists are involved, the translation is

even more complicated. The program obtained after translation may lose sharing

opportunities. Therefore, hash-consing is a more practical solution to sharing than

program transformation.

As far as we know, our implementation is the first attempt to apply hash-consing

to tabling. Our implementation enhances hash-consing with input sharing and hash

code memoization to speed-up computation of hash codes. The extra cell used to

store the hash code of a compound term is overhead if the term is never shared.

Nevertheless, while the increase of space is always a constant factor, the gain in

speed can be linear in the size of the data.



16 N.F. Zhou and C. T. Have

8 Conclusion

We have presented an implementation of hash-consing for tabling structured data.

Hash-consing facilitates sharing of structured data and can eliminate the extra

linear factor of space complexity commonly seen in early tabling systems when

dealing with sequences. Hash-consing alone does not change the time complexity.

We have enhanced it with input sharing and hash code memoization to eliminate

the extra linear factor of time complexity in dealing with sequences. The resulting

tabling system significantly improves the scalability of language parsing and bio-

sequence analysis applications.

Our work will shed some light on the discussion on what data structure to use

for tabled data. A trie is suitable for sharing prefixes and hash-consing is suitable

for sharing suffixes of sequences. Although it is possible to find programs that make

prefix sharing arbitrarily better than suffix sharing, it is more common for subgoals

of recursive programs to share suffixes than prefixes. Therefore, hash-consing is in

general a better choice than tries as a data structure for representing tabled data.

Hash-consing as it is in our implementation is not suitable for subsumption-based

tabling. It is future work to adapt hash-consing to subsumption testing.

Acknowledgements

The PRISM system has been the motivation for this project and we thank Taisuke

Sato and Yoshitaka Kameya for their discussion. We also thank the anonymous

referees for their detailed comments on the presentation. Neng-Fa Zhou was sup-

ported in part by NSF (No.1018006) and Christian Theil Have was supported by

the project Logic-statistic modelling and analysis of biological sequence data funded

by the NABIIT program under the Danish Strategic Research Council.

References

Appel, A. W. and de Rezende Goncalves, M. J. 2003. Hash-consing garbage collec-
tion. Technical Report TR 74-03, Princeton University.

Boyer, R. S. and Moore, J. S. 1972. A sharing of structure in theorem proving pro-
grams. Machine Intelligence 7, 101–116.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic
programs. Journal of the ACM 43, 1, 20–74.

Ershov, A. 1959. On programming of arithmetic operations. Communications of the

ACM 1, 8, 3–6.

Goto, E. 1974. Monocopy and associative algorithms in extended Lisp. Technical Report
TR 74-03, University of Tokyo.

Have, C. T. and Christiansen, H. 2012. Efficient tabling of structured data using
indexing and program transformation. In PADL. LNCS 7149, 93–107.

Michie, D. 1968. “memo” functions and machine learning. Nature, 19–22.

Neumerkel, U. 1989. Garbage collection in Prolog systems (in German). Ph.D. thesis,
Thesis, Technical University of Vienna.

Nguyen, P.-L. and Demoen, B. 2012. Representation sharing for Prolog. TPLP .

O’Keefe, R. A. 2001. O(1) reversible tree navigation without cycle. TPLP 1, 5, 617–630.



Efficient Tabling of Structured Data with Enhanced Hash-Consing 17

Raimundo, J. and Rocha, R. 2011. Global trie for subterms. In CICLOPS.

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., and Warren, D. 1998. Efficient
access mechanisms for tabled logic programs. Journal of Logic Programming 38, 31–54.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP Prolog system. TPLP,
Special Issue on Prolog Systems 12, 1-2, 5–34.

Sato, T. and Kameya, Y. 2008. New advances in logic-based probabilistic modeling by
PRISM. In Probabilistic Inductive Logic Programming. 118–155.

Sato, T., Zhou, N.-F., Kameya, Y., and Yizumi, Y. 2010. The PRISM user’s manual.
http://www.mi.cs.titech.ac.jp/prism/.

Somogyi, Z. and Sagonas, K. 2006. Tabling in Mercury: Design and implementation.
In PADL. LNCS 3819, 150–167.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic program-
ming. TPLP, Special issue on Prolog systems 12, 1-2, 157–187.

Swift, T., Warren, D. S., et al. 2009. The XSB Programmer’s Manual: vols. 1 and 2.
http://xsb.sf.net.

Warren, D. H. D. 1983. An abstract Prolog instruction set. Technical note 309, SRI
International.

Zhou, N.-F. 2012. The language features and architecture of B-Prolog. TPLP, Special

Issue on Prolog Systems 12, 1-2, 189–218.

Zhou, N.-F., Sato, T., and Shen, Y.-D. 2008. Linear tabling strategies and optimiza-
tions. TPLP 8, 1, 81–109.


