
Semi-naive Evaluation in Linear Tabling

Neng-Fa Zhou
Department of Computer

Science
CUNY Brooklyn College &

Graduate Center
zhou@sci.brooklyn.cuny.edu

Yi-Dong Shen
Laboratory of Computer

Science, Institute of Software
Chinese Academy of

Sciences, Beijing

ydshen@ios.ac.cn

Taisuke Sato
Department of Computer

Science
Tokyo Institute of Technology

& CREST JST
sato@mi.cs.titech.ac.jp

ABSTRACT
Semi-naive evaluation is an effective technique employed in
bottom-up evaluation of logic programs to avoid redundant
joins of answers. The impact of this technique on top-down
evaluation had been unknown. In this paper, we introduce
semi-naive evaluation into linear tabling, a top-down resolu-
tion mechanism for tabled logic programs. We give the con-
ditions for the technique to be safe and propose an optimiza-
tion technique called early answer promotion to enhance its
effectiveness. While semi-naive evaluation is not as effective
in linear tabling as in bottom-up evaluation, it is worthwhile
to be adopted. Our benchmarking shows that this technique
gives significant speed-ups to some programs.

Categories and Subject Descriptors
D.3.2 [Programming languages]: Language Classifica-
tions—Constraint and logic languages

General Terms
Languages

Keywords
Prolog, Semi-naive evaluation, Recursion, Tabling, Memo-
ization, Linear tabling

1. INTRODUCTION
Recently there has been a growing interest of research

in tabling because of its usefulness in a variety of applica-
tion domains including program analysis, parsing, deductive
database, theorem proving, model checking, and logic-based
probabilistic learning [6, 9, 11, 14, 18, 20]. The main idea
of tabling is to memorize the answers to some subgoals and
use the answers to resolve subsequent variant subgoals. This
idea of caching previously calculated solutions, called memo-
ization, was first used to speed up the evaluation of functions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

[8]. OLDT [16] is the first resolution mechanism that accom-
modates the idea of tabling in logic programming and XSB
is the first Prolog system that successfully supports tabling
[13]. Tabling has become a practical technique thanks to
the availability of large amounts of memory in computers.
It has become an embedded feature in a number of other
logic programming systems such as ALS [5], B-Prolog [21,
19], Mercury, and YAP [12].

Linear tabling has emerged as an alternative effective tabling
scheme [15, 21, 19]. The main idea of linear tabling is to use
iterative computation of looping subgoals rather than sus-
pension and resumption of them as is done in OLDT to
compute fixpoints. In our linear tabling scheme, a cluster of
inter-dependent subgoals as represented by a top-most loop-
ing subgoal is iteratively evaluated until no subgoal in it can
produce any new answers. Linear tabling is relatively easy
to implement on top of a stack machine thanks to its linear-
ity, and is more space efficient than OLDT since the states
of subgoals need not be preserved. Nevertheless, naive re-
evaluation of all looping subgoals may be computationally
unacceptable. In [19], we have proposed several optimiza-
tion techniques that make linear tabling computationally
more competitive than before.

Semi-naive evaluation is an effective technique used in
bottom-up evaluation of Datalog programs [2, 17]. It avoids
redundant joins by ensuring that the join of the subgoals
in the body of each rule must involve at least one new an-
swer produced in the previous round. The impact of semi-
naive evaluation on top-down evaluation had been unknown.
In this paper, we propose to introduce semi-naive evalua-
tion into linear tabling. We have made efforts to properly
tailor semi-naive evaluation to linear tabling. In our semi-
naive evaluation, answers for each tabled subgoal are divided
into three regions as in bottom-up evaluation, but answers
are consumed sequentially not incrementally so answers pro-
duced in a round are consumed in the same round. We have
found that incremental consumption of answers is not suited
to linear tabling since it may require more rounds of iteration
to reach fixpoints. Consuming answers incrementally, how-
ever, may cause redundant consumption of answers. We fur-
ther propose a technique called early promotion of answers to
reduce redundant consumption of answers. Our benchmark-
ing shows that this technique gives significant speed-ups to
some programs.

The remainder of the paper is structured as follows: In
the next section we define the linear tabling method to be
optimized. This tabling method is the same as the one de-

scribed in [19]. In Section 3, we introduce semi-naive eval-
uation into the tabling method. We prove its completeness
and also prove the safeness of the early promotion technique.
In Section 4, we evaluate the effectiveness of the technique
and in Section 5 we compare our semi-naive evaluation with
the one employed in bottom-up evaluation. In Section 6, we
conclude the paper.

2. LINEAR TABLING
Linear tabling is a framework from which different meth-

ods can be derived based on the strategies used in handling
looping subgoals in forward execution, backtracking, and it-
eration. We first give the framework and then describe the
method we choose. The description is made as much self-
contained as possible. The reader is referred to [7] for a
description of SLD resolution.

Let P be a program. Tabled predicates in P are explic-
itly declared and all the other predicates are assumed to be
non-tabled. A rule in a tabled predicate is called a tabled
rule and a subgoal of a tabled predicate is called a tabled
subgoal. Tabled predicates are transformed into a form that
facilitates execution: each tabled rule ends with a dummy
subgoal named memo(H) where H is the head, and each
tabled predicate contains a dummy ending rule whose body
contains only one subgoal named check completion(H). For
example, given the definition of the transitive closure of a
relation,

p(X,Y):-p(X,Z),e(Z,Y).

p(X,Y):-e(X,Y).

The transformed predicate is as follows:

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)).

p(X,Y):-e(X,Y),memo(p(X,Y)).

p(X,Y):-check_completion(p(X,Y)).

A table is used to record subgoals and their answers. For
each subgoal and its variants, there is an entry in the table
that stores the state of the subgoal (complete or not) and
an answer table for holding the answers generated for the
subgoal. Initially, the answer table is empty.

Definition 1. Let G = (A1, A2, ..., Ak) be a goal. The first
subgoal A1 is called the selected subgoal of the goal. G′ is
derived from G by using an answer F in the table if there
exists a unifier θ such that A1θ = F and G′ = (A2, ..., Ak)θ.
G′ is derived from G by using a rule “H ← B1, ..., Bm” if
A1θ = Hθ and G′ = (B1, ..., Bm, A2, ..., Ak)θ. A1 is said to
be the parent of B1, ..., and Bm. The relation ancestor is
defined recursively from the parent relation.

Definition 2. Let G0 be a given goal, and G0 ⇒ G1 ⇒

. . . ⇒ Gn be a derivation where each goal is derived from
the goal immediately before it. Let Gi = (A...) be a goal
where A is the selected subgoal. A is called a pioneer in the
derivation if no variant of A has been selected in goals before
Gi in the derivation. Let Gi ⇒ . . .⇒ Gj be a sub-sequence
of the derivation where Gi = (A...) and Gj = (A′...). The
sub-sequence forms a loop if A is an ancestor of A′, and
A and A′ are variants. The subgoals A and A′ are called
looping subgoals. Moreover, A′ is called a follower of A.

Notice that a derivation Gi ⇒ . . . ⇒ Gj does not form a
loop if the selected subgoal of Gi is not an ancestor of that

 ��

Figure 1: A top-most looping subgoal.

of Gj . Consider, for example, the goal “p(X), p(Y)” where
p is defined by facts. The derivation “p(X), p(Y)” ⇒ p(Y)
does not form a loop even though the selected subgoal p(Y)
in the second goal is a variant of the selected subgoal p(X)
of the first goal since p(X) is not an ancestor of p(Y).

Definition 3. The SLD tree for a given goal G and a given
program is a tree that satisfies the following: (1) G is the
root of the tree; and (2) for each node, the derived goals are
the children of the node. The children are ordered based
on the textual order of the applied rules in the program.
For each node in an SLD tree, the path from it to a leaf
corresponds to a derivation of the node. A node in an SLD
tree is called a top-most looping node if the selected subgoal
of the node is the pioneer of a loop in a path and the pioneer
is not contained in any other loops. The selected subgoal of
a top-most looping node is called a top-most looping subgoal

For example, there are two loops in the SLD tree in Figure
1. Node 1:p is a top-most looping node while 2:q is not
since q is contained in p’s loop.

Definition 4. A subgoal A is said to be dependent on an-
other subgoal A′ if A′ occurs in the derivation of A. Two
subgoals are said to be inter-dependent if they occur in each
other’s loop. The inter-dependent subgoals under a top-
most looping subgoal form a cluster.

For example, in Figure 1 the subgoals p, q, and r are all
inter-dependent and the three subgoals form a cluster.

Linear tabling takes a transformed program and a goal,
and tries to find a path in the SLD tree that leads to an
empty goal. To simplify the presentation, we assume that
the primitive table start(A) is executed when a tabled sub-
goal A is encountered. Just as in SLD resolution, linear
tabling explores the SLD tree in a depth-first fashion, taking
special actions when table start(A), memo(A), and check
completion(A) are encountered. Backtracking is done in ex-
actly the same way as in SLD resolution. When the current
path reaches a dead end, meaning that no action can be
taken on the selected subgoal, execution backtracks to the
latest previous goal in the path and continues with an al-
ternative branch. When execution backtracks to a top-most

looping subgoal in the SLD tree, the subgoal may have to
be re-evaluated to ensure that no answer is lost. The eval-
uation of a top-most looping subgoal must be re-evaluated
until the fixpoint is reached.

A linear tabling method is defined by the strategies used
in the three primitives: table start(A), memo(A), and check
completion(A). The following defines a method.

table start(A)

This primitive is executed when a tabled subgoal A is en-
countered. The subgoal A is registered into the table if it is
not registered yet. If A’s state is complete meaning that A

has been completely evaluated before, then A is resolved by
using the answers in the table.

If A is a pioneer of the current path, meaning that it is
encountered for the first time, then it is resolved by using
rules.

If A is a follower of some ancestor A0, meaning that a
loop has been encountered, then it is resolved by using the
answers in the table. After the answers are exhausted, the
subgoal fails. Failing a follower is unsafe since it may have
not returned all of its possible answers. For this reason,
a top-most looping subgoal needs be iterated until no new
answer can be produced.

memo(A)

This primitive is executed when an answer is found for the
tabled subgoal A. If the answer A is already in the table,
then just fail; otherwise fail after the answer is added into
the table. The failure of memo postpones the consumption
of answers until all rules have been tried.

check completion(A)

This primitive is executed when the subgoal A is being re-
solved by using rules and the dummy ending rule is being
tried. If A has never occurred in a loop, then A’s state
is set to complete and A is failed after all the answers are
consumed.

If A is a top-most looping subgoal, we check whether any
new answers were produced during the last round of evalu-
ation of A. If so, A is resolved again by using rules. Oth-
erwise, if no new answers were produced, A is resolved by
answers after being set to complete. Notice that a top-most
looping subgoal does not return any answers until it is com-
plete.

If A is a looping subgoal but not a top-most one, A will be
resolved by using answers after its state is set to temporary
complete. Notice that A’s state cannot be set to complete
since A is contained in a loop whose top-most subgoal has
not been completely evaluated. For example, in Figure 1 q

reaches its fixpoint only after the top-most loop subgoal p
reaches its fixpoint.

In [19] an optimization technique, called subgoal optimiza-
tion, is used to avoid evaluating the same subgoal more than
once in each round of evaluation of a cluster. When a sub-
goal is encountered which is temporary complete, if the sub-
goal has been resolved by using rules in this round before,
then this subgoal can be treated like a follower and be re-
solved by using answers only.

Example
Consider the following example program and the query p(a,Y0).

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)). (p1)

p(X,Y):-e(X,Y),memo(p(X,Y)). (p2)

p(X,Y):-check_completion(p(X,Y)). (p3)

e(a,b).

e(b,c).

The following shows the steps that lead to the production
of the first answer:

1: p(a,Y0)

⇓apply p1

2: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

loop found, backtrack to goal 1

1: p(a,Y0)

⇓ apply p2

3: e(a,Y0),memo(p(a,Y0))

⇓ apply e(a,b)

4: memo(p(a,b))

⇓ add answer p(a,b)

After the answer p(a,b) is added into the table, memo(p(a,b))
fails. The failure forces execution to backtrack to p(a,Y0).

1: p(a,Y0)

⇓ apply p3

5: check completion(p(a,Y0))

Since p(a,Y0) is a top-most looping subgoal that has not
been completely evaluated yet, check completion(p(a,Y0))

does not consume the answer in the table but instead starts
re-evaluation of the subgoal.

1: p(a,Y0)

⇓apply p1

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,b)

7: e(b,Y0),memo(p(a,Y0))

⇓apply e(b,c)

8: memo(p(a,c))

When the follower p(a,Z1) is encountered this time, it con-
sumes the answer p(a,b). The current path leads to the
second answer p(a,c). On backtracking, the goal numbered
6 becomes the current goal.

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,c)

9: e(c,Y0),memo(p(a,Y0))

Goal 9 fails. Execution backtracks to the top goal and tries
the clause p3 on it.

1: p(a,Y0)

⇓ apply p3

10: check completion(p(a,Y0))

Since the new answer p(a,c) was produced in the last round
of evaluation, the top-most looping subgoal p(a,Y0) needs
to be re-evaluated. The next round of evaluation produces
no new answer and thus the subgoal’s state is set to com-
plete. After that the top-most subgoal is resolved by using
the answers p(a,b) and p(a,c).

3. SEMI-NAIVE EVALUATION
The basic linear tabling method described in the previ-

ous section does not distinguish between new and old an-
swers. The problem with this naive method is that it re-
dundantly joins answers of subgoals that have been joined
in early rounds. The semi-naive algorithm [17] reduces the
redundancy by ensuring that at least one new answer is in-
volved in the join of the answers for each rule. In this sec-
tion, we introduce semi-naive evaluation into linear tabling
and identify the necessary conditions for the evaluation to
be complete. We also propose a technique called early an-
swer promotion to further avoid redundant consumption of
answers.

3.1 Preparation
To make semi-naive evaluation possible, we divide the an-

swer table for each tabled subgoal into three regions as de-
picted below:

old previous current

The names of the regions indicate the rounds during which
the answers in the regions are produced: old means that
the answers were produced before the previous round, pre-
vious the answers produced during the previous round, and
current the answers produced in the current round. The
answers stored in previous and current are said to be new.
Before each round of evaluation is started, answers are pro-
moted accordingly: previous answers become old and current
answers become previous.

Answers are consumed sequentially. For a subgoal, either
all the available answers or only new answers are consumed.
This is unlike in bottom-up evaluation where answers are
consumed incrementally, i.e., answers produced in a round
are not consumed until the next round. As will be dis-
cussed later, incremental consumption of answers as is done
in bottom-up evaluation does avoid certain redundant joins
but is not suited to linear tabling since it may require more
rounds to reach fixpoints.

For a given program, we find a level mapping from the
predicate symbols in the program to the set of integers
that represents the call graph of the program. Let m be
a level mapping. We extend the notation to assume that
m(p(. . .)) = m(p) for any subgoal p(. . .).

Definition 5. For a program, a level mapping m repre-
sents the call graph if for each rule “H:−A1, A2, ..., An” in
the program, m(H) > m(Ai) iff the predicate of Ai does
not call either directly or indirectly the predicate of H, and
m(H) = m(Ai) iff the predicates of H and Ai occur in a
loop in the call graph.

The level mapping as defined divides predicates in a pro-
gram into several strata. The predicate at each stratum de-
pends only on those on the lower strata. The level mapping
is an abstract representation of the dependence relationship
of the subgoals that may occur in execution. If two subgoals
A and A′ occur in a loop, them m(A) = m(A′) but not vice
versa.

Definition 6. Let “H:−A1, ..., Ak, ..., An” be a rule in a
program and m be the level mapping that represents the
call graph of the program. Ak is called the last depending
subgoal of the rule if m(Ak) = m(H) and m(H) > m(Ai)
for i > k.

The last depending subgoal Ak is the last subgoal in the
body that may depend on the head to become complete.
Thus, when the rule is re-executed on a subgoal, all the
subgoals to the right of Ak that have occurred before must
already be complete.

Definition 7. Let “H:−A1, ..., An” be a rule in a program
and m be a level mapping that represents the call graph of
the program. If there is no depending subgoal in the body,
i.e., m(H) > m(Ai) for i = 1, ..., n, then the rule is called a
base rule.

3.2 Semi-naive evaluation

Theorem 1. Let “H:−A1, ..., Ak, ..., An” be a rule where
Ak is the last depending subgoal, and C be a subgoal that is
being resolved by using the rule in a round of evaluation of
a top-most looping subgoal T . For a combination of answers
of A1, · · · , and Ak−1, if C has occurred in an early round
and the combination does not contain any new answers, then
it is safe to let Ak consume new answers only.

Proof: Let Akold
and Aknew

be the old and new answers of
the subgoal Ak, respectively. For a combination of answers
of A1, · · · , and Ak−1, if the combination does not contain
new answers then the join of the combination and Akold

must
have been done and all possible answers for C that can result
from the join must have been produced during the previous
round because the subgoal C has been encountered before.1

Therefore only new answers in Aknew
should be used. 2

Theorem 2 (Corollary). Base rules need not be con-
sidered in the re-evaluation of any subgoals.

Semi-naive evaluation would be unsafe if it were applied
to new subgoals. The following example, where all the pred-
icates are assumed to be tabled, illustrates this possibility:

?- p(X,Y).

p(X,Y) :- p(X,Z),q(Z,Y). (C1)

p(b,c) :- p(X,Y). (C2)

p(a,b). (C3)

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round of p(X,Y) the answer p(a,b) is added to
the table, and in the second round the rule C2 creates the
answer p(b,c) by using the answer produced in the first
round. In the third round, the rule C1 generates a new sub-
goal q(c,Y). If semi-naive evaluation were applied to q(c,Y),
then the subgoal p(X,Y) in C4 could consume only the new
answer p(b,c) and the third answer p(b,d) would be lost.

3.3 Analysis
In the semi-naive evaluation technique described above,

answers produced in the current round are consumed imme-
diately rather than postponed to the next round as in the

1A looping subgoal that occurs in a round of evaluation must
also occur in the subsequent rounds unless it is complete.
Therefore, the subgoal C must have occurred in the previous
round.

bottom-up version, and answers are promoted each time a
new round is started. This way of consuming and promoting
answers may cause certain redundancy.

Consider the conjunction (P, Q). Assume Qo, Qp, and
Qc are the sets of answers in the three regions (respectively,
old, previous, and current) of the subgoal Q when Q is en-
countered in round i. Assume also that P had been com-
plete before round i and Pa is the set of answers. The join
Pa 1 (Qp

⋃
Qc) is computed for the conjunction in round i.

Assume Q′

o, Q′

p, and Q′

c are the sets of answers in the three
regions when Q is encountered in round i+1. Since answers
are promoted before round i + 1 is started, we have:

Q′

o = Qo

⋃
Qp

Q′

p = Qc

⋃
α

where α denotes the new answers produced for Q after the
conjunction (P, Q) in round i. When the conjunction (P, Q)
is encountered in round i+1, the following join is computed.

Pa 1 (Q′

p

⋃
Q′

c) = Pa 1 (Qc

⋃
α

⋃
Qc′)

Notice that the join Pa 1 Qc is computed in both round i

and i + 1.
We could allow last depending subgoals to consume an-

swers incrementally as is done in bottom-up evaluation,2 but
doing so may require more rounds to reach fixpoints. Con-
sider the following example, which is the same as the one
shown above but has a different ordering of clauses:

?- p(X,Y).

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

p(X,Y) :- p(X,Z),q(Z,Y). (C3)

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round, C1 produces the answer p(a,b). When
C2 is executed, the subgoal in the body cannot consume
p(a,b) since it is produced in the current round. Similarly,
C3 produces no answer either. In the second round, p(a,b)
is moved to the previous region, and thus can be consumed.
C2 produces a new answer p(b,c). When C3 is executed,
no answer is produced since p(b,c) cannot be consumed.
In the third round, p(a,b) is moved to the old region, and
p(b,c) is moved to the previous region. C3 produces the
third answer p(b,d). The fourth round produces no new
answer and confirms the completion of the computation. So
in total four rounds are needed to compute the fixpoint. If
answers produced in the current round are consumed in the
same round, then only two rounds are needed to reach the
fixpoint.

3.4 Early promotion of answers
2No interesting necessary condition has been found to make
incremental consumption safe in linear tabling. During the
evaluation of a top-most looping subgoal T another subgoal
T ′ may join the current cluster and become a new top-most
looping subgoal. The difficulty of identifying a necessary
condition arise from the fact that an answer old to a subgoal
in the cluster of T may be new to another subgoal in the
cluster of T ′.

As discussed above, sequential consumption of answers
may cause redundant joins. In this subsection, we propose
a technique called early promotion of answers to reduce the
redundancy.

Definition 8. Let Q be a subgoal that is selected the first
time in the current round (i.e. no variant of Q has been
selected before in this round). Then all answers of Q in
the current region are promoted to the previous region once
being consumed by Q.

Consider again the conjunction (P, Q). The answers in Qc

are promoted to the previous region if Q is the first variant
subgoal encountered in round i. By doing so, the join Pa 1

Qc will not be recomputed in round i+1 since Qc must have
been promoted to the old region in round i + 1.

Consider, for example, the following program:

?- p(X,Y).

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

Before C2 is executed in the first round, p(a,b) is in the
current region. Executing C2 produces the second answer
p(b,c). Since the subgoal p(X,Y) in C2 is first encountered
in the current round (the top-most looping subgoal is not
counted), it is qualified to promote its answers. So the an-
swers p(a,b) and p(b,c) are moved from the current region
to the previous region immediately after being consumed.
As a result, the potential redundant consumption of these
answers are avoided in the second round of iteration since
they will all be transferred to the old region before the sec-
ond round starts.

Theorem 3. Early promotion does not lose any answers.

Proof: First note that although answers are tabled in three
disjoint regions, all tabled answers will be consumed except
for some last depending subgoals that would skip the an-
swers in their old regions (see Theorem 3.1). Assume, on
the contrary, that applying early promotion loses answers.
Then there must be a last depending subgoal Ak in a rule
“H:−A1, ..., Ak, ..., An” and a tabled answer A for Ak such
that A has been moved to the old region before being con-
sumed by Ak so that A will never be consumed by Ak. As-
sume A is produced in round i. We distinguish between the
following two cases:

1. The last depending subgoal Ak is not selected in round
i. In round j(j > i), Ak is selected either because H

is new or some Ai(i < k) consumes a new answer. By
Theorem 3.1, Ak will consume all answers in the three
regions, including the answer A.

2. Otherwise, A must be produced by a variant subgoal
of Ak that is selected either before or after Ak in round
i. If A is produced before Ak is selected, then the an-
swer will be consumed by Ak since promoted answers
will remain new by the end of the round. If A is pro-
duced after Ak is selected, then the answer cannot be
promoted because the subgoal that produces it is not
encountered the first time in the round. In this case,
the answer A will remain new in the next round and
will thus be consumed by Ak.

Both of the above two cases contradict our assumption.
The proof then concludes. 2

tcl: tcl(X,Y):-edge(X,Y).

tcl(X,Y):-tcl(X,Z),edge(Z,Y).

tcr: tcr(X,Y):-edge(X,Y).

tcr(X,Y):-edge(X,Z),tcr(Z,Y).

tcn: tcn(X,Y):-edge(X,Y).

tcn(X,Y):-tcn(X,Z),tcn(Z,Y).

sg: sg(X,X).

sg(X,Y):-edge(X,XX),sg(XX,YY),edge(Y,YY).

Figure 2: Datalog programs.

4. PERFORMANCE EVALUATION
The semi-naive evaluation technique described in this pa-

per has been implemented in B-Prolog version 6.6.3 In this
section, we evaluate the effectiveness of the described tech-
nique using benchmarks from two different sources: Datalog
programs shown in Figure 2 and the CHAT suite [4]. All the
benchmarks are available from probp.com/bench.tar.gz.

Table 1 shows the effectiveness of the semi-naive technique
in reducing the number of consumed answers (#Ans) and
the CPU time for each of the program. The CPU times were
measured on a Windows XP machine with 1.7GHz CPU and
760mega RAM. The table shows only the effectiveness of
semi-naive evaluation in avoiding redundant joins in recur-
sive rules. Base rules are never considered in re-evaluation
of subgoals. This case is covered by an optimization tech-
nique called clause optimization [19], and is thus not taken
into account here.

The technique is more effective for the Datalog programs
than for the Chat programs. The speed of tcl is almost
doubled thanks to this technique.

Table 2 shows that the gains in speed are attributed al-
most entirely to the early promotion technique.

Semi-naive evaluation is not overhead-free. Three extra
words are needed for each tabled subgoal: two for repre-
senting regions of answers and the third for keeping track
of which subgoals in a rule have consumed new answers.
Nevertheless, these extra words can be reclaimed once the
subgoal becomes complete.

Table 3 compares the CPU times taken by B-Prolog (BP)
and XSB (version 2.6) to run the programs. For BP, the
auto-tabling optimization4, which could speed-up the Chat
programs by several times, is disenabled. For XSB the de-
fault setting is used. BP is faster than XSB for the Datalog
programs but not the Chat programs.

The implementations of linear tabling have been consid-
erably slower than XSB due to re-evaluation of looping sub-
goals [21, 5]. Our lastest implementation, while maintaining
good space efficiency,5 offers comparable speed performance
with XSB even without auto-tabling optimization.

3Available from www.probp.com.
4Auto-tabling is an optimization technique that tables extra
predicates to avoid re-evaluation of their subgoals.
5Semi-naive evaluation does not affect the stack space per-
formance.

Table 1: Effectiveness of semi-naive evaluation.
source program Nosemi

Semi

#Ans CPU time

Datalog tcl 1.50 1.96
tcr 1.29 1.21
tcn 1.79 1.65
sg 1.21 1.12

Chat cs o 1.01 1.01
cs r 1.02 1.01
disj 1.02 1.02

gabriel 1.07 1.06
kalah 1.09 1.13
pg 1.29 1.26

peep 1.02 1.00
read 1.08 1.10

Table 2: Effectiveness of early promotion.
program NoEP

EP

#Ans CPU time

tcl 1.50 1.96
tcr 1.29 1.32
tcn 1.79 1.81
sg 1.21 1.24

cs o 1.01 1.02
cs r 1.02 1.01
disj 1.02 1.04

gabriel 1.05 1.04
kalah 1.07 1.09
pg 1.29 1.31

peep 1.01 1.01
read 1.02 1.03

Table 3: BP vs. XSB (CPU time).
program BP XSB

XP Linux

tcl 1 1.80 1.36
tcr 1 1.40 1.06
tcn 1 1.25 1.11
sg 1 1.14 1.10

cs o 1 0.68 0.53
cs r 1 0.82 0.64
disj 1 0.59 0.48

gabriel 1 0.61 0.50
kalah 1 1.00 0.77
pg 1 1.05 0.88

peep 1 0.37 0.37
read 1 0.45 0.39

5. DISCUSSION
This section compares our semi-naive evaluation with the

bottom-up version of the technique. A comparison of lin-
ear tabling with related tabling models and methods can be
found in [19].

Semi-naive evaluation is a fundamental idea for reduc-
ing redundancy in bottom-up evaluation of logic database
queries [2, 17]. As far as we know, its impact on top-down
evaluation had been unknown before this work. OLDT [16]
as implemented in SLG-WAM [13] does not need this tech-
nique since it is not iterative and the underlying delaying
mechanism successfully avoids the repetition of any deriva-
tion step. An attempt has been made by Guo and Gupta
[5] to make incremental consumption of tabled answers pos-
sible in DRA, a tabling scheme similar to linear tabling.
In their scheme, answers are also divided into three regions
but answers are consumed incrementally as in bottom-up
evaluation. Since no condition is given for the completeness
and no experimental result is reported on the impact of the
technique, we are unable to give a detailed comparison.

Our semi-naive evaluation differs from the bottom-up ver-
sion in two major aspects: Firstly, no differentiated rules are
used. In the bottom-up version differentiated rules are used
to ensure that at least one new answer is involved in the join
of answers for each rule. Consider, for example, the clause:

H : −P, Q.

The following two differentiated rules are used in the evalu-
ation instead of the original one:

H : −∆P, Q.

H : −P, ∆Q.

Where ∆P denotes the new answers produced in the previ-
ous round for P. Using differentiated rules in top-down eval-
uation can cause considerable redundancy, especially when
the body of a clause contains non-tabled subgoals.

The second major difference between our semi-naive eval-
uation and the bottom-up version is that answers in our
method are consumed sequentially not incrementally. A
tabled subgoal consumes either all available answers or only
new answers including answers produced in the current round.
Neither incremental consumption nor sequential consump-
tion seems satisfactory. Incremental consumption avoids
redundant joins but may require more rounds to reach fix-
points. In contrast, sequential consumption never need more
rounds to reach fixpoints but may cause redundant joins of
answers. The early promotion technique alleviates the prob-
lem of sequential consumption. By promoting answers early
from the current region to the previous region, we can con-
siderably reduce the redundancy in joins.

In theory semi-naive evaluation can be an order of mag-
nitude faster than naive-evaluation in bottom-up evaluation
[2]. Our experimental results show that semi-naive evalu-
ation gives an average speed-up of 28% to linear tabling if
answers are promoted early, and almost no gain in speed if
no answer is promoted early. In linear tabling, only looping
subgoals need to be iteratively evaluated. For non-looping
subgoals, no re-evaluation is necessary and thus semi-naive
evaluation has no effect at all on the performance. Our ex-
periment shows that for most looping subgoals the fixpoints
can be reached in 2-3 rounds of iteration. In contrast more
rounds of iteration are needed to reach fixpoints in bottom-
up evaluation. In addition, in bottom-up evaluation, the

order of the joins can be optimized and no further joins are
necessary once a participating set is known to be empty.
In contrast, in linear tabling joins are done in the strictly
chronological order. For a conjunction (P, Q,R) the join
P 1 Q is computed even if no answer is available for R.
Because of all these factors, semi-naive evaluation is not as
effective in linear tabling as in bottom-up evaluation.

Our semi-naive evaluation requires the identification of
last depending subgoals. For this purpose, a level mapping
is used to represent the call graph of a given program. The
use of a level mapping to identify optimizable subgoals is
analogous to the idea used in the stratification-based meth-
ods for evaluating logic programs [1, 3, 10]. In our level
mapping, only predicate symbols are considered. It is ex-
pected that more accurate approximations can be achieved
if arguments are considered as well.

6. CONCLUSION
We have described how to incorporate semi-naive evalua-

tion into linear tabling. Our contributions are as follows:

• We have tailored semi-naive evaluation to linear tabling
and have given the necessary conditions for it to be
complete.

• We have proposed a technique called early answer pro-
motion to reduce redundant consumption of answers.

• We have implemented semi-naive evaluation in B-Prolog
and evaluated its effectiveness.

Semi-naive evaluation is not as effective in linear tabling
as in bottom-up evaluation. Nevertheless, semi-naive eval-
uation is worthwhile in linear tabling because (1) the space
overhead is minor if not negligible compared with gains in
speed, and (2) the implementation effort needed remains
small compared with that of OLDT.

7. ACKNOWLEDGEMENT
Neng-Fa Zhou is supported in part by RF-CUNY, Yi-Dong
Shen is supported in part by the National Natural Science
Foundation of China, and Taisuke Sato is supported in part
by CREST.

8. REFERENCES
[1] Apt, K., Blair, H. A., and Walker, A. Towards a

theory of declarative knowledge. In Foundations of
deductive databases and logic programming (1988),
J. Minker, Ed., Morgan Kaufmann, pp. 89–142.

[2] Bancilhon, F., and Ramakrishnan, R. An
amateur’s introduction to recursive query processing
strategies. Proc. of ACM SIGMOD ’86 (1986), 16–52.

[3] Chen, W., and Warren, D. S. Tabled evaluation
with delaying for general logic programs. Journal of
the ACM 43, 1 (1996), 20–74.

[4] Demoen, B., and Sagonas, K. CHAT: The
copy-hybrid approach to tabling. In Proceedings of
Practical Aspects of Declarative Programming (PADL)
(1999), LNCS 1551, Springer-Verlag, pp. 106–121.

[5] Guo, H.-F., and Gupta, G. A simple scheme for
implementing tabled logic programming systems based
on dynamic reordering of alternatives. In Proceedings

International Conference on Logic Programming
(ICLP) (2001), LNCS 2237, Springer-Verlag,
pp. 181–195.

[6] Johnson, M. Memoization of top down parsing.
Computational Linguistics 21, 3 (1995).

[7] Lloyd, J. W. Foundation of Logic Programming,
2 ed. Springer-Verlag, 1988.

[8] Michie, D. “memo” functions and machine learning.
Nature (1968), 19–22.

[9] Pientka, B. Tabled higher-order logic programming.
PhD thesis, Technical Report CMU-CS-03-185,
December 2003.

[10] Przymusinski, T. C. Every logic program has a
natural stratification and an iterated least fixed point
model. In PODS ’89. Proceedings of the Eighth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (1989), ACM Press, pp. 11–21.

[11] Ramakrishnan, C. Model checking with tabled logic
programming. In ALP News Letter (2002), ALP.

[12] Rocha, R., Silva, F., and Costa, V. S. On a
tabling engine that can exploit or-parallelism. In
Proceedings International Conference on Logic
Programming (ICLP) (2001), LNCS 2237,
Springer-Verlag, pp. 43–58.

[13] Sagonas, K., and Swift, T. An abstract machine
for tabled execution of fixed-order stratified logic
programs. ACM Transactions on Programming
Languages and Systems 20, 3 (1998), 586–634.

[14] Sato, T., and Kameya, Y. Parameter learning of
logic programs for symbolic-statistical modeling.
Journal of Artificial Intelligence Research (2001),
391–454.

[15] Shen, Y., Yuan, L., You, J., and Zhou, N. Linear
tabulated resolution based on Prolog control strategy.
Theory and Practice of Logic Programming (TPLP) 1,
1 (2001), 71–103.

[16] Tamaki, H., and Sato, T. OLD resolution with
tabulation. In Proceedings of the Third International
Conference on Logic Programming (1986), E. Shapiro,
Ed., LNCS, Springer-Verlag, pp. 84–98.

[17] Ullman, J. D. Database and Knowledge-Base
Systems, vol. 1 & 2. Computer Science Press, 1988.

[18] Warren, D. S. Memoing for logic programs. Comm.
of the ACM, Special Section on Logic Programming
35, 3 (1992), 93.

[19] Zhou, N., and Sato, T. Efficient fixpoint
computation in linear tabling. In Fifth
ACM-SIGPLAN International Conference on
Principles and Practice of Declarative Programming
(2003), pp. 275–283.

[20] Zhou, N., Sato, T., and Hasida, K. Toward a
high-performance system for symbolic and statistical
modeling. In IJCAI Workshop on Learning Statistical
Models from Relational Data (2003), pp. 153–159.

[21] Zhou, N., Shen, Y., Yuan, L., and You, J.
Implementation of a linear tabling mechanism.
Journal of Functional and Logic Programming 2001(1)
(2001), 1–15.

