
Declarative Loops and List Comprehensions for

Prolog

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

Last updated: January 25, 2010.

1 Introduction

Prolog relies on recursion to describe loops. This has basically remained the

same since Prolog’s inception 35 years ago. Many other languages provide pow-

erful loop constructs. For example, the foreach statement in C# and the en-

hanced for statement in Java are very powerful for iterating over collections.

Functional languages provide higher-order functions and list comprehensions for

iterating over and creating collections. The lack of powerful loop constructs has

arguably made Prolog less acceptable to beginners and less productive to experi-

enced programmers because it is often tedious to define small auxiliary recursive

predicates for loops. The emergence of constraint programming constructs such

as CLP(FD) has further revealed this weakness of Prolog as a host language.

ECLiPSe [1] provides logical loop constructs, but there are too many derivative

iterators and the semantics are not simple (e.g., an iterator can be used to iterate

through a list that is yet to be constructed).

In this note, we adapt to Prolog foreach for iterating over collections and

list comprehensions for constructing lists. The foreach construct has a very

simple syntax and semantics. For example, foreach(A in [a,b], I in 1..2,

write((A,I))) outputs four tuples (a,1), (a,2), (b,1), and (b,2). Syntac-

tically, foreach is a variable-length call whose last argument specifies a goal

to be executed for each combination of values in a sequence of collections. A

foreach call may also give a list of variables that are local to each iteration and

a list of accumulators that can be used to accumulate values from each iteration.

With accumulators, we can use foreach to describe recurrences for computing

aggregates. Recurrences have to be read procedurally and thus do not fit well

with Prolog. For this reason, we borrow list comprehensions from functional lan-

guages. A list comprehension is a list whose first element has the functor ’:’/2. A

list of this form is interpreted as a list comprehension in calls to ’@=’/2 and some

other contexts. For example, the query X@=[(A,I) : A in [a,b], I in 1..2]

binds X to the list [(a,1),(a,2),(b,1),(b,2)]. A list comprehension is treated

as a foreach call with an accumulator in the implementation.

2 The Base foreach

The foreach construct is a variable-length call with the name foreach. The

base form looks like:

foreach(E1 in D1, . . ., En in Dn, LocalV ars,Goal)

where Ei is normally a variable but can be any term, and Di a list or a range

of integers l..u (inclusive), LocalV ars, which is optional, is a list of variables in

Goal that are local to each iteration, and Goal is a callable term. All variables

in Ei’s are local variables. The foreach call means that for each combination of

values E1 ∈ D1, . . ., En ∈ Dn, the instance Goal is executed after local variables

are renamed. The call fails if any of the instances fails. Any variable that occurs

in Goal but is not in any Ei or LocalV ars is shared by all iterations.

Examples

?-foreach(I in [1,2,3],write(I)).

123

?-foreach(L in [[1,2],[3,4]], (foreach(I in L, write(I)),nl)).

12

34

?-functor(A,t,10),foreach(I in 1..10,arg(I,A,I)).

A = t(1,2,3,4,5,6,7,8,9,10)

?-foreach((A,I) in [(a,1),(b,2)],writeln(A=I)).

a=1

b=2

The power of foreach is more clearly revealed when it is used with arrays.

The following predicate creates an N×N array, initializes its elements to integers

from 1 to N×N, and then prints it out.

go(N):-

new_array(A,[N,N]),

foreach(I in 1..N,J in 1..N,A[I,J] is (I-1)*N+J),

foreach(I in 1..N,

(foreach(J in 1..N,

[E],(E @= A[I,J], format("~4d ",[E]))),nl)).

In the last line, E is declared as a local variable. In B-Prolog, a term like A[I,J]

is interpreted as an array access in arithmetic built-ins, calls to ’@=’/2, and

constraints, but as the term A^[I,J] in any other context. That is why we can

use A[I,J] is (I-1)*N+J to bind an array element but not write(A[I,J]) to

print an element.

2

3 Simultaneous foreach

The base foreach cannot be used to easily iterate over multiple collections si-

multaneously. For example, given two lists, it is not easy to use the base foreach

to create an association list from the two. To facilitate iteration over multiple

collections simultaneously, we allow an iterator to take the form

(X1, X2, . . . , Xn) in (D1, D2, . . . , Dn)

which means that for each X1 ∈ D1, an element Xi is picked from Di (i≥2)

simultaneously. For example,

?-foreach((X,Y) in ([a,b],1..2),writeln(X=Y)).

a=1

b=2

4 foreach with Accumulators

The base foreach is not suitable for computing aggregates. We extend it to

allow accumulators. The extended foreach takes the form:

foreach(E1 in D1, . . ., En in Dn, LocalV ars,Accs,Goal)

or

foreach(E1 in D1, . . ., En in Dn, Accs,LocalV ars,Goal)

where Accs is an accumulator or a list of accumulators. The ordering of LocalV ars

and Accs is not important since the types are checked at runtime.

One form of an accumulator is ac(AC, Init), where AC is a variable and

Init is the initial value for the accumulator before the loop starts. In Goal,

recurrences can be used to specify how the value of the accumulator in the

previous iteration, denoted as AC^0, is related to the value of the accumulator

in the current iteration, denoted as AC^1. Let’s use Goal(ACi, ACi+1) to denote

an instance of Goal in which AC^0 is replaced with a new variable ACi, AC^1 is

replaced with another new variable ACi+1, and all local variables are renamed.

Assume that the loop stops after n iterations. Then this foreach means the

following sequence of goals:

AC0 = Init,

Goal(AC0, AC1),

Goal(AC1, AC2),

. . .,

Goal(ACn−1, ACn),

AC = ACn

3

Examples

?-foreach(I in [1,2,3],ac(S,0),S^1 is S^0+I).

S = 6

?-foreach(I in [1,2,3],ac(R,[]),R^1=[I|R^0]).

R = [3,2,1]

?-foreach(A in [a,b], I in 1..2, ac(L,[]), L^1=[(A,I)|L^0]).

L = [(b,2),(b,1),(a,2),(a,1)]

?-foreach((A,I) in ([a,b],1..2), ac(L,[]), L^1=[(A,I)|L^0]).

L = [(b,2),(a,1)]

The following predicate takes a two-dimensional array, and returns its minimum

and maximum elements:

array_min_max(A,Min,Max):-

A11 is A[1,1],

foreach(I in 1..A^length,

J in 1..A[1]^length,

[ac(Min,A11),ac(Max,A11)],

((A[I,J]<Min^0->Min^1 is A[I,J];Min^1=Min^0),

(A[I,J]>Max^0->Max^1 is A[I,J];Max^1=Max^0))).

A two-dimensional array is represented as an array of one-dimensional arrays.

The notation A^length means the size of the first dimension.

Another form of an accumulator is ac1(AC, F in), where Fin is the value ACn

takes on after the last iteration. A foreach call with this form of accumulator

means the following sequence of goals:

AC0 = FreeV ar,

Goal(AC0, AC1),

Goal(AC1, AC2),

. . .,

Goal(ACn−1, ACn),

ACn = Fin,

AC = FreeV ar

We begin with a free variable FreeV ar for the accumulator. After the iteration

steps, ACn takes on the value Fin and the accumulator variable AC is bound to

FreeV ar. This form of an accumulator is useful for incrementally constructing

a list by instantiating the variable tail of the list.

4

Examples

?-foreach(I in [1,2,3], ac1(R,[]), R^0=[I|R^1]).

R = [1,2,3]

?-foreach(A in [a,b], ac1(L,Tail), L^0=[A|L^1]), Tail=[c,d].

L = [a,b,c,d]

?-foreach((A,I) in ([a,b],1..2), ac1(L,[]), L^0=[(A,I)|L^1]).

L = [(a,1),(b,2)]

5 List Comprehensions

A list comprehension is a construct for building lists in a declarative way. List

comprehensions are very common in functional languages such as Haskell, Ocaml,

and F#. We propose to introduce this construct into Prolog.

A list comprehension takes the form:

[T : E1 in D1, . . ., En in Dn, LocalV ars,Goal]

where LocalV ars (optional) specifies a list of local variables, Goal (optional)

must be a callable term. The construct means that for each combination of

values E1 ∈ D1, . . ., En ∈ Dn, if the instance of Goal, after the local variables

being renamed, is true, then T is added into the list.

Note that, syntactically, the first element of a list comprehension takes the

special form of T:(E in D). A list of this form is interpreted as a list comprehen-

sion in calls to ’@=’/2 and constraints in B-Prolog.

A list comprehension is treated as a foreach call with an accumulator. For

example, the query L@=[(A,I) : A in [a,b], I in 1..2] is the same as

foreach(A in [a,b], I in 1..2, ac1(L,[]),L^0=[(A,I)|L^1])

.

Examples

?-L @=[X : X in 1..5].

L = [1,2,3,4,5]

?- L @= [1 : X in 1..5].

L = [1,1,1,1,1]

?- L @= [Y : X in 1..5].

L = [Y,Y,Y,Y,Y]

5

?- L @= [Y : X in 1..5,[Y]]. % Y is local

L = [_598,_5e8,_638,_688,_6d8]

?- L @= [Y : X in [1,2,3], [Y], Y is -X].

L = [-1,-2,-3]

?-L @=[(A,I): A in [a,b], I in 1..2].

L = [(a,1),(a,2),(b,1),(b,2)]

?-L @=[(A,I): (A,I) in ([a,b],1..2)].

L = [(a,1),(b,2)]

6 Application Examples

6.1 Print staircases

/* Draw a staircase of a given steps. Example query:

?-go(4).

+---+

| |

+---+---+

| | |

+---+---+---+

| | | |

+---+---+---+---+

| | | | |

+---+---+---+---+

*/

go(N):-

foreach(I in 1..N,

(foreach(J in 1..N-I, write(’ ’)),

foreach(J in 1..I, write(’+---’)),

writeln(’+’),

foreach(J in 1..N-I, write(’ ’)),

foreach(J in 1..I, write(’| ’)),

writeln(’|’))),

foreach(I in 1..N, write(’+---’)), writeln(’+’).

6.2 Quicksort

qsort([],[]).

qsort([H|T],S):-

6

L1 @= [X : X in T, X<H],

L2 @= [X : X in T, X>=H],

qsort(L1,S1),

qsort(L2,S2),

append(S1,[H|S2],S).

6.3 Generate permutations

perms([],[[]]).

perms([X|Xs],Ps):-

perms(Xs,Ps1),

Ps @= [P : P1 in Ps1, I in 0..Xs^length,[P],insert(X,I,P1,P)].

insert(X,0,L,[X|L]).

insert(X,I,[Y|L1],[Y|L]):-

I>0,

I1 is I-1,

insert(X,I1,L1,L).

6.4 N-Queens problem

queens(N):-

length(Qs,N),

Qs :: 1..N,

foreach(I in 1..N-1, J in I+1..N,

(Qs[I] #\= Qs[J],

abs(Qs[I]-Qs[J]) #\= J-I)),

labeling([ff],Qs),

writeln(Qs).

In B-Prolog (version 7.4 and up), the array subscript notation X[I1,...,In] can

be used to access arguments of structures and elements of lists. An array is just

a structure whose functor is ’[]’, and a multi-dimensional array is a structure of

structures. In this example, Qs is a list and Qs[I] means the Ith element of the

list.

6.5 N-Queens problem as a SAT problem

bool_queens(N):-

new_array(Qs,[N,N]),

Vars @= [Qs[I,J] : I in 1..N, J in 1..N],

Vars :: 0..1,

foreach(I in 1..N,

sum([Qs[I,J] : J in 1..N]) #= 1),

7

foreach(J in 1..N,

sum([Qs[I,J] : I in 1..N]) #= 1),

foreach(K in 1-N..N-1,

sum([Qs[I,J] : I in 1..N, J in 1..N, I-J=:=K]) #=< 1),

foreach(K in 2..2*N,

sum([Qs[I,J] : I in 1..N, J in 1..N, I+J=:=K]) #=< 1),

labeling(Vars),

foreach(I in 1..N,[Row],

(Row @= [Qs[I,J] : J in 1..N], writeln(Row))).

6.6 Magic squares

go(N):-

new_array(Board,[N,N]),

NN is N*N,

Vars @= [Board[I,J] : I in 1..N, J in 1..N],

Vars :: 1..NN,

Sum is NN*(NN+1)//(2*N),

foreach(I in 1..N,sum([Board[I,J] : J in 1..N]) #= Sum),

foreach(J in 1..N,sum([Board[I,J] : I in 1..N]) #= Sum),

sum([Board[I,I] : I in 1..N]) #= Sum,

sum([Board[I,N-I+1] : I in 1..N]) #= Sum,

all_different(Vars),

labeling([ffc],Vars),

foreach(I in 1..N,

(foreach(J in 1..N, [Bij],

(Bij @= Board[I,J], format("~4d ",[Bij]))),nl)).

7 A Comparison with ECLiPSe’s Loop Constructs

Besides recursion, Prolog provides other constructs, such as failure-driven con-

trol constructs and higher-order predicates, for describing loops. These facilities,

however, do not fit well with CLP(FD) because no variables can be retained

after looping. Our proposed loop constructs were inspired by ECLiPSe’s loop

constructs, but they are different both syntactically and semantically.

Syntactically, ECLiPSe provides a built-in, called do/2, in which several types

of iterators (fromto/4, foreach/2, for/3, for/4, foreacharg/2, count/3, and

param/n) can be specified. In contrast, our proposed foreach is a variable-

length call in which only one type of iterator E in D is needed. An iterator

specifies a pattern for an element and a collection which can be a list or a range

of integers. An iterator with a tuple of collections specifies a simultaneous loop.

Accumulators can be given to describe recurrences for computing aggregates and

the list comprehension notation is just a foreach call that takes one accumulator.

8

Semantically, ECLiPSe’s iterators are unification-based while our iterators

are matching-based. In ECLiPSe, the collection of an iterator can be changed by

unification even if the goal of the loop does not change anything. For example,

?-foreach(f(a,X),[f(a,b),f(Y,Z)]) do write(X).

displays b and Z, and as a side effect, binds Y to a after the loop. If there is an

element in the list that does not unify with the pattern, then the whole loop

fails. For example,

?-foreach(f(a,X),[c,f(a,b),f(Y,Z)]) do write(X).

fails. In contrast, our iterators never change a collection unless the goal of the

loop has that effect. For example,

?-foreach(f(a,X) in [c,f(a,b),f(Y,Z)],write(X)).

displays b. The elements c and f(Y,Z) are skipped because they do not match

the pattern f(a,X).

In ECLiPSe, variables are assumed to be local to each iteration unless they

are declared global in a param iterator. In contrast, in our proposed construct,

variables are assumed to be global to all the iterations unless they are declared lo-

cal or occur in the patterns of the iterators. From the programmer’s perspective,

the necessity of declaring variables is a burden in both approaches. We believe,

however, that there are normally fewer local variables than global ones, and

hence the global-by-default approach imposes less a burden on the programmer.

Sometimes, people may use anonymous variables ’ ’ in looping goals and wrongly

believe that they are local. This is a weakness of the global-by-default approach.

Nevertheless, with warnings from the reader, this problem is alleviated.

From the implementation perspective, the difference between global-by-default

and local-by-default is minor when loops are compiled. When loops are inter-

preted, however, the advantage of global-by-default is obvious because only local

variables in the looping goal, not the entire goal itself, needs to be copied.

Our constructs are more convenient than ECLiPSe’s for describing nested

loops. Figure 1 compares the encodings of the N-queens problem in B-Prolog

and ECLiPSe . In B-Prolog, the operator :: does not work on arrays, and so the

list comprehension Vars @= [Q[I] : I in 1..N] is used to fetch the variables

from the array. The loop variables I and J are local by default. In comparison,

in the ECLiPSe’s encoding, the variables Qs and N must be declared global, and

in the inner loop even the loop variable I of the outer loop has to be declared

global.

In ECLiPSe, it’s possible to use iterators to construct multiple lists of the

same length. For example,

?-foreach(X,[1,2,3]),foreach(Y,Ys),foreach(Z,Zs) do

Y is -X, Z is abs(X).

9

B-Prolog

queens(N):-

new array(Qs,[N]),

Vars @= [Q[I] : I in 1..N],

Vars :: 1..N,

foreach(I in 1..N-1, J in I+1..N,

(Qs[I] #\= Qs[J],

abs(Qs[I]-Qs[J]) #\= J-I)),

labeling([ff],Qs)

ECLiPSe

queens(N):-

dim(Qs,[N]),

Qs :: 1..N,

(for(I,1,N-1), param(Qs,N) do

(for(J,I+1,N), param(Qs,I) do

Qs[I] #\= Qs[J],

abs(Qs[I]-Qs[J]) #\= J-I

)

),

labeling([ff],Qs).

Fig. 1. Encodings of the N-queens problem in B-Prolog and ECLiPSe.

builds two lists Ys and Zs from [1,2,3]. In general, there are more cases where

we need to iterate over multiple collections than where we need to build multi-

ple collections. For the later cases, we can either use multiple accumulators or

maplist/n, which is as convenient as ECLiPSe’s iterators.

Acknowledgement

Both the design and the implementation in B-Prolog benefited greatly from

discussions in the comp.lang.prolog news group. Thanks to the following peo-

ple for their participation in the discussions: Bart Demoen, Ulrich Neumerkel,

Paulo Moura, Joachim Schimpf, Kish Shen, Markus Triska and Jan Wielemaker.

Special thanks to Joachim Schimpf for his explanations of the loop constructs

in ECLiPSe. The operator ’:’ for list comprehension was chosen from a list of

suggested operators by Ulrich Neumerkel.

References

1. Joachim Schimpf. Logical loops. In ICLP, pages 224–238, 2002.

10

