CHANNEL ROUTING WITH CONSTRAINT LOGIC
PROGRAMMING AND DELAY

Neng-Fa Zhou

Faculty of Computer Science and System Engineering
Kyushu Institute of Technology

lizuka, Fukuoka, Japan, 820.
E-mail: zhou@mse.kyutech.ac.jp

ABSTRACT

Channel routing is a well-known NP-complete prob-
lem in VLSI design. The problem is to find rout-
ing paths among a group of terminals that satisfy
a given connection requirement without overlapping
each other. This problem can be regarded as a con-
straint satisfaction problem. For a HV channel where
there is only one horizontal layer and one vertical layer,
the problem can be described easily in finite-domain
constraint logic programming languages. However, for
anHV channel where n > 1, the modelization is not so
straightforward because some entailment constraints
are involved. We use delay to implement the entail-
ment constraints. The resulting program is very sim-
ple, but demonstrates good performance that is com-
parable to that of previous programs.

1. INTRODUCTION

VLSI layout design consists of two phases: the
first phase, called placement, determines the posi-
tions of the modules on the VLSI chip, and the sec-
ond phase, called routing, connects the modules with
wiring. Channel routing is a kind of routing where the
routing area is restricted to a rectangular channel. A
channel consists of two parallel rows with terminals on
them. A connection requirement, called a net, speci-
fies the terminals that must be interconnected through
a routing path. A channel routing problem is to find
routing paths for a given set of nets in a given channel
such that no paths overlap each other [Bur86]. There
are a lot of different definitions of the problem that
impose different restrictions on the channel and rout-
ing paths. Figure 1 shows an example. There are two
nets in the problem, Ny requiring ¢; (the first termi-
nal of the top row) and b3 (the third terminal of the
bottom row) be connected, and Ny requiring b; and

1 2 3
N1
track—2
track-1 N2
1 2 3

FIGURE 1 Single-layer channel.

viahole ———= !

FIGURE 2 Two-layer channel.

bo be connected. The routing path for each net con-
sists of one horizontal segment placed on some track
and several vertical segments. In a single-layer chan-
nel, only planer problems are routable. For example, if
N requires b; and t2 be connected, then the problem
is unsolvable. In practice, there are multiple layers
available in a channel for routing. Figure 2 shows a
solution for the example in a two-layer channel.

The problem has been studied extensively in the
VLSI design community since Hashimoto and Stevens
[HS71] proposed it in 1971. Lapaugh has proved that
the problem is NP complete [Lap80]. Many algorithms
have been proposed for the problem [Deu76, FFL92,
LSS94, Tak92, YK82]. Most of the traditional algo-

CHANNEL ROUTING WITH CONSTRAINT PROGRAMMING

rithms are based on graph algorithms. Recently, sev-
eral modern heuristic search algorithms, for example,
neural networks [Tak92|, simulated annealing [BB88]
and genetic algorithms [L.SS94], have been proposed.

The channel routing problem is a finite-domain con-
straint satisfaction problem (CSP) [Mac86]. We con-
centrate on the dogleg-free multi-layer channel routing
problem where the routing path for every net consists
of only one horizontal line segment parallel to the two
rows of the channel and several vertical line segments
perpendicular to the two rows, and the routing area in
the channel is divided into several pairs each of which
consists of a horizontal layer for horizontal segments
and a vertical layer for vertical segments. For each
net, we need to determine the horizontal layer and the
track on which the horizontal segment lays. The verti-
cal layer for the net is determined automatically to be
the one in the same pair as the horizontal layer. For
this problem, each net to be routed can be treated as
a variable whose domain is a set of all pairs of layers
and tracks. To minimize the routing area means to to
minimize the number of tracks.

Simonis [Sim90] has applied CHIP [DVS+88], a con-
straint logic programming language, to two-layer and
three-layer channel routing problems where there is
only one vertical layer involved. In [Zho95], we have
implemented a forward checking algorithm that uses a
special data structure called state tables. In this pa-
per, we give a program for solving multilayer channel
routing problems. The program uses the finite-domain
constraint solving and delay facilities. It is very sim-
ple, but demonstrates good performance comparable
to previous programs for the the Deutsch’s difficult
problem. Duchier and Huitouze have written a pro-
gram [DH96] in CLP(FD) that is based on the same
idea and demonstrates similar performance.

This paper is organized as follows: In Section 2,
we define the channel routing problem in detail. In
Section 3, we describe the program. In Section 4, we
give the experimental results. In section 5, we compare
our approach with other approaches and discuss the
directions for improving the program.

2. CHANNEL ROUTING

A channel consists of two parallel horizontal rows
with terminals on them. The terminals are numbered
1, 2, and so on from left to right. A netis a set of ter-
minals that must be interconnected through a routing
path. The channel routing problem is to find routing
paths for a given set of nets in a given channel such
that no segments overlap each other, and the routing
area and the total length of routing paths are mini-

Ny = {t2,t5}
Ny = {b1,bs}
N3 = {b2,bs}
N4 = {t37t9}
N5 = {bs,t4,b5}
NG = {t67b7}
Ny = {t7,b11}
Ng = {bs, b0}

Ny = {bg,t10,b12}
Nio = {ti1,t12}

FIGURE 3 The set of nets in the example problem.

mized.

There are a lot of different definitions of the prob-
lem that impose different restrictions on the channel
and routing paths. We consider the dogleg-free multi-
layer channel routing problem which impose the fol-
lowing three restrictions: First, the routing path for
every net consists of only one horizontal segment that
is parallel to the two rows of the channel, and several
vertical segments that are perpendicular to the two
rows. This type of routing paths is said to be dogleg-
free. Second, the routing area in a channel is divided
into several pairs of layers, one called a horizontal layer
and the other called a vertical layer. Horizontal seg-
ments are placed in only horizontal layers and vertical
segments are placed in only vertical layers. The ends
of segments in a routing path are connected through
via holes. There are several tracks in each horizontal
layer. Minimizing the routing area means minimiz-
ing the number of tracks. Third, no routing path can
stretch over more than one pair of layers. Thus, for
each net, we only need to determine the horizontal
layer and the track for the horizontal segment. The
positions for the vertical segments are determined di-
rectly after the horizontal segment is fixed. In the
following, we use nHV to denote a 2 x n-layer channel
that has n pairs of horizontal and vertical layers.

For example, Figure 3 shows a set of nets. The
terminals on the ith column of the top and bottom
rows are denoted as t; and b; respectively. Figure 4
depicts a 2HV channel and the routing paths for the
nets.

Two constraint graphs are created based on the
given set of nets: one directed graph called a vertical
constraint graph G, and one indirected graph called
a horizontal constraint graph Gn. In G,, each vertex
corresponds to a net and each arc from vertex u to
vertex v means that net u must be placed above net
v if they are placed in the same horizontal layer. The

CHANNEL ROUTING WITH CONSTRAINT PROGRAMMING

; N4 : i N1G
track-3 —— —s X
N6 horizontal-layer-2

track-2 s
N2 ; N9 vertical-layer-2
track-1 e | | ane—

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

H N1 H ; N7
track-3 —

horizontal-layer-1
N orizontal-laye

track-2

N3 N8 vertical-layer-1
track-1 = —e

FIGURE 4 One solution for the example.

Gy Gh

FIGURE 5 Constraint graphs.

relation above does not necessarily reflect the physical
configuration of tracks. A track with number ¢;th is
said to be above another track with number ¢, in the
same layer if ¢; is greater than ¢5. In G}, each vertex
corresponds to a net and there is an edge between two
vertices w and v if net u and net v cannot be placed on
the same track. Figure 5 depicts the constraint graphs
for the set of nets shown in Figure 3. There is an arc
from vertex 1 to vertex 5 in G, because t5 is included
in N and by is included in Nj. If Ny is placed above
N or on the same track as N7 in the same horizontal
layer, then the vertical segments on the fifth column
will overlap. There is an edge between vertex 1 and
vertex 2 in G, because the segment (2,5) connect-
ing the two farthest terminals in Ny and the segment
(1,6) connecting the two farthest terminals in N, over-
lap each other. Notice that the relation above is not
transitive unless there is only one vertical layer in the
given channel. For example, in a 2HV channel, N, can
even be placed below Ng in the same horizontal layer
if Ny is placed in a different horizontal layer.

The depth of a net w in G, is computed as follows:
If u lies at the top of G,, then u’s depth is 0; other-
wise, suppose u has n predecessors vy, vs, ..., v,, then
u's depth is max({d,1,...,d,»}) where d, denotes the

depth of v. There may exist cycles in G,. In this case,
all the vertices in a cycle have the same depth. The
length of a routing path is the sum of the lengths of
the horizontal and vertical segments in the path. For
a horizontal segment whose left-most terminal num-
ber is [and whose right-most terminal number is 7,
the length of the segment is r — [+ 1. Let ¢ be the
number of tracks in each horizontal layer. The length
of a vertical segment between the ith track and the
top row is t —i+ 1 and the length of a vertical segment
between the ¢th track and the bottom row is .

3. PROGRAM

Channel routing problem is a CSP: Each net is
treated as a variable whose domain is the set of all
pairs of layers and tracks. The constraints are repre-
sented by the two constraint graphs G, and Gj. Si-
monis [Sim90] has applied CHIP to the two-layer and
three-layer channel routing problems where there is
only one vertical layer involved. The relation abowve is
represented as disequalities (>). However, as we have
described in Section 2, the relation above is not tran-
sitive for general multi-layer channel routing problems
and thus cannot be represented as disequalities. We
present now a program in CLP(FD) for the problem
that uses the couroutining facility.

The formulation described above does not directly
suit CLP(FD) because the domains in CLP(FD) are
restricted to sets of atomic values. To make the for-
mulation suitable to CLP(FD), we concentrate on the
tracks and number them uniquely as 0, 1, and so on. In
this way, we can still associate each net with a domain
variable that indicates the global track number. After
the global track number is determined, the layer and
the track in the layer can be easily computed. Let L
be the number of horizontal layers and T be the num-
ber of tracks in each horizontal layer. The domains of
all variables are 0..L x T'— 1. Let ¢ be the global track
number for a net. The layer is V//T + 1 and the track
number in the layer is t — (¢//T) x T + 1, where the
operator // denotes integer division.

Figure 6 shows
the program. The call generate vars(N,L,T,Vars)
generates N variables whose domains are 0..L x T —
1 and each of which corresponds to a net. The
call generate constraints(Vars,T) generates con-
straints among the domain variables. The call
label (Vars) assigns values to variables.

It is very straightforward to generate horizontal con-
straints. For each pair of variables X and Y, if they
cannot lie on the same track, then emit the inequality
constraint X #Y.

CHANNEL ROUTING WITH CONSTRAINT PROGRAMMING

route(N,L,T) :-
generate_vars(N,L,T,Vars),
generate_constraints(Vars,T),
label (Vars).

label([]):-!.

label (Vars) : -
choose(Vars,Var,Rest),
indomain(Var),
label (Rest).

FIGURE 6 Program in CLP(FD).

different_track(X,Y):-X#Y.

However, generating vertical constraints is not so
straightforward. Suppose there is an arc between two
variables X and Y in Gv. The following entailment con-
straint declaratively specifies the above relation: “if X
and Y lie in the same layer, then X must be greater
than Y”. Procedurally, the constraint can be described
as follows:

delay above(X,Y,T) if var(X), var(Y).
above(X,Y,T):-

nonvar(X),!

Y ¢ X..(X//T)*T+T-1.
above(X,Y,T):-

X ¢ (Y//T)*T..Y.

Figure 7 illustrates the relation. If both X and Y are
variables, then delay the constraint; if X has gotten
a value, then Y cannot be routed in the shadow area
X..(X//T)*T — 1; if Y has gotten a value, then X
cannot be routed n the shadow area (Y//T)«T..Y.

(X//T)*T+T);l

(b) After Y is routed, X cannot be routted in the shadow area.

FIGURE 7 The constraint X is above Y

4. EXPERIMENTAL RESULTS

In this subsection, we present the results for the
Deutch’s problem obtained with B-Prolog and com-
pare them with the best results known now.

4.1 B-PROLOG

B-Prolog is an emulator-based Prolog system. Its
performance is comparable in general to that of emu-
lated SICStus-Prolog (version 2.1), a commercial sys-
tem developed at Swidish Institute of Computer Sci-
ence. For a group of search programs that do a lot
of backtracking, B-Prolog is about forty percent faster
than emulated SICStus-Prolog.

The finite-domain constraint solver is mostly writ-
ten in canonical-form Prolog where input and out-
put unifications are separated and determinisms of
clauses are denoted explicitly. The performance of the
constraint solver is better than that of clp(FD) (ver-
sion 2.2), a system developed at INRIA, and Eclipse
(version 3.5.1), a system developed at ECRC. For
the 64-queens problem, B-Prolog takes 0.8 second on
a SPARC-10, whereas Eclipse takes 1.6 seconds and
clp(FD) takes 2.8 seconds on the same computer.

4.2 PROGRAMS AND BENCHMARKS

The program can minimize the number of tracks and
the total length of routing paths by using branch &
bound. It is only around 350 lines long excluding com-
ments, blanks, the data for the nets, and the code for
displaying solutions.

The Deutsch’s difficult problem is used as the bench-
mark. The benchmark suite given in [YK82] are well
used in the VLSI design community, among which
the Deutsch’s difficult problem is a representative one.
The problem is to route a set of 72 nets on a channel
where there are 174 terminals on each row. There are
117 arcs in the constraint graph G, and 846 edges in
Gh.

4.3 HEURISTICS

The order in which variables are instantiated can
affect the efficiency of the algorithm dramatically. We
use the following rules to choose a variable.

1. Choose first a variable whose corresponding net
lies at the bottom in G,.

2. Choose first a variable with the smallest domain.

3. Choose first a variable whose corresponding net
has the greatest degree in G,.

CHANNEL ROUTING WITH CONSTRAINT PROGRAMMING

HV | 2HV | 3HV | 4HV
Initial bound 40 20 14 10
Best solution 28 11 7 5

Table 1 The best solutions found in five minutes.

4. Choose first a variable whose corresponding net
has the greatest degree in Gy,.

5. Choose first a variable whose corresponding net
lies at the bottom of G,.

The first rule ensures that the nets at the bottom of G,
are routed before those above them. All the other rules
are consistent with the first fail principle [Hen889).
Choosing first a variable that has the smallest domain
and participates in the largest number of constraints
can usually make a failure occur earlier. The second
rule is only used in the forward checking algorithm.

4.4 SOLUTIONS

We have run the programs on a SPARC-10 many
times by asking them different questions.

Question 1:

What solutions for HV, 2HV, 8HV and 4HV chan-
nels can be found in five minutes that require the min-
imum numbers of tracks.?

Table 1 shows the answers. The row Initial bound
depicts the initial bound on the number of tacks, and
the row Best solution gives the best solution obtained
in five minutes.

We have tried several combinations of rules for
choosing variables. The combination 1-5-3-4 demon-
strates the best performance for all the programs and
all the types of channels. The best HV solution ob-
tained is known to be optimal in terms of the number
of tracks [KSP73]. The optimal solutions for the re-
maining types of channels have not yet been reported.

The CHIP program described in [Sim90] found an
optimal HV solution for the same problem in less than
30 seconds. Takefuji’s programs found the same best
solutions. The router described in [FFL92] found in
less than one second a solution for 2HV that requires
10 tracks, but it does not require segments in a routing
path to be in only one pair of layers.

Question 2:

Are the best solutions optimal? The program failed
to prove the optimality of the solutions in 12 hours.

HV | 2HV | 3HV | 4HV
1.9 1.8 20| 26.1

Table 2 The times (in seconds) required to find the first
best solutions.

HV | 2HV | 3HV | 4HV

5954 | 4102 | 3567 | 3364
Table 3 The lengths of the best solutions found in one
hour.
Question 3:

How many seconds does it take to find the first best
solution for each type of channel? Table 2 shows the
answers. The heuristics 1-5-3-4 is used.

Question 4:

What shortest solutions can be found in one hour?
Table 3 shows the lengths of the solutions. Figures 77
to ?? show the solutions for HV and 4HV channels.

TT
il

adll
I

[

T
T

FIGURE 8 Number of tracks = 28, Length=5954

5. CONCLUSION

This this paper, we described a program for the
channel routing problem in a finite-domain constraint
programming language. There have been a huge num-
ber of algorithms proposed to solve the channel routing
problem. Recent algorithms tend to be very compli-
cated and thus are very difficult to implement. Fur-
thermore, when the restrictions on the channel or
routing paths change, the algorithms must be re-
designed. Compared with these traditional algorith-
mic approaches, our approach is declarative and very
simple. The program can be easily adapted to other
types of routing problems by modifying the definitions
of domains, constraints and heuristics.

The program can be improved in several directions.
Firstly, the current program only use general heuris-
tics for ordering variables. It would be more efficient

CHANNEL ROUTING WITH CONSTRAINT PROGRAMMING

S o— Rl =
p— f— e
oo i W | Pl "_‘@ [— T =1

FIGURE 9 Number of tracks = 5, Length = 3364.

to use some problem specific heuristics used in tra-
ditional algorithms. For example, such information
about nets concerning the lengths of nets, types of
nets (two-terminal nets, multi-terminal nets, nets con-
necting only terminals at the top, nets connecting only
terminals at the bottom, etc.) can be used to choose
variables. Secondly, the program can be improved
by introducing heuristics for choosing appropriate val-
ues for selected variables. These two improvements
should be justified by experiments. For this purpose,
a large number of benchmark problems must be tested.
Thirdly, the program can be executed in parallel on a
multi-processor computer or a network of computers.
Parallel search is a promising technique that can be
used to find good solutions and prove optimality of
solutions.

ACKNOWLEDGEMENTS

The idea originated from my early work described
in [Zho95] and discussion with Dr. S.L. Huitoze and
Dr. D. Dechier who contributed the key idea of using
delay.

REFERENCES
[BB88] Brouwer, R.J. and Banerjee, P., A Parallel
Simulated Annealing Algorithm for Channel
Routing on a Hypercube Multiprocessor, in:
IEEE Int. Conf. Comput. Design, 1988, 4-7.

[Bur86] Burstein, M, Channel Routing in:Layout
Design and Verification, North-Holland,
1986, 133-167.

[DH96] Duchier, D. and Huitouze, S.L.: Chan-
nel Routing with CLP(FD), submitted to
PACT’96, 1996.

[Deu76] Deutsch, D.N.; A Dogleg Channel Router,

in: Proc. 13th Design Automation Confer-
ence, 1976, 425-433.

[DVS+88] Dincbas, M., Van Hentenryck, H., Simonis,
H., Aggoun, A., Graf, T., and Berthier, F.,

[FFL92]

[HST71]

[KSP73]

[Kum92]

[Lap80]

[L.SS94]

[Mac86]

[Sim90)]

[Tak92]

[Hen889)

[YKS82]

[Zho95)

The Constraint Logic Programming Lan-
guage CHIP, in: Proc. FGCS’88, 1988, 693-
702.

Fang, S.C., Feng, W.S., and Lee, S.L.,
A New Efficient Approach to Multilayer
Channel Routing Problem, in: Proc. of the
29th ACM/IEEE Design Automation Con-
ference, 1992, 579-584.

Hashimoto, A and Stevens, S., Wire Rout-
ing by Optimizing Channel Assignment
within Large Apertures, in: Proc. 8th De-
sign Automation Workshop, 1971, 155-169.

Kernighan, B.W., Schweikert, D.G., and
Persky, G., An Optimum Channel-routing
Algorithm for Polycell Layouts of Integrated
Circuits, in: Proc. 10th Design Automation
Workship, 1973, 50-59.

Kumar, V., Algorithms for Constraint Sat-
isfaction Problems: A Survey, in: AI Mag-
azine, 1992,32-44.

LaPaugh, A.S., Algorithms for Integrated
Circuits Layout: An Analytic Approach,
PhD Dissertation, MIT Lab. of Computer
Science, 1980.

Liu, X., Sakamoto, A. and Shimamoto, T.,
Genetic Channel Router, in: IEICE Trans.
Fundamentals, 1994, E77-A:492-501.

Mackworth, A., Constraint Satisfaction, in:
Encyclopedia of Artificial Intelligence, John
Wiley & Sons, 1986, 205-211.

Simonis, H., Channel Routing Seen as a
Constraint Problem, Tech. Rep., TR-LP-51,
ECRC, Munich, July, 1990.

Takefuji, , Neural Network Parallel Comput-
ing, Kluwer Academic Publishers, 1992.

Van Hentenryck, P., Constraint Satisfaction
wn Logic Programming, MIT Press, 1989.

Yoshimura, T. and Kuh, E.S., Efficient Al-
gorithms for Channel Routing, in: IEEFE
Trans. CAD, 1:25-35 (1982).

Zhou, N.F., A Logic Programming Ap-
proach to Channel Routing, in: Proc. 12th
International Conference on Logic Program-
ming, MIT Press, 159-173, 1995.

