
The Picat-SAT Compiler

Neng-Fa Zhou1 and H̊akan Kjellerstrand2

1 CUNY Brooklyn College & Graduate Center
2 hakank.org

Abstract. SAT has become the backbone of many software systems. In
order to make full use of the power of SAT solvers, a SAT compiler must
encode domain variables and constraints into an efficient SAT formula.
Despite many proposals for SAT encodings, there are few working SAT
compilers. This paper presents Picat-SAT, the SAT compiler in the Pi-
cat system. Picat-SAT employs the sign-and-magnitude log encoding for
domain variables. Log-encoding for constraints resembles the binary rep-
resentation of numbers used in computer hardware, and many algorithms
and optimization opportunities have been exploited by hardware design
systems. This paper gives the encoding algorithms for constraints, and
attempts to experimentally justify the choices of the algorithms for the
addition and multiplication constraints. This paper also presents prelim-
inary, but quite encouraging, experimental results.

1 Introduction

SAT solvers’ performance has drastically improved during the past 20 years,
thanks to the inventions of techniques from conflict-driven clause learning, back-
jumping, variable and value selection heuristics, to random restarts [1, 4, 23].
SAT has become the backbone of many software systems, including specifica-
tion languages for model generation and checking [9, 17, 18, 22], planning [21,
27], program analysis and test pattern generation [28], answer set programming
[6, 12], and solvers for general constraint satisfaction problems (CSPs) [15, 19,
29, 31, 33].

In order to fully exploit the power of SAT solvers, a compiler is needed
to Booleanize constraints as formula in the conjunctive normal form (CNF) or
some other acceptable form. The encodings of constraints have big impact on
the runtime of SAT solvers [2]. Several encodings of domain variables have been
proposed, including sparse encoding [13, 33], order encoding [8, 25, 31], and log
encoding [16]. Log-encoding has less propagation power than sparse encodings
for certain constraints [11], but is much more compact than other encodings.
The FznTini compiler [15] adopts two’s complement representation for domain
variables.

For each encoding, there are different ways to Booleanize constraints. The
hardness of a CNF formula is normally determined by several parameters, such
as the number of clauses and the number of variables. There is no commonly
accepted definition for the optimality of SAT formulas, and SAT compiler writers



have to rely on intensive experimentation to find good formulas that are compact
and enhance propagation opportunities for the used SAT solver.

We have developed a SAT compiler for Picat [35], called Picat-SAT, which
adopts the sign-and-magnitude log-encoding for domain variables. Log-encoding
for constraints resembles the binary representation of numbers used in computer
hardware, and many algorithms and optimization opportunities have been ex-
ploited by hardware design systems. Despite many proposals for SAT encodings,
there are few working SAT compilers, and there are basically no working SAT
compilers that are based on log-encoding.3

In this paper, we describe the algorithms for Booleanizing constraints em-
ployed in Picat-SAT. All of the algorithms are either well known or can be easily
derived from the well-known algorithms used in hardware designs. This paper
attempts to experimentally justify the choices of the algorithms for the addition
and multiplication constraints. This paper also compares Picat-SAT with the fol-
lowing solvers: Sugar and Azucar, two SAT compilers based on order-encoding,
and the winning CP solvers of MiniZinc Challenge 2015. The experimental results
show that Picat-SAT is competitive with Sugar and Azucar, and that Picat-SAT
outperforms the MiniZinc Challenge winners on some of the benchmarks.

Section 2 gives the API of the constraint modules in Picat. Section 3 describes
the sign-and-magnitude log encoding adopted in Picat-SAT for domain variables.
Section 4 details the algorithms used in Picat-SAT for compiling constraints, in-
cluding the enumeration algorithm for the addition constraint X + Y = Z, the
shift-and-add algorithm for the multiplication constraint X × Y = Z, the use of
the Espresso logic optimizer for the table constraint, and the decomposition al-
gorithms for global constraints. Section 5 presents and analyzes the experimental
results. We also implemented a transformation algorithm for the addition con-
straint, and the Karatsuba algorithm for the multiplication constraint. These
two algorithms are described in the appendices.

2 Picat’s Constraint Modules

Picat is a simple, and yet powerful, logic-based multi-paradigm programming
language aimed for general-purpose applications [34, 35]. Picat provides solver
modules, including the sat, cp, and mip modules. All these three modules im-
plement the same set of basic linear constraints. The cp and sat modules also
implement non-linear and global constraints, and the mip module also supports
real-domain variables. The common interface that Picat provides for the solver
modules allows seamless switching from one solver to another.

As a constraint programming language, Picat resembles CLP(FD): the opera-
tor :: is used for domain constraints, the operators #=, #!=, #>, #>=, #<, and #=<

are for arithmetic constraints, and the operators #/\ (and), #\/ (or), #^ (xor), #~
(not), #=> (if), and #<=> (iff) are for Boolean constraints. Picat supports many
global constraints, such as all different/1, element/3, and cumulative/4. In

3 The FznTini compiler is not maintained.

2



addition to intensional constraints, Picat also supports extensional constraints,
or table constraints.

For example, the following gives a program in Picat for solving the Sudoku
problem:

import sat.

main =>
Board = {{5,3,_,_,7,_,_,_,_},

{6,_,_,1,9,5,_,_,_},
{_,9,8,_,_,_,_,6,_},
{8,_,_,_,6,_,_,_,3},
{4,_,_,8,_,3,_,_,1},
{7,_,_,_,2,_,_,_,6},
{_,_,_,_,_,_,_,_,_},
{_,_,_,_,_,_,_,_,_},
{_,_,_,_,_,_,_,_,_},
{_,_,_,_,_,_,_,_,_}},

sudoku(Board),
foreach(Row in Board) writeln(Row) end.

sudoku(Board) =>
N = Board.len,
Vars = Board.vars(),
Vars :: 1..N,
foreach (Row in Board) all_different(Row) end,
foreach (J in 1..N)

all_different([Board[I,J] : I in 1..N])
end,
M = round(sqrt(N)),
foreach (I in 1..M..N-M, J in 1..M..N-M)

all_different([Board[I+K,J+L] : K in 0..M-1, L in 0..M-1])
end,
solve(Vars).

The first line imports the sat module, which defines the used built-ins by this
program, including the operator ::, the global constraint all different, and
the solve predicate for labeling variables. For a given board, the sudoku predi-
cate retrieves the length of the board (Board.len), extracts the variables from
the board (Board.vars()),4 generates the constraints, and calls solve(Vars)

to label the variables. The first foreach loop ensures that each row of Board has
different values. The second foreach loop ensures that each column of Board

has different values. The list comprehension [Board[I,J] : I in 1..N] re-
turns the Jth column of Board as a list. Let M be the size of the sub-squares
(M = round(sqrt(N))). The third foreach loop ensures that each of the N M×M
squares has different values. As demonstrated by this example, Picat’s language
constructs such as functions, arrays, loops, and list comprehensions make Picat
as powerful as other modeling languages, such as OPL [14] and MiniZinc [26],
for CSPs.

3 The Sign-and-Magnitude Log Encoding

Picat-SAT employs the so called log-encoding for domain variables. For a do-
main variable, dlog2(n)e Boolean variables are used, where n is the maximum

4 Picat supports the dot-notation for chaining function calls. The function call
Board.vars() is the same as vars(Board).

3



absolute value in the domain. If the domain contains both negative and positive
values, then another Boolean variable is used to represent the sign. In this paper,
for a log-encoded domain variable X, X.s denotes the sign, X.m denotes the
magnitude, which is a vector of Boolean variables <Xn−1Xn−2 . . . X1X0>.

This sign-and-magnitude encoding is simple, and is well suited to Booleaniz-
ing certain constraints, such as abs(X) = Y and -X = Y . However, this en-
coding requires a clause to disallow negative zero if the domain contains values
of both signs. This extra clause is unnecessary if 2’s complement encoding is
used, as in [15]. Each combination of values of these Boolean variables repre-
sents a valuation for the domain variable. If there are holes in the domain, then
disequality (6=) constraints are generated to disallow assignments of those hole
values to the variable. Also, inequality constraints (≥ and ≤) are generated to
prohibit assigning out-of-bounds values to the variable.

For small-domain variables that can be encoded with 14 bits, including the
sign bit, Picat-SAT calls the logic optimizer, Espresso [5], to generate an opti-
mal CNF formula. For example, for the domain constraint X :: [-2,-1,2,1],
Espresso returns the following two CNF clauses:

X0 ∨ X1
¬X0 ∨ ¬X1

which make it impossible to assign -3, 0, or 3 to X.

4 Booleanization of Constraints

Picat-SAT flattens intensional constraints into primitive, reified, and implicative
constraints. A primitive constraint is one of the following: Σn

i Bi r c (r is =, ≥,
or ≤, and c is 1 or 2) , X r Y (r is =, 6=, >, ≥, <, or ≤), abs(X) = Y , -X =

Y , X + Y = Z, and X × Y = Z, where Bi is a Boolean variable, and X, Y , and
Z are integers or log-encoded integer domain variables.5

The sign-and-magnitude encoding facilitates Booleanization of some of the
primitive constraints. For example, abs(X) = Y is translated to:

X.m = Y .m ∧ Y .s = 0

and the constraint -X = Y is translated to:

(X.m = Y .m) ∧ (X.s 6= Y .s ∨ X.m = 0)

The at-least-one constraint Σn
i Bi ≥ 1 is encoded into one CNF clause:

B1 ∨B2 ∨ . . . ∨Bn

5 The operators div and mod can be expressed by using the multiplication operator ×.
In the implemented version of Picat-SAT, Pseudo-Boolean constraints are treated
in the same way as other linear constraints, except for the special case Σn

i Bi r c (c
=1 or 2).

4



The at-least-two constraint Σn
i Bi ≥ 2 is converted into n at-least-one con-

straints: for each n − 1 variables, the sum of the variables is at least one. The
at-most-one constraint ΣiBi ≤ 1 is encoded into CNF by using Jingchao Chen’s
algorithm [7], which splits the sequence of Boolean variables into two subse-
quences, and encodes the sum Σn

i Bi as the Cartesian product of the two subse-
quences. The at-most-two constraint is converted into n at-most-one constraints.
The exactly-one constraint Σn

i Bi = 1 is converted into a conjunction of an at-
least-one constraint and an at-most-one constraint. The exactly-two constraint
is compiled in the same way.

A recursive algorithm is utilized to encode each of the binary primitive con-
straints of the form X r Y , where r is =, 6=, >, ≥, <, or ≤. For example, consider
X ≥ Y . This constraint is translated to the following:

X.s = 0 ∧ Y .s = 1 ∨
X.s = 1 ∧ Y .s = 1 ⇒ X.m ≤ Y .m ∨
X.s = 0 ∧ Y .s = 0 ⇒ X.m ≥ Y .m

Let X.m = <Xn−1Xn−2 . . . X1X0> and Y .m = <Yn−1Yn−2 . . . Y1Y0>, where
Xi and Yi are Boolean variables, i = 0, ..., n− 1. The following function returns
the CNF formula for X.m ≥ Y .m:

ge(<Xn−1Xn−2 . . . X1X0>, <Yn−1Yn−2 . . . Y1Y0>):
if n = 1 then return the CNF formula for X0 ≥ Y0;
return the CNF formula for Xn−1 > Yn−1 ∨

Xn−1 = Yn−1 ∧ ge(<Xn−2 . . . X1X0>, <Yn−2 . . . Y1Y0>);

A reified constraint has the form B ⇔ C, and an implicative constraint has
the form B ⇒ C, where B is a Boolean variable and C is a primitive constraint.
The reified constraint B ⇔ C is equivalent to B ⇒ C and ¬B ⇒ ¬C, where
¬C is the negation of C. Let C1 ∧ . . . ∧ Cn be the CNF formula of C after
Booleanization. Then B ⇒ C can be encoded into C ′1 ∧ . . . ∧ C ′n, where C ′i =
Ci ∨ ¬B for i = 1, ..., n.

4.1 Booleanization of the Addition Constraint

This subsection considers the Booleanization of the constraint X+Y = Z, where
the operands are log-encoded integers or integer-domain variables. If all of the
operands are non-negative (i.e., X.s = 0 and Y .s = 0), then the constraint
can be rewritten into the unsigned addition X.m+Y .m = Z.m. Let X.m =
Xn−1 . . . X1X0, Y .m = Yn−1 . . . Y1Y0, and Z.m = Zn . . . Z1Z0. The unsigned
addition can be Booleanized by using logic adders as follows:

Xn−1 . . . X1 X0

+ Yn−1 . . . Y1 Y0
Zn Zn−1 . . . Z1 Z0

A half-adder is employed for X0 + Y0 = C1Z0, where C1 the carry-out. For each
other position i (0 < i ≤ n−1), a full adder is employed for Xi+Yi+Ci = Ci+1Zi.
The top-most bit of Z, Zn, is equal to Cn.

5



If any of the variables in the addition constraint has both negative and pos-
itive values in the domain, then the Booleanization of the constraint is not so
straightforward. Although the compiler makes efforts not to create negative-
domain variables when flattening constraints into primitive ones, some problem
variables may be negative. Picat-SAT adopts the enumeration algorithm for
the general addition constraint. We also implemented another algorithm, called
transformation, which replaces negative domain values by non-negative domain
values in the addition constraint. This algorithm is given in Appendix A, to-
gether with the experimental results that justify the choice of the enumeration
algorithm.

The enumeration algorithm translates the addition constraint X + Y = Z
into the following conjunction of conditional constraints, each of which takes
care of a combination of signs of the operands.

X.s = 0 ∧ Y .s = 0 ⇒ Z.s = 0 ∧ X.m+Y .m = Z.m
X.s = 1 ∧ Y .s = 1 ⇒ Z.s = 1 ∧ X.m+Y .m = Z.m
X.s = 0 ∧ Y .s = 1 ∧ Z.s = 1 ⇒ X.m+Z.m = Y .m
X.s = 0 ∧ Y .s = 1 ∧ Z.s = 0 ⇒ Y .m+Z.m = X.m

X.s = 1 ∧ Y .s = 0 ∧ Z.s = 0 ⇒ X.m+Z.m = Y .m
X.s = 1 ∧ Y .s = 0 ∧ Z.s = 1 ⇒ Y .m+Z.m = X.m

This encoding does not introduce extra new variables, except carry variables
used in the Booleanization of the unsigned addition constraints. Since only one
combination of signs is possible, one vector of carry variables can be used for the
Booleanization of all of the unsigned addition constraints.

4.2 Booleanization of the Multiplication Constraint

This subsection considers the Booleanization of the constraint X×Y = Z, where
the operands are log-encoded integers or integer-domain variables. Since the sign
of any operand is determined by the signs of the other two operands, this sec-
tion only considers unsigned multiplication. Many algorithms have been used
in the hardware-design community for fast multiplication. Picat-SAT adopts
the shift-and-add algorithm for multiplication constraints. We also implemented
Karatsuba’s divide-and-conquer algorithm [20]. This algorithm is given in Ap-
pendix B, together with the experimental results that justify the choice of the
shift-and-add algorithm.

Let Y .m be Yn−1 . . . Y1Y0. The shift-and-add algorithm generates the follow-
ing conditional constraints for the multiplication constraint X × Y = Z.

Y0 = 0⇒ S0 = 0
Y0 = 1⇒ S0 = X
Y1 = 0⇒ S1 = S0

Y1 = 1⇒ S1 = (X << 1) + S0

...
Yn−1 = 0⇒ Sn−1 = Sn−2

6



Yn−1 = 1⇒ Sn−1 = (X << (n− 1)) + Sn−2
Z = Sn−1

The operation (X << i) shifts the binary string of X to left by i positions. Let
the length of the binary string of X be m. The length of S0 is m, that of S1 is
m + 1, and so on. So the total number of auxiliary Boolean variables that are

used in Si’s is Σ
(n+m−2)
i=m i. In addition, auxiliary variables are used for carries

in the additions. For example, in the addition Si = (X << i) + Si−1, m + i
auxiliary Boolean variables are needed.

This algorithm can be improved to reduce the number of new variables when
Y is an integer. For the addition Si = (X << i)+Si−1, if Si−1 is a 0 vector, then
the Boolean variables can be copied from X to Si, and so no new variables are
necessary. Booth’s algorithm [3], which examines multiple digits of Y at once,
can also be used to further reduce the number of variables if Y is a constant.6

4.3 Booleanization of the Table Constraint

In log-encoding, a table constraint can easily be converted into a truth table.
Consider the constraint table in({X,Y},[{1,2},{1,3},{2,1},{2,2},{3,1}]).
Let X.m be <X1,X0>, and Y.m be <Y1,Y0>. Since the sign bits are known to be
0, they are ignored. The above table constraint can be represented as the truth
table shown in Figure 1. The task of compiling a table constraint amounts to
finding a CNF formula to equivalently represent its truth table.

X1 X0 Y1 Y0
0 1 1 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

Fig. 1. The truth table of table in({X,Y},[{1,2},{1,3},{2,1},{2,2},{3,1}])

Just as for variables with small domains, Picat-SAT uses the logic optimizer,
Espresso, to find compact SAT encodings for small truth tables. Espresso re-
turns a disjunctive-normal-form (DNF) formula for a true table. In order to
easily convert the DNF formula into CNF, Picat-SAT feeds Espresso with the
complementary truth table, i.e., setting the output of in tuples to 0 and the out-
put of out tuples to 1. For example, Espresso returns the following DNF clauses
for the complement of the truth table in Figure 1.

6 Booth’s algorithm has not yet been implemented in Picat-SAT.

7



¬X0 ∧ Y1 ∧ Y0
X1 ∧ X0 ∧ Y1
¬X1 ∧ ¬X0
¬X1 ∧ ¬Y1
¬Y1 ∧ ¬Y0

The original truth table is represented as the negation of the DNF formula,
which is a conjunction of the following CNF clauses:

X0 ∨ ¬Y1 ∨ ¬Y0
¬X1 ∨ ¬X0 ∨ ¬Y1
X1 ∨ X0
X1 ∨ Y1
Y1 ∨ Y0

Espresso is slow when the number of variables is large. For a truth table with
more than 14 Boolean variables, Picat-SAT breaks the table down into smaller
tables by enumerating part of the variables. For example, the Boolean table in
Figure 1 can be broken down into two tables, one assuming X1=1 and the other
assuming X1=0.

4.4 Decomposition of Global Constraints

Picat-SAT decomposes global constraints into primitive ones in a straightforward
manner. This subsection briefly overviews the algorithms adopted by Picat-SAT
for decomposing several well-used global constraints.

all different(L) : Let L be [E1, E2, . . . , En]. Picat-SAT decomposes this con-
straint into Ei 6= Ej for i, j = 1, . . . , n, i < j. For an assignment-type all-
different constraint, in which the number of values in the domains is equal to
the number of variables, Picat-SAT also generates the following redundant
constraints: each value is assigned to exactly one variable.

circuit(L) : Picat-SAT first generates all different(L) for this constraint,
which is guaranteed to be an assignment-type constraint. In order to prevent
sub-cycles in the circuit, Picat-SAT uses a new variable, Oi, for each value
i, which indicates the ordering number of i in the circuit, assuming the
ordering number of value 1 being 1. Let L be [E1, E2, . . . , En]. If Ei = j,
then a constraint is generated to ensure that Oj is the successor of Oi,
meaning that Oj = Oi + 1 if Oi < n, and Oj = 1 if Oi = n. This is a
standard decomposition algorithm, which is used by other compilers, such
as the mzn2fzn compiler [24].

cumulative(Starts, Durations, Resources, Limit) : For the cumulative

constraint, two basic decomposition algorithms exist, namely, time decompo-
sition and task decomposition [10]. Let n be the number of tasks, Si be the
earliest start time, and Ei to the latest end time of task i, i ∈ 1, . . . , n. The
time-decomposition algorithm generates constraints to ensure the following:
for each time point from minni=1(Si) to maxni=1(Ei)-1, the total amount of

8



resources consumed by the running tasks cannot exceed the resource limit.
The task-decomposition algorithm only generates constraints to ensure that
the resource limit is not exceeded at the start and end times of each of
the tasks. Picat-SAT adopts the task decomposition algorithm. All of the
resource constraints are pseudo-Boolean constraints. As mentioned above,
Picat-SAT splits pseudo-Boolean constraints into adders and comparators,
as it does for other arithmetic constraints.

element(I,L,V ) : Let L be [E1, E2, . . . , En]. If L contains variables, Picat-
SAT decomposes this constraint into the following : for each value i in 1..n,
I = i⇒ V = Ei; otherwise, if L is ground, Picat-SAT encodes the constraint
as a table constraint.

5 Experimental Results

Picat-SAT, which is implemented in Picat, has about 5,000 lines of code, exclud-
ing comments. In addition to the encoding algorithms described in the paper,
it also incorporates some specialization and optimization techniques. Picat-SAT
eliminates common subexpressions in constraints. For example, when a reifica-
tion constraint B ⇔ C is generated, Picat-SAT tables it and reuses the variable
B, rather than introducing a new variable for the primitive constraint C, when
C is encountered again. Picat-SAT has been an entrant in the MiniZinc Chal-
lenge three times since 2013, and was the only purely SAT-based CSP solver in
2015. This section experimentally compares Picat-SAT, as implemented in Pi-
cat version 1.4, with two other SAT compilers, and reports on the Picat-SAT’s
performance in MiniZinc Challenge 2015.

Table 1 compares Picat-SAT with two other SAT compilers: Sugar and
Azucar.7 Sugar is a mature SAT compiler based on order encoding [30], and
Azucar is a successor to Sugar based on compact order encoding [32]. The bench-
marks are from Sugar’s package. The all different constraint is used in golom-
bRuler, knightTour, and nqueens, and no other global constraints are used. The
table shows the the size of the generated code (the number of variables, #vars,
and the number of clauses, #cls) and the CPU time (in seconds) taken to run the
generated code using Lingeling version 587f on a Cygwin notebook with 2.4GHz
Intel i5 and 4GB RAM.8

It is not surprising that Picat-SAT generates more compact code than Sugar
and Azucar for most of the benchmarks because log-encoding is known to be
more compact than order-encoding. For the knightTour and nqueens bench-
marks, both of which include the assignment-type all different constraint,
Picat-SAT uses more Boolean variables than Sugar and Azucar. This is because

7 Efforts were also made to compare Picat-SAT with FznTini [15], a log-encoding
based SAT compiler, and with meSAT [29], which supports the hybrid of order and
sparse encodings. FznTini is for an old version of FlatZinc, and the default setting
of meSAT did not perform better than Sugar on the benchmarks.

8 The CPU time does not include the compile time for any of the SAT compilers.

9



Picat-SAT generates redundant constraints to ensure that each value is assigned
to exactly one variable.

Picat-SAT also compares favorably well with Sugar and Azucar in terms of
CPU time on most of the benchmarks. Picat-SAT is significantly slower than
Sugar and Azucar on knightTour and nqueens. These results reveal that Picat-
SAT’s choice algorithm for all different is not the best.

Table 1. A comparison of three SAT compilers

Benchmark Picat Sugar Azucar
#vars #cls time #vars #cls time #vars #cls time

golombRuler-10-55 6438 27194 36.50 4584 190594 92.53 5635 44937 60.32
golombRuler-8 3024 12698 0.22 5111 422046 3.04 2988 35847 0.44
jss-ft10 13613 68880 5.90 76617 703313 6.24 8227 119126 1.50
knightTour-5 3051 21401 8.19 1296 20510 0.83 1667 9123 2.36
knightTour-7 11970 114818 374.36 4944 141818 99.68 5919 44059 85.53
magicSquare-5x5 2742 20302 1.68 3504 73717 0.72 2052 16239 0.29
magicSquare-9x9 33606 178328 48.58 60960 5463881 167.24 19405 317128 57.36
nqueens-200 1003112 3997099 1925.52 159196 18646098 131.96 284400 4004662 397.82
oss-gp03-01 785 3535 0.19 11126 46075 0.69 786 6231 2.13
oss-gp10-01 25540 139168 2.90 343189 6514888 40.40 17216 544880 5.79
socialGolfer-3-2-5 315 3360 0.12 810 2355 0.31 1680 5250 0.10
socialGolfer-6-3-7 9702 163863 13.19 22545 79236 13.78 46248 184980 14.04
tdsp-C1-1 6361 25187 0.67 1226 17631 0.26 4586 36997 0.64
tdsp-C2-1 16079 67032 5.09 2720 61572 0.72 11746 112436 7.12

Table 2 and Table 3 show the points scored by Picat-SAT and the top three
CP solvers in MiniZinc Challenge 2015. Table 2 shows the scores for the bench-
marks that do not include global constraints,9 and Table 3 shows the scores
for the benchmarks that include global constraints. MiniZinc Challenge uses a
scoring procedure based on the Borda count voting system; the higher a score is,
the better. Despite the 0 score from the project-planning benchmark, Picat-SAT
performed quite well on the benchmarks that do not include global constraints:
it scored higher than OR-Tools, and could have performed better than iZplus
had the points from project-planning been counted in. Picat-SAT is less competi-
tive with the winners on the benchmarks that use global constraints. Picat-SAT
scored 0 points on is(Min), which uses circuit and table, on largeschedul-
ing, which uses cumulative, and on tdsp(Min), which uses inverse. Overall,
Picat-SAT had the highest scores on 5 of 20 benchmarks.

6 Concluding Remarks

This paper has described Picat-SAT, which employs the sign-and-magnitude log
encoding for domain variables. Log-encoding of domain variables resembles the

9 Picat-SAT scored 0 on project-planning because mzn2fzn failed to specialize the
element constraint, which prevented Picat’s FlatZinc interpreter from functioning. It
was understood that mzn2fzn would specialize generic global constraints into specific
ones once the types of the arguments are known.

10



Table 2. MiniZinc Challenge scores on benchmarks that do not use global constraints

Benchmark OR-Tools Opturion CPX iZplus Picat-SAT
freepizza(MIN) 4.03 10.96 12.00 3.01

grid-colouring(MIN) 1.91 11.27 5.28 11.54
nmseq(SAT) 13.46 10.75 3.19 0.60

project-planning(MIN) 5.00 14.67 10.33 0.00
radiation(MIN) 0.00 11.04 8.56 10.40
triangular(MAX) 7.75 1.00 9.00 12.25
zephyrus(MIN) 9.00 7.50 7.50 6.00

(TOTAL) 41.16 67.19 55.86 43.79

Table 3. MiniZinc Challenge scores on benchmarks that use global constraints

Benchmark OR-Tools Opturion CPX iZplus Picat-SAT
costas-array(SAT) 7.35 4.86 5.06 0.73

cvrp(MIN) 7.07 8.59 12.30 2.04
gfd-schedule(MIN) 2.48 10.53 11.99 5.00
is(MIN) TOTAL 7.56 7.88 12.56 0.00

largescheduling(MIN) 13.00 10.00 0.00 0.00
mapping(MIN) 2.00 14.91 7.00 5.09

multi-knapsack(MAX) 4.18 10.75 4.26 9.80
opd(MIN) 8.07 2.50 7.00 12.43

open stacks(MIN) 10.10 5.19 2.00 12.71
p1f(MIN) 14.53 3.95 2.01 3.51

roster(MIN) 11.72 4.44 11.40 2.44
spot5(MAX) 8.00 6.68 2.34 12.98
tdtsp(MIN) 8.24 11.26 10.50 0.00
(TOTAL) 104.31 101.54 88.43 66.72

binary representation of numbers used in computer hardware. It is a very com-
pact encoding, and a large repository of algorithms has been developed by the
hardware design community. Interestingly, few SAT compilers for general con-
straints have been developed that are based on this encoding. This is partly
because of the negative research results reported on log-encoding’s failure to
maintain arc consistency, and partly because of the engineering effort required
to implement the encoding. This paper has given the adapted algorithms em-
ployed by Picat-SAT, and has presented preliminary, but quite encouraging,
experimental results.

One direction for future work is to examine more encoding algorithms and op-
timization techniques for Booleanizing constraints, especially global and pseudo-
Boolean constraints. SMT solvers have been shown to be successful in handling
various types of constraints, including arithmetic constraints. Another direction
for future work is to compare Picat-SAT with SMT solvers on SMT-LIB bench-
marks.

References

1. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Handbook of
Satisfiability. IOS Press, 2009.

2. Magnus Bjork. Successful SAT encoding techniques. JSAT Addendum, 2009.

11



3. Andrew D. Booth. A signed binary multiplication technique. The Quarterly Jour-
nal of Mechanics and Applied Mathematics, IV, 1951.

4. Lucas Bordeaux, Youssef Hamadi, and Lintao Zhang. Propositional satisfiability
and constraint programming: A comparative survey. ACM Comput. Surv., 38(4):1–
54, 2006.

5. Robert King Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

6. Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczyński. Answer set program-
ming at a glance. Commun. ACM, 54(12):92–103, 2011.

7. Jingchao Chen. A new SAT encoding of the at-most-one constraint. In Proc. of
the 9th Int. Workshop of Constraint Modeling and Reformulation, 2010.

8. James M. Crawford and Andrew B. Baker. Experimental results on the application
of satisfiability algorithms to scheduling problems. In AAAI, pages 1092–1097,
1994.

9. Jean-Louis Boulanger (Editor). Formal Methods Applied to Industrial Complex
Systems: Implementation of the B Method. Wiley, 2014.

10. Kathryn Glenn Francis and Peter J. Stuckey. Explaining circuit propagation. Con-
straints, 19(1):1–29, 2014.

11. Marco Gavanelli. The log-support encoding of CSP into SAT. In CP, pages 815–
822, 2007.

12. Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub.
Conflict-driven answer set solving. In IJCAI, pages 386–, 2007.

13. Ian P. Gent. Arc consistency in SAT. In ECAI, pages 121–125, 2002.

14. Pascal Van Hentenryck. Constraint and integer programming in OPL. INFORMS
Journal on Computing, 14:2002, 2002.

15. Jinbo Huang. Universal Booleanization of constraint models. In CP, pages 144–
158, 2008.

16. Kazuo Iwama and Shuichi Miyazaki. SAT-varible complexity of hard combinatorial
problems. In IFIP Congress (1), pages 253–258, 1994.

17. Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2012.

18. Ethan K. Jackson. A module system for domain-specific languages. Theory and
Practice of Logic Programming, 14(4-5):771–785, 2014.

19. Peter Jeavons and Justyna Petke. Local consistency and SAT-solvers. JAIR,
43:329–351, 2012.

20. Anatoly Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by
automatic computers. Proc. the USSR Academy of Sciences, 145:293–294, 1962.

21. Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI, pages
359–363, 1992.

22. Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2004.

23. Sharad Malik and Lintao Zhang. Boolean satisfiability: from theoretical hardness
to practical success. Commun. ACM, 52(8):76–82, 2009.

24. Kim Marriott, Peter J. Stuckey, Leslie De Koninck, and Horst Samulowitz.
A MiniZinc tutorial. http://www.minizinc.org/downloads/doc-latest/minizinc-
tute.pdf.

25. Amit Metodi and Michael Codish. Compiling finite domain constraints to SAT
with BEE. Theory and Practice of Logic Programming, 12(4-5):465–483, 2012.

12



26. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a standard CP modelling language. In
CP, pages 529–543, 2007.

27. Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45–86,
2012.

28. Rolf Drechsler Stephan Eggersgl. High Quality Test Pattern Generation and
Boolean Satisfiability. Springer, 2012.

29. Mirko Stojadinovic and Filip Maric. meSAT: multiple encodings of CSP to SAT.
Constraints, 19(4):380–403, 2014.

30. Sugar. bach.istc.kobe-u.ac.jp/sugar/.
31. Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Com-

piling finite linear CSP into SAT. Constraints, 14(2):254–272, 2009.
32. Tomoya Tanjo, Naoyuki Tamura, and Mutsunori Banbara. Azucar: A SAT-based

CSP solver using compact order encoding. In SAT, pages 456–462, 2012.
33. Toby Walsh. SAT v CSP. In CP, pages 441–456, 2000.
34. Neng-Fa Zhou and Jonathan Fruhman. A User’s Guide to Picat. http://picat-

lang.org.
35. Neng-Fa Zhou, H̊akan Kjellerstrand, and Jonathan Fruhman. Constraint Solving

and Planning with Picat. Springer, 2015.

A The Transformation Algorithm for X + Y = Z

The transformation algorithm replaces negative domain values by non-negative
domain values in the addition constraint. For the constraint X + Y = Z, if
any of the operands has a domain with negative values, this method finds the
smallest integer k such that abs(X) < 2k−1, abs(Y ) < 2k−1, and abs(Z) < 2k,
and transforms the original addition constraint to Z ′ = X ′ + Y ′, where X ′ =
X + 2k−1, Y ′ = Y + 2k−1, and Z ′ = Z + 2k. The newly introduced variables
X ′, Y ′, and Z ′ are guaranteed not to include negative values in their domains,
and therefore the constraint X ′+ Y ′ = Z ′ can be Booleanized as X ′.m+Y ′.m =
Z ′.m.

The question is how to Booleanize the newly introduced constraints. Consider
the constraint X ′ = X+2k−1. Let X.m = Xk−1 . . . XnXn−1 . . . X1X0, and X ′.m
= X ′k−1 . . . X

′
1X
′
0 (k > n, Xi = 0 for i = k − 1, . . . , n). Note that 0s are added

in the high end of X.m in order for it to have the same length as X ′.m. The
constraint X ′ = X + 2k−1 can be translated to a conjunction of the following
two conditional constraints:

X.s = 0 ⇒ X0 = X ′0 ∧ . . . ∧ Xk−2 = X ′k−2 ∧ X ′k−1 = 1
X.s = 1 ⇒ X.m + X ′.m = 2k−1

Note the unsigned addition X.m + X ′.m = 2k−1 can be Booleanized using a
much simpler logic than for the general addition. In particular, no new variables
are necessary for carries in the addition. In order for the constraint to hold, the
following formula must hold:

X0 = X ′0
for i = 1..k − 2

13



Xi−1 = 0 ∧ X ′i−1 = 0⇒ Xi = X ′i
Xi−1 = 1 ∧ X ′i−1 = 1⇒ Xi 6= X ′i
Xi−1 6= X ′i−1 ⇒ Xi 6= X ′i

X ′k−1 = 0

The two Boolean variables at the lowest end, X0 and X ′0, must be equal. Other-
wise, the lowest bit of the sum cannot be 0. The intuition of the logic of the for

loop is that if there is an 1 at some position, then there must be exactly one 1
at each of the higher positions in order for the sum to be equal to 2k−1. Since
no negative zero is allowed, at least one of Xis is 1. In order for the sum to be
equal to 2k−1, X ′k−1 must be 0.

The idea of removing negative domain values through transformation is well
known in linear programming. Unlike in linear programming, however, the trans-
formation is only performed locally on negative-domain variables in addition
constraints, and all other constraints, such as abs(X) = Y , are not affected.

For a negative-domain variable X that occurs in multiple addition con-
straints, an optimization can be employed to avoid introducing new variables
unnecessarily. The compiler memorizes the transformation X ′ = X + 2k−1 in
a table. In case the same transformation is required by another addition con-
straint, then the compiler fetches X ′ from the table, rather than introducing
new variables.

Table 4 compares the enumeration (enum) and transformation (trans) algo-
rithms, using the constraint Z = X+Y , where X and Y are in −N..N . The code
size is not informative on which encoding is better: the enum encoding uses fewer
variables but more clauses than the trans encoding.10 The time shows that the
enum encoding is favorable. This result led to the adoption the enum encoding
by Picat-SAT for addition constraints.

Table 4. A comparison of two encodings for Z = X + Y

N enum trans
#vars #cls time(s) #vars #cls time(s)

5000 56 1121 0.058 100 632 0.070
10000 60 1211 0.060 107 682 0.060
15000 60 1199 0.052 107 670 0.080
20000 64 1301 0.060 114 732 0.070
25000 64 1295 0.059 114 726 0.080

B Karatsuba’s Divide and Conquer Algorithm for
X × Y = Z

Karatsuba’s algorithm [20] is a well-known algorithm for multiplying big integers.
It can be applied to numbers in any base. The basic idea of the algorithm is

10 Note that the code size sometimes decreases with N because of the domain
constraints.

14



to divide and conquer, splitting large numbers into smaller numbers, until the
numbers are small enough.

Let X and Y be two N -digit binary strings. If N is small enough, then the
multiplication constraint is Booleanized using shift-and-add. If N is big, then
this algorithm selects an integer M (1 ≤M ≤ N − 1 ) and splits both X and Y
into two parts as follows:

X = Xh × 2M +Xl

Y = Yh × 2M + Yl

where Xl and Yl are less than 2M . The product X × Y is then

Z = X × Y = Z2 × 22M + Z1 × 2M + Z0

where

Z0 = Xl × Yl
Z1 = (Xh +Xl)(Yh + Yl)− Z2 − Z0

Z2 = Xh × Yh

The resulting formulas require three multiplications, plus some additions, sub-
tractions, and shifts.

Table 5 compares the shift-and-add (saa) and Karatsuba (kara) algorithms,
using the constraint Z = X × Y , where X and Y are in −N..N . The base-case
size for the Karatsuba algorithm is set to 3 (i.e., X.m ≤ 7 or Y .m ≤ 7).

Two observations can be made about the results: first, the code sizes only
grow slightly with N no matter which algorithm is used; and second, kara uses
more variables and generates more clauses than saa. The Karatsuba algorithm
is well used for multiplying big integers and its advantage cannot be witnessed
unless the operands are really big. Nevertheless, big domains rarely occur in
CSPs. This experimental comparison naturally resulted in the adoption of the
shift-and-add algorithm by Picat-SAT for multiplication constraints.

Table 5. A comparison of two encodings for Z = X × Y

N saa kara
#vars #cls time(s) #vars #cls time(s)

5000 443 2880 0.236 1380 6872 0.382
10000 512 3357 0.270 1594 7931 0.425
15000 513 3353 0.271 1595 7927 0.442
20000 585 3831 0.226 1845 9175 0.481
25000 585 3827 0.223 1845 9171 0.491

15


