
Efficient Fixpoint Computation in Linear Tabling

Neng-Fa Zhou

Department of Computer and Information Science

Brooklyn College & Graduate Center

The City University of New York

zhou@sci.brooklyn.cuny.edu

Taisuke Sato

Department of Computer Science,

Tokyo Institute of Technology, CREST JST

sato@mi.cs.titech.ac.jp

Abstract

Early resolution mechanisms proposed for tabling
such as OLDT rely on suspension and resump-
tion of subgoals to compute fixpoints. Recently,
a new resolution framework called linear tabling
has emerged as an alternative tabling method.
The idea of linear tabling is to use iterative com-
putation rather than suspension to compute fix-
points. Although linear tabling is simple, easy to
implement, and superior in space efficiency, the
current implementations are several times slower
than XSB, the state-of-the-art implementation of
OLDT, due to re-evaluation of looping subgoals. In
this paper, we present a new linear tabling method
and propose several optimization techniques for
fast computation of fixpoints. The optimization
techniques significantly improve the performance
by avoiding redundant evaluation of subgoals, re-
application of clauses, and reproduction of answers
in iterative computation. Our implementation of
the method in B-Prolog not only consumes an or-
der of magnitude less stack space than XSB for
some programs but also compares favorably well
with XSB in speed.

1 Introduction

The SLD resolution used in Prolog may not be
complete or efficient for programs in the presence

of recursion. For example, for a recursive defini-
tion of the transitive closure of a relation, a query
may never terminate under SLD resolution if the
program contains left-recursion or the graph rep-
resented by the relation contains cycles even if no
rule is left-recursive. For a natural definition of
the Fibonacci function, the evaluation of a sub-
goal under SLD resolution spawns an exponential
number of subgoals, many of which are variants.
The lack of completeness and efficiency in evaluat-
ing recursive programs is problematic: novice pro-
grammers may lose confidence in writing declar-
ative programs that terminate and real program-
mers have to reformulate a natural and declarative
formulation to avoid these problems, resulting in
less declarative and less readable programs.

Tabling [15, 18] is a technique that can get rid of
infinite loops for bounded-term-size programs and
redundant computations in the execution of recur-
sive Prolog programs. The main idea of tabling
is to memorize the answers to some subgoals and
use the answers to resolve subsequent variant sub-
goals. This idea of caching previously calculated
solutions, called memoization, was first used to
speed up evaluation of functions [9].

Tabling in Prolog not only is useful in the prob-
lem domains that motivated its birth, such as pro-
gram analysis, parsing, deductive database and
theorem proving but also has been found essential
in several other problem domains such as model

1

checking [11] and sample-based statistical learning
[19].

OLDT [15] is the first revised SLD resolution
that accommodates the idea of tabling. In OLDT,
a table area is used to record subgoals and their an-
swers. When a subgoal (producer) is first encoun-
tered in execution, it is resolved by using program
clauses just as in SLD resolution with the excep-
tion that the subgoal and its answers are recorded
in the table. When a subgoal (consumer) is en-
countered that is subsumed by one of its ancestors,
OLDT does not expand it as in SLD resolution but
rather uses the answers in the table to resolve it.
After the answers are exhausted, the computation
of the consumer is suspended until the producer
produces new answers into the table. The pro-
cess is continued until the fixpoint is reached, i.e.
when no answers are available for consumers and
no producers can produce any new answers. Sev-
eral other resolution formalisms including SLG [3]
and SLS [2] have been developed for tabling that
rely on suspension and resumption of subgoals to
compute fixpoints. XSB is the first Prolog system
that successfully supports tabling [13].

OLDT is non-linear in the sense that the state
of a consumer must be preserved before execu-
tion backtracks to its producer. This non-linearity
requires freezing stack segments [13] or copying
stack segments into a different area [5] before back-
tracking takes place. Recently, another formalism,
called linear tabling1, has emerged as an alterna-
tive tabling method [14, 21, 7]. The main idea of
linear tabling is to use iterative computation rather
than suspension to compute fixpoints. A signifi-
cant difference between linear tabling and OLDT
lies in the handling of variant descendents of a
subgoal. In linear tabling, after a descendent con-
sumes all the answers, it either fails or turns into a
producer, producing answers by using the alterna-
tive clauses of the ancestor. A subgoal is called a
looping subgoal if a variant occurs as a descendent
in its evaluation. The evaluation of looping sub-
goals must be iterated to ensure the completeness
of evaluation.

1Notice that the word linear here has nothing to do with
complexity or liner logic. It has the same meaning as L in
SLD: a derivation is made up of a sequence of goals G0 ⇒

G1 ⇒ . . . ⇒ Gk such that Gi+1 is derived from Gi.

Linear tabling is relatively easy to implement
on top of a WAM-like abstract machine thanks
to its linearity. Linear tabling is more space ef-
ficient than suspension-based methods since the
states of subgoals need not be preserved. Never-
theless, current implementations of linear tabling
[21, 7] are still significantly slower than XSB due
to re-evaluation of looping subgoals. For certain
programs, the gap in speed can be stunning. Our
test of a grammar that contains a large number
of interdependent recursive predicates reveals that
the gap can be exponential!

This work stems from our desire for an effi-
cient tabling system for a learning system [19].
We designed a new linear tabling method that ac-
commodates well a set of optimization techniques
for avoiding redundant evaluation of subgoals, re-
application of clauses, and reproduction of answers
in iterative computation. These optimization tech-
niques dramatically enhance the speed of linear
tabling. Our implementation of the method in B-
Prolog not only consumes an order of magnitude
less stack space than XSB for some programs but
also compares favorably well with XSB in speed.

2 Linear Tabling

Linear tabling is a framework from which differ-
ent methods can be derived based on the strate-
gies used in handling looping subgoals in forward
execution, backtracking, and iteration. We first
give the framework and then describe the method
we choose. The description is made as much self-
contained as possible. The reader is referred to [8]
for a description of SLD resolution.

Let P be a program. Tabled predicates in P are
explicitly declared and all the other predicates are
assumed to be non-tabled. A clause in a tabled
predicate is called a tabled clause and a subgoal of
a tabled predicate is called a tabled subgoal. Tabled
predicates are transformed into a form that facil-
itates execution: each tabled clause ends with a
dummy subgoal named memo(H) where H is the
head, and each tabled predicate contains a dummy
ending clause whose body contains only one sub-
goal named check completion(H). For example,
given the definition of the transitive closure of a

2

relation,

p(X,Y):-p(X,Z),e(Z,Y).

p(X,Y):-e(X,Y).

The transformed predicate is as follows:

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)).

p(X,Y):-e(X,Y),memo(p(X,Y)).

p(X,Y):-check_completion(p(X,Y)).

A table is used to record subgoals and their an-
swers. For each subgoal and its variants, there is
an entry in the table that stores the state of the
subgoal (complete or not) and an answer table for
holding the answers generated for the subgoal. Ini-
tially, the answer table is empty.

Definition 1 Let G = (A1, A2, ..., Ak) be a goal.
The first subgoal A1 is called the selected subgoal of
the goal. G′ is derived from G by using an answer
F in the table if there exists a unifier θ such that
A1θ = F and G′ = (A2, ..., Ak)θ. G′ is derived from
G by using a clause “H ← B1, ..., Bm” if A1θ = Hθ

and G′ = (B1, ..., Bm, A2, ..., Ak)θ. A1 is said to be
the parent of B1, ..., and Bm. The relation ancestor
is defined recursively from the parent relation.

Definition 2 Let G0 be a given goal, and G0 ⇒

G1 ⇒ . . .⇒ Gn be a derivation where each goal is
derived from the goal immediately before it. Let
Gi = (A...) be a goal where A is the selected sub-
goal. A is called a pioneer in the derivation if no
variant of A has been selected in goals before Gi

in the derivation. Let Gi ⇒ . . . ⇒ Gj be a sub-
sequence of the derivation where Gi = (A...) and
Gj = (A′...). The sub-sequence forms a loop if A

is an ancestor of A′, and A and A′ are variants.
The subgoals A and A′ are called looping subgoals.
Moreover, A′ is called a follower of A.

Notice that a derivation Gi ⇒ . . . ⇒ Gj does
not form a loop if the selected subgoal of Gi is not
an ancestor of that of Gj . Consider, for example,
the goal “p(X), p(Y)” where p is defined by facts.
The derivation “p(X), p(Y)”⇒ p(Y) does not form
a loop even though the selected subgoal p(Y) in
the second goal is a variant of the selected subgoal
p(X) of the first goal since p(X) is not an ancestor
of p(Y).

Definition 3 The SLD tree for a given goal G is
a tree satisfying the following: (1) G is the root of
the tree; and (2) for each node, the derived goals
are the children of the node. The children are or-
dered based on the textual order of the applied
clauses in the program. For each node in an SLD
tree, the path from it to a leaf corresponds to a
derivation of the node. A node in an SLD tree is
called a top-most looping node if the selected sub-
goal of the node is the pioneer of a loop in a path
and the pioneer is not contained in any other loops.
The selected subgoal of a top-most looping node is
called a top-most looping subgoal.

For example, there are two loops in the SLD tree
in Figure 1. Node 1:p is a top-most looping node
while 2:q is not since q is contained in p’s loop.

 ��

Figure 1: Top-most looping subgoals.

Linear tabling takes a transformed program and
a goal, and tries to find a path in the SLD tree that
leads to an empty goal. To simplify the presenta-
tion, we assume that the primitive table start(A)
is executed when a tabled subgoal A is encoun-
tered. Just as in SLD resolution, linear tabling
explores the SLD tree in a depth-first fashion, tak-
ing special actions when table start(A), memo(A),
and check completion(A) are encountered. Back-
tracking is done in exactly the same way as in SLD
resolution. When the current path reaches a dead
end, meaning that no action can be taken on the
selected subgoal, execution backtracks to the latest

3

previous goal in the path and continues with an al-
ternative branch. When execution backtracks to a
top-most looping subgoal in the SLD tree, the sub-
goal must be re-evaluated to ensure that no answer
is lost. The evaluation of a top-most looping sub-
goal must be iterated until the fixpoint is reached.

A linear tabling method is defined by the strate-
gies used in the three primitives: table start(A),
memo(A), and check completion(A). The follow-
ing defines a method.

table start(A)

This primitive is executed when a tabled subgoal
A is encountered. The subgoal A is registered into
the table if it is not registered yet. If A’s state
is complete meaning that A has been completely
evaluated before, then A is resolved by using the
answers in the table.

If A is a pioneer of the current path, meaning
that it is encountered for the first time, then it is
resolved by using program clauses.

If A is a follower of some ancestor A0, meaning
that a loop has been encountered, then it is re-
solved by using the answers in the table. After the
answers are exhausted, the subgoal fails. Failing a
follower is unsafe since it may have not returned all
of its possible answers. For this reason, a top-most
looping subgoal needs be iterated until no new an-
swer can be produced.

memo(A)

This primitive is executed when an answer is found
for the tabled subgoal A. If the answer A is al-
ready in the table, then just fail; otherwise fail
after the answer is added into the table. The fail-
ure of memo postpones the consumption of answers
until all clauses have been tried.

check completion(A)

This primitive is executed when the subgoal A is
being resolved by using program clauses and the
dummy ending clause is being tried. If A has never
occurred in a loop, then A’s state is set to complete
and A is failed after all the answers are consumed.

If A is a top-most looping subgoal, we check
whether any new answers were produced during

the last round of evaluation of A. If so, A is re-
solved again by using program clauses. Otherwise,
if no new answers were produced A is resolved by
answers after being set to complete. Notice that a
top-most looping subgoal does not return any an-
swers until it is complete.

If A is a looping subgoal but not a top-most
one, A will be resolved by using answers after its
state is set to temporary complete. Notice that A’s
state cannot be set to complete since A is contained
in a loop whose top-most subgoal has not been
completely evaluated. For example, in Figure 1
q reaches its fixpoint only after the top-most loop
subgoal p reaches its fixpoint.

Example

Consider the following example program and the
query p(a,Y0).

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)). (p1)

p(X,Y):-e(X,Y),memo(p(X,Y)). (p2)

p(X,Y):-check_completion(p(X,Y)). (p3)

e(a,b).

e(b,c).

The following shows the steps that lead to the pro-
duction of the first answer:

1: p(a,Y0)

⇓apply p1

2: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

loop found, backtrack to goal 1

1: p(a,Y0)

⇓ apply p2

3: e(a,Y0),memo(p(a,Y0))
⇓ apply e(a,b)

4: memo(p(a,b))

⇓ add answer p(a,b)

After the answer p(a,b) is added into the table,
memo(p(a,b)) fails. The failure forces execution
to backtrack to p(a,Y0).

1: p(a,Y0)

⇓ apply p3

5: check completion(p(a,Y0))

4

Since p(a,Y0) is a top-most looping subgoal
that has not been completely evaluated yet,
check completion(p(a,Y0)) does not consume
the answer in the table but instead starts re-
evaluation of the subgoal.

1: p(a,Y0)

⇓apply p1

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,b)

7: e(b,Y0),memo(p(a,Y0))
⇓apply e(b,c)

8: memo(p(a,c))

When the follower p(a,Z1) is encountered this
time, it consumes the answer p(a,b). The current
path leads to the second answer p(a,c). On back-
tracking, the goal numbered 6 becomes the current
goal.

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,c)

9: e(c,Y0),memo(p(a,Y0))

Goal 9 fails. Execution backtracks to the top goal
and tries the clause p3 on it.

1: p(a,Y0)

⇓ apply p3

10: check completion(p(a,Y0))

Since the new answer p(a,c) was produced in the
last round of evaluation, the top-most looping sub-
goal p(a,Y0) needs to be evaluated again. The
next round of evaluation produces no new answer
and thus the subgoal’s state is set to complete. Af-
ter that the top-most subgoal is resolved by using
the answers p(a,b) and p(a,c).

Soundness and Completeness

Our tabling method inherits the main idea from
[14], i.e., iterating the evaluation of top-most loop-
ing subgoals until no new answer is produced, but
adopts different strategies: followers consume an-
swers only and pioneers consume answers lazily.
These strategies do not affect the soundness and
completeness of the method. The proof is omitted
due to the limit of space.

3 Implementation

Changes to the Prolog machine TOAM [20] are
needed to implement the new tabling method. This
section describes the changes to the data structures
and the instruction set.

3.1 Data structures

A new data area, called table area, is introduced
for memorizing tabled subgoals and their answers.
The subgoal table is a hash table that stores all the
tabled subgoals encountered in execution. For each
tabled subgoal and its variants, there is an entry in
the table that contains the following information:

Copy

PionnerAR

State

TopMostLoopingSubgoal

DependentSubgoals

AnswerTable

The field Copy points to the copy of the subgoal
in the table area. In the copy, all variables are
numbered. Therefore all variants of the subgoal
are identical.

The field PionnerAR points to the frame of the
pioneer, which is needed for implementing cuts.
When the choice point of a tabled subgoal is cut
off before the subgoal reaches completion, the field
PionnerAR will be set to null. When a variant of
the subgoal is encountered again after, the subgoal
will be treated as a pioneer.

The field State indicates whether the subgoal
is a looping subgoal, whether the subgoal is in its
first round of evaluation or an iterative round of
evaluation, and whether the subgoal is complete.

The TopMostLoopingSubgoal field points to the
entry for the top-most looping subgoal, and the
field DependentSubgoals stores the list of subgoals
on which this subgoal depends. When a top-most
looping subgoal becomes complete, all of its depen-
dent subgoals turn to complete too.

The field AnswerTable points to the answer ta-
ble for this subgoal, which is also a hash table.
Hash tables expand dynamically.

In the abstract machine TOAM [20] different
structures of frames are used for different types

5

of predicates. A new frame structure is introduced
for tabled predicates. The frame for a tabled pred-
icate contains the following three slots in addition
to those slots stored in a choice point frame2:

SubgoalTable

CurrentAnswer

Revised

The SubgoalTable points to the subgoal table en-
try. The CurrentAnswer points to the last an-
swer that was consumed. The next answer can
be reached from this reference on backtracking.
The field Revised tells whether any new answers
have been added into the table since the frame was
pushed on to the stack. This field must be propa-
gated to the previous tabled frame when this frame
is deallocated. When execution backtracks to a
top-most looping subgoal, if the Revised field is
set, then we will start another round of evaluation.
A top-most looping subgoal is complete if this field
is unset after a round of evaluation. At that time,
the subgoal and all of its dependent subgoals will
be set to complete.

3.2 Instructions

Three new instructions, namely allocate table,
memo, and check completion, are introduced into
the TOAM for compiling tabled predicates. The
following shows the compiled code of the transitive
closure example:

% p(X,Y):-p(X,Z),e(Z,Y).

% p(X,Y):-e(X,Y).

p/2: allocate_table 2,1

fork c2

para_value y(2)

para_var y(-13)

call p/2 % p(X,Z)

para_value y(-13)

para_value y(1)

call e/2 % e(Z,Y)

memo

2A choice point frame has the following slots: FP (par-
ent frame), CPS (continuation program pointer on success),
CPF (continuation program pointer on failure), TOP (top
of the control stack), B (parent choice point), H (top of the
heap), and T (top of the trail stack).

c2: fork c3

para_value y(2)

para_value y(1)

call e/2 % e(X,Y)

memo

c3: check_completion p/2

Let A be a subgoal to the predicate. The
allocate table instruction allocates a frame for
A, and adds an entry to the table if A has not been
registered yet. The two operands 2 and 1 denote
the arity and the number of local variables, respec-
tively. If A has an entry in the table whose state
is complete, then A is resolved by using the an-
swers in the table. If A is a pioneer of the current
path, meaning that it is encountered for the first
time, then control is moved to the next instruc-
tion, resolving A using the program clauses. If A

is a follower of some ancestor A0, meaning that a
loop has been encountered, then it is resolved by
using the answers in the table, and is failed after
the answers are exhausted.

The memo instruction is executed when an answer
is found for A. If the answer A is already in the
table, then just fail; otherwise fail after the answer
is added into the table. The failure of memo post-
pones the consumption of answers until all clauses
have been tried.

The check completion instruction is executed
when A is being resolved by using program clauses
and all the clauses have been tried. If A has never
occurred in a loop, then A’s state can be set to
complete and A can be failed after all the answers
are consumed. If A is a top-most looping subgoal,
we check whether any new answers were produced
during the last round of evaluation. If so, A is
resolved again by using program clauses starting at
p/2. Otherwise, if no new answer was produced,
A is resolved by using answers after being set to
complete. If A is a looping subgoal but not a top-
most one, A will be resolved by using answers after
its state is set to temporary complete. A will be
set to complete after its top-most looping subgoal
becomes complete.

6

4 Optimization Techniques

Linear tabling relies on iterative evaluation of top-
most looping subgoals to compute fixpoints. Blind
re-computation of all subgoals and clauses is not
computationally acceptable. A system should re-
evaluate only those subgoals and should use only
those clauses and answers that can contribute to
the generation of new answers. This section de-
scribes four optimization techniques that avoid un-
necessary re-computation. This section also pro-
poses an optimization technique that avoids copy
of data between the table area and the heap.

4.1 Avoid Re-evaluation of Clauses

In the first round of evaluation of a subgoal, all
the clauses must be considered. In the subsequent
rounds, however, only those clauses that can pro-
duce new answers should be used. For example, the
clause that terminates the recursion in the tran-
sitive closure example needs not be re-evaluated.
We propose a program analysis method that de-
termines what clauses need not be re-evaluated.

For a given program, we find a mapping from
the predicate symbols in the program to the set
of integers that reflects the dependence or calling
relationship.

Definition 4 Given a program. Let m be a map-
ping from the set of predicate symbols in the pro-
gram to the set of integers. The mapping m is sat-
isfactory with respect to the calling relationship
if for each clause “H:−A1, A2, ..., An”, m(H) ≥
m(Ai) for i = 1, 2, . . . n.

Theorem 4.1 A clause “H:−A1, A2, ..., An” in a
program needs not be re-evaluated if there exists a
satisfactory mapping m for the program such that
m(H) > m(Ai) for any i = 1, 2, . . . n.

Proof: The existence of such a mapping means
that none of the subgoals in the body is dependent
on the head. When the clause “H:−A1, A2, ..., An”
is re-evaluated, all the subgoals in the body must
be complete and all the possible answers that can
be created by joining the answers of the subgoals
must have been generated already. Therefore, the
clause can be safely skipped in re-evaluation.

Consider the transitive closure predicate p/2. It
is possible to map p to 1 and e to 0. There-
fore the clause “p(X,Y):-e(X,Y)” needs not be
re-evaluated.

A trivial mapping that maps all the predicates
into the same integer is satisfactory but not useful.
In our implementation, a finite-domain constraint
solver is employed to find mappings that map pred-
icates into a largest possible range.

The compiler inserts an instruction at the neck
of every clause that needs not be re-evaluated. The
instruction does nothing when a subgoal is evalu-
ated first time, and triggers backtracking immedi-
ately from the second time on.

Our method of using a mapping to identify those
clauses that need not be re-evaluated is analogous
to the stratification-based methods for computing
non-standard semantics for logic programs (e.g.,
[10]). A program is divided into several strata with
predicates at each stratum depending only on those
at the lower strata. Before a subgoal at a stratum
is re-evaluated, all the subgoals that it depends on
at the lower strata must be complete.

4.2 Avoid Unnecessary Re-

consumption of Answers

Regarding answer consumption, a naive method
does not distinguish new answers from old ones.
In this method, each round may become compu-
tationally heavier than the previous one since the
set of answers may grow after each round. Con-
sider “p(X,Y):-p(X,Z),e(Z,Y)” in the transitive
closure example. Let Pi−1 be the table for p(X,Z)
before the start of round i, and Pi be the table af-
ter round i. In round i+1, the naive re-evaluation
method joins Pi and e, which is at least as expen-
sive as joining Pi−1 and e since Pi ⊇ Pi−1.

We propose an optimization technique that
avoids joining those tuples that have been joined
before. The idea is the same as the semi-naive al-
gorithm used in bottom-up evaluation for Datalog
programs [1, 16]. Let ∆Pi = Pi − Pi−1. In round
i + 1, p(X,Z) consumes only answers in ∆Pi.

In general, let “H:−A1, ..., Ak, ..., An” be a
clause in a program for which there is a satisfac-
tory mapping m from the predicate symbols to in-
tegers such that m(Ak) = m(H), m(Ai) ≤ m(H)

7

for i < k, and m(Ai) < m(H) for i > k. In other
words, Ak is the last subgoal in the body that is
mapped into the same stratum as the head. Thus,
when the clause is re-executed on the subgoal H,
all the subgoals to the right of Ak that have oc-
curred in early rounds must be already complete.
For each combination of the answers of A1, · · ·, and
Ak−1, if the combination does not contain any new
answers then Ak should consume new answers only
in re-evaluation.

In general, it is difficult to know whether a com-
bination of answers contains new answers, espe-
cially when some of the predicates are not tabled.
Currently, this optimization is done only on linear
clauses where each clause has exactly one subgoal
in the body mapped into the same stratum as the
head.

In order to incorporate this idea into linear
tabling, we use three pointers in each subgoal en-
try: the first one points to the very beginning of the
answer table, the second one points to the begin-
ning of the new answers generated in the previous
round, and the third one points to the end of the
new answers. After each round, the two pointers
pointing to the region of new answers are reset ac-
cordingly. This representation allows for retrieval
of only new answers for a subgoal produced in the
previous round.

4.3 Auto-tabling

The previous optimization technique in part mim-
ics the behavior of the semi-naive algorithm [1]
through chronological backtracking. It avoids re-
production of some answers in re-evaluation that
have already been generated. Nevertheless, it does
not achieve the full effect of the semi-naive algo-
rithm. Recall the clause “H:−A1, ..., Ak, ..., An”.
The join of A1, · · ·, and Ak−1 is done every time
H is re-evaluated. If m(Ak) = m(H) and m(Ai) <

m(H) for i < k, i.e., all the subgoals to the left
of Ak have been completely evaluated when H is
re-evaluated, the join should be done only once.

Auto-tabling is an optimization technique that
avoids re-computation of joins. The compiler re-
places the subgoals A1, · · ·, and Ak−1 with a
dummy predicate call and tables the dummy pred-
icate. If there is just one subgoal to the left of

Ak, then the compiler tables the subgoal instead
of introducing a dummy predicate. With the op-
timization technique described in 4.1, the dummy
predicate call is never re-evaluated and thus the
join of the subgoals of A1, · · ·, and Ak−1 is com-
puted only once for each subgoal of H3.

Notice that the effect of the semi-naive algorithm
is not fully achieved even with auto-tabling. For
example, even if there is no new answer available
for Ak, the answers of the subgoals A1, · · ·, and
Ak−1 are still enumerated.

4.4 Avoid Re-evaluation of Subgoals

Certain subgoals need not be re-evaluated at all.
For a subgoal, if no loop is involved in its evalua-
tion then it needs not be re-evaluated. The follow-
ing technique avoids re-evaluation of some looping
subgoals.

Theorem 4.2 In each round of evaluation of a
top-most looping subgoal, each subgoal needs to
be evaluated only once.

Proof: If evaluating a subgoal produces some new
answers then the top-most looping subgoal will be
re-evaluated and the subgoal will be re-evaluated
as well4. If evaluating a subgoal does not produce
any new answer, then evaluating it again is just
a waste. Therefore, this optimization technique is
safe.

This optimization technique is especially effec-
tive for mutually recursive programs where variant
subgoals occur in different branches. Consider the
following example:

p(X,Y):-q(X,Y).

p(X,Y):-q(X,Z),r(Z,Y).

p(X,Y):-q(X,U),r(U,V),s(V,Y).

...

3In the real implementation, the subgoals are tabled
rather than the results from their join. In this way, the sub-
goals need not be re-evaluated but the join of their answers
needs be re-computed.

4Note that for a top-most looping subgoal A, if another
inter-dependent looping subgoal A

′ occurs in a round of
evaluation of A, then A

′ must also occur in the subsequent
rounds of evaluation of A. This is still true with the opti-
mization techniques on clauses and answers.

8

q(X,Y):-p(X,Y).

...

The two predicates p and q are mutually recur-
sive. In the evaluation of the subgoal p(a,X), there
are several variants of q(a,X) occurring in differ-
ent branches of the tree. Only the first occurrence
should be re-evaluated and the rest should be re-
solved by using answers only.

4.5 Avoid Copy

The organization of tables is an orthogonal but im-
portant issue. For each tabled subgoal, a check is
made to see whether the subgoal has been regis-
tered in the table. If not, a copy of it is made
into the table. Tabled goals may share data and
the shared part should be copied once in all rather
than once for every new subgoal.

Consider, for example, the following predicate:

visit([]).

visit([X|Xs]):-

do_something(X),

visit(Xs).

For a list L of size n, the subgoal visit(L) spawns
n subgoals. If all the subgoals were copied indepen-
dently, then O(n2) table space would be needed.

An improvement is to reset each argument of
a tabled subgoal to the copy in the table if the
argument is ground. In this way, ground terms
that are shared by tabled subgoals are copied only
once. For the subgoal visit([a,b,c]), the con-
stant [a,b,c] is copied to the table, and the argu-
ment becomes a reference to the copy. When the
next subgoal visit([b,c]) is generated, [b,c],
which is a part of [a,b,c], needs not be copied
again since it resides in the table already.

5 Performance Evaluation

The tabling method and the optimization tech-
niques have been implemented in B-Prolog 6.4. Ta-
ble 1 evaluates the effectiveness of the optimiza-
tion techniques on a set of benchmarks: nrev is
the naive reverse program where the two predi-
cates are tabled, tcl and tcr are, respectively, the
left-recursive and the right-recursive definitions of

Table 1: Effectiveness of the optimization tech-
niques (CPU time).

program all -clause -answer -subgoal -copy -auto

nrev 1 0.99 0.99 0.99 1.16 0.99
tcl 1 1.04 1.98 1.02 1.00 0.72
tcr 1 1.03 1.34 > 100 1.00 0.79
sg 1 1.00 1.35 > 100 1.00 7.37

cs o 1 1.01 1.05 0.98 0.99 3.44
cs r 1 1.03 1.07 1.03 1.00 4.93

gabriel 1 1.02 1.06 1.01 1.00 4.84
read 1 1.02 1.04 8.34 0.99 4.57
peep 1 1.06 1.09 1.10 0.99 6.35
atr 1 1.00 0.68 > 100 1.06 3.73

<mean> 1 1.02 1.16 1.02 3.77

the transitive closure of a relation, sg defines the
same-generation relation of a graph, the next five
programs are program analyzers taken from [5],
and the last program atr is a parser for a nat-
ural language defined by a grammar of over 860
rules [17]. The benchmarks are available from
probp.com/bench.tar.gz. The column all de-
notes the time taken by the version that incorpo-
rates all the optimization techniques, and each of
the subsequent columns denotes the relative time
taken by a version in which one of the optimiza-
tion techniques is missing: in −clause all clauses
are considered in re-computation; in −answer new
and old answers are treated equally; in −subgoal

a subgoal can be re-evaluated multiple times in
each round of re-evaluation of a top-most looping
subgoal; in −copy arguments of tabled calls are
copied independently; and in −auto no predicates
are tabled except for the ones declared in the pro-
gram. The measurement was made on a Windows
XP machine with 1.7GHz CPU and 760M RAM.

Amongst the optimization techniques, the tech-
nique subgoal is the most important one. Without
it, tcr, sg and atr would not end in a reasonable
amount of time. The technique auto is the next
most effective one. It speeds up sg by 7 times.
The technique clause contributes slightly to the
speed-up. This result can be interpreted as fol-
lows. For subgoals that do not involve any loops,
they are not re-evaluated at all and thus this tech-
nique does not contribute anything. For subgoals
that do involve loops, looping clauses dominate the
execution time. Notice that it is possible to build
a program for which this technique is arbitrarily

9

effective. The technique answer is most effective
for the Datalog programs. The slow-down of atr
may be caused by incremental consumption of an-
swers: a new answer produced in a round is not
consumed until the next round and thus it may
need more rounds to reach a fixpoint. The opti-
mization technique copy is effective for nrev and
atr but not for the others.

Amongst the programs, nrev is the only pro-
gram that runs without use of tabling. The com-
parison of the two modes shows that using tabling
slows the program down by 29 times. This result
reveals that a large portion of the execution time
is spent on the table primitives and the speed of
Prolog is almost irrelevant.

Table 2 compares the CPU times required by
B-Prolog (BP) and XSB (version 2.5) to run the
benchmarks on two platforms: XP and Linux. For
XSB the default setting is used. BP compares fa-
vorably well with XSB in speed for the benchmark
set. BP is over 10 times as fast as XSB for nrev and
sg, 2 to 3 times as fast for the program analyzers,
and twice as fast for the ATR language parser. The
only programs for which BP is slower are the two
Datalog programs tcl and tcr. The slow-down is
caused by the overhead of auto-tabling adopted in
BP (see Table 1).

It is unclear why there is such a gap in speed be-
tween XSB and BP for nrev. The gap may be
due to the difference in the handling of ground
and structured terms in the two systems. XSB
consumes 14 times more table space than BP for
this program (see Table 3). For sg, the gap be-
tween XSB and BP is mainly attributed to the
auto-tabling optimization adopted in BP (see Table
1).

Several other Prolog systems support tabling
now. Yap adopts the same tabling mechanism as
XSB and is about twice as fast as XSB for a dif-
ferent set of benchmarks [12]. TALS [7] is several
times slower than XSB. The early version of B-
Prolog [21]5 is 2-3 times slower than XSB for the
program analyzers.

Table 3 compares the amounts of space required
by BP and XSB to run the benchmarks. In BP, the

5This version is not compared here because it fails to run
the ATR parser successfully.

Table 2: BP vs. XSB (CPU time).
program BP XSB

XP Linux

nrev 1 11.41 9.34
tcl 1 0.91 0.44
tcr 1 1.03 0.71
sg 1 15.55 11.70

cs o 1 2.30 1.63
cs r 1 3.88 2.80

gabriel 1 2.83 2.24
read 1 2.33 1.68
peep 1 3.12 2.07
atr 1 1.87 2.13

Table 3: BP vs. XSB (Space).
program BP BP XSB

(default) (no auto) Stack Table Total

nrev 1 1.00 1.73 14.73 14.52
tcl 1 0.31 1.16 0.37 0.37
tcr 1 0.40 29.40 0.46 0.81
sg 1 0.36 20.27 0.46 0.88

cs o 1 0.05 0.81 0.11 0.13
cs r 1 0.05 0.97 0.11 0.13

gabriel 1 0.09 3.10 0.17 0.32
read 1 0.09 15.05 0.16 0.52
peep 1 0.05 3.51 0.10 0.18
atr 1 0.46 36.78 3.08 3.54

user can disable auto-tabling by setting the flag
auto table optimization to off. Auto-tabling
is enabled by default. The column BP (no-auto)

shows the relative amount of table space required
by BP when auto-tabling is disabled. The column
XSB shows the relative amounts of stack 6, table,
and total spaces required by XSB. BP consumes
an order of magnitude less stack space for four of
the programs: tcr, sg, read, and atr. For the
program analyzers, BP (default) consumes nearly
5 to 10 times more table space than XSB. This is
because auto-tabling tables some extra predicates.

6 Discussion

There are three different approaches to tabling,
namely OLDT [15, 13], CAT [4], and linear tabling

6The total of local, global, choice point, trail, and SLG
completion stack spaces for XSB, and the total of control,
heap, and trail stack spaces for BP.

10

[14, 21, 7]7. These three approaches differ in the
handling of consumers. In OLDT, a consumer fails
after it exhausts all the existing answers but its
state is preserved by freezing the stack so that
it can be reactivated after new answers are gen-
erated. The CAT approach does not freeze the
stack but instead copies the stack segments be-
tween the consumer and its producer into a sep-
arate area so that backtracking can be done nor-
mally. The saved state is reinstalled after a new an-
swer is generated. CHAT [5] is a hybrid approach
that combines OLDT and CAT. Linear tabling re-
lies on iterative computation of looping subgoals
to compute fixpoints. Linear tabling is arguably
the easiest method to implement since no effort
is needed to preserve states of consumers. It is
also the most space-efficient method since no extra
space is needed to save states of consumers. Never-
theless, linear tabling without optimization could
be computationally more expensive than the other
two methods.

Our linear tabling method employs the follow-
ing strategies: (1) followers consume answers only;
(2) pioneers consume answers lazily: for top-most
looping subgoals answer consumption is postponed
until they are complete and for other pioneers an-
swer consumption is postponed until all the clauses
are tried; (3) re-evaluation starts at top-most loop-
ing subgoals.

Other strategies are possible. A follower can be
resolved by using the alternative clauses of its pio-
neer after the answers are exhausted. In [21], this
strategy is called stealing choice points. This strat-
egy is abandoned since it is not as space efficient as
the strategy of failing followers. While a follower
produces answers by using its pioneer’s alternative
clauses, the subgoals in the loop between the pi-
oneer and the follower are preserved. Moreover,
stealing choice points is not amenable to some of
the optimization techniques.

A pioneer can consume an answer right after
the answer is added into the table.This strategy
is adopted in TALS [7]. This strategy entails that
memo(A) succeeds after A is added into the table.

7Guo and Gupta’s DRA method [7] shares the same idea
as linear tabling in the use of iterative computation of looing
subgoals to compute fixpoints.

This eager consumption strategy is not as space
efficient as the lazy consumption strategy adopted
in our method. For example, when the subgoal
p(Y) is encountered in the goal “p(X), p(Y)”, the
subtree for p(X) has been explored completely and
thus needs not be saved for backtracking. Another
advantage of the lazy consumption strategy is that
the ancestor relationship needs not be tested at
runtime. For a tabled subgoal C whose state is in-
complete, if a variant A of C has been encountered
before, then A must be an ancestor of C. The two
consumption strategies have been compared in the
context of OLDT [6] as two scheduling strategies.
The lazy strategy was found in OLDT to consume
significantly less space than the eager strategy for
some programs.

The lazy consumption strategy is suited for find-
ing all answers. For certain applications such as
planning it is unreasonable to find all answers ei-
ther because the set is infinite or because only one
answer is needed. For these applications the ea-
ger consumption strategy should be more effec-
tive. Another disadvantage of the lazy consump-
tion strategy is that the cut operator cannot be
handled as nicely as under the eager consumption
strategy. The goal “p(X),!,q(X)” produces all the
answers for p(X) even though only one is needed.

The set of optimization techniques proposed in
this paper is not complete and some of the tech-
niques should be extended and evaluated from
other perspectives. For example, it is possible to
avoid re-evaluating non-looping clauses with some
bookkeeping at runtime [14, 7]. A through com-
parison of this approach with our program analysis
based approach is worthwhile. Another challenging
question that needs to be answered is whether it
is possible to find a set of optimization techniques
that achieves the full effect of the semi-naive algo-
rithm without imposing much overhead on space.

7 Concluding Remarks

Early implementations of linear tabling were sev-
eral times slower than XSB. This paper demon-
strates for the first time that linear tabling with
optimization is as competitive as OLDT in terms
of not only space but also time efficiency. The full

11

potential of linear tabling is yet to be exploited.
Further work includes investigating other tabling
strategies and their effects on optimization.

Acknowledgement

We are indebted to Yi-Dong Shen for his valuable
discussion and comments on early versions of this
paper.

References

[1] Bancilhon, F., and Ramakrishnan, R. An
amateur’s introduction to recursive query process-
ing strategies. Proc. of ACM SIGMOD ’86 (May
28-30, 1986), 16–52.

[2] Bol, R. N., and Degerstedt, L. Tabulated
resolution for the well-founded semantics. Journal
of Logic Programming 34, 2 (Feb. 1998), 67–109.

[3] Chen, W., and Warren, D. S. Tabled eval-
uation with delaying for general logic programs.
Journal of the ACM 43, 1 (Jan. 1996), 20–74.

[4] Demoen, B., and Sagonas, K. CAT: The copy-
ing approach to tabling. LNCS (PLILP) 1490
(1998), 21–35.

[5] Demoen, B., and Sagonas, K. CHAT: The
copy-hybrid approach to tabling. LNCS (PADL)
1551 (1999), 106–121.

[6] Freire, J., Swift, T., and Warren, D. S. Be-
yond depth-first: Improving tabled logic programs
through alternative scheduling strategies. LNCS
(PLILP) 1140 (1996), 243–257.

[7] Guo, H.-F., and Gupta, G. A simple scheme
for implementing tabled logic programming sys-
tems based on dynamic reordering of alternatives.
LNCS (ICLP) 2237 (2001), 181–195.

[8] Lloyd, J. W. Foundation of Logic Programming,
2 ed. Springer-Verlag, 1988.

[9] Michie, D. “memo” functions and machine learn-
ing. Nature (Apr. 1968), 19–22.

[10] Przymusinski, T. C. Every logic program has
a natural stratification and an iterated least fixed
point model. In PODS ’89. Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, March
29–31, 1989, Philadelphia, PA (1989), ACM, Ed.,
ACM Press, pp. 11–21.

[11] Ramakrishnan, C. Model checking with tabled
logic programming. In ALP News Letter (2002),
ALP.

[12] Rocha, R., Silva, F., and Costa, V. S. On
a tabling engine that can exploit or-parallelism.
LNCS (ICLP) 2237 (2001), 43–58.

[13] Sagonas, K., and Swift, T. An abstract ma-
chine for tabled execution of fixed-order stratified
logic programs. ACM Transactions on Program-
ming Languages and Systems 20, 3 (1 May 1998),
586–634.

[14] Shen, Y., Yuan, L., You, J., and Zhou, N.

Linear tabulated resolution based on Prolog con-
trol strategy. Theory and Practice of Logic Pro-
gramming (TPLP) 1, 1 (Feb. 2001), 71–103.

[15] Tamaki, H., and Sato, T. OLD resolution with
tabulation. In Proceedings of the Third Interna-
tional Conference on Logic Programming (London,
1986), E. Shapiro, Ed., Lecture Notes in Computer
Science, Springer-Verlag, pp. 84–98.

[16] Ullman, J. D. Database and Knowledge-Base
Systems, vol. 1 & 2. Computer Science Press, 1988.

[17] Uratani, N., Takezawa, T., Matsuo, H., and

Morita, C. ATR integrated speech and language
database. Technical Report TR-IT-0056, ATR In-
terpreting Telecommunications Research Labora-
tories, 1994. In Japanese.

[18] Warren, D. S. Memoing for logic programs.
Comm. of the ACM, Special Section on Logic Pro-
gramming 35, 3 (Mar. 1992), 93.

[19] Zhou, N., Sato, T., and Hasida, K. Toward
a high-performance system for symbolic and sta-
tistical modeling. In IJCAI Workshop on Learn-
ing Statistical Models from Relational Data (2003),
p. to appear.

[20] Zhou, N.-F. Parameter passing and control stack
management in Prolog implementation revisited.
ACM Transactions on Programming Languages
and Systems 18, 6 (Nov. 1996), 752–779.

[21] Zhou, N.-F., Shen, Y.-D., Yuan, L.-Y., and

You, J.-H. Implementation of a linear tabling
mechanism. LNCS (PADL) 1753 (2000), 109–123.

12

